Vidal's libraryTitle: | Q-Learning |
Author: | Christopher J. C. H. Watkins and Peter Dayan |
Journal: | Machine Learning |
Volume: | 8 |
Number: | 3-4 |
Pages: | 279--292 |
Year: | 1992 |
DOI: | 10.1023/A:1022676722315 |
Abstract: | Q-learning (Watkins, 1989) is a simple way for agents to learn how to act optimally in controlled Markovian domains. It amounts to an incremental method for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states. This paper presents and proves in detail a convergence theorem for Q,-learning based on that outlined in Watkins (1989). We show that Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action-values are represented discretely. We also sketch extensions to the cases of non-discounted, but absorbing, Markov environments, and where many Q values can be changed each iteration, rather than just one. |
Cited by 859 - Google Scholar
@Article{ watkins92a,
author = {Christopher J. C. H. Watkins and Peter Dayan},
title = {Q-Learning},
googleid = {3Y3Leyb3Hs8J:scholar.google.com/},
journal = {Machine Learning},
volume = 8,
number = {3-4},
pages = {279--292},
year = 1992,
abstract = {Q-learning (Watkins, 1989) is a simple way for
agents to learn how to act optimally in controlled
Markovian domains. It amounts to an incremental
method for dynamic programming which imposes limited
computational demands. It works by successively
improving its evaluations of the quality of
particular actions at particular states. This paper
presents and proves in detail a convergence theorem
for Q,-learning based on that outlined in Watkins
(1989). We show that Q-learning converges to the
optimum action-values with probability 1 so long as
all actions are repeatedly sampled in all states and
the action-values are represented discretely. We
also sketch extensions to the cases of
non-discounted, but absorbing, Markov environments,
and where many Q values can be changed each
iteration, rather than just one.},
keywords = {ai reinforcement learning},
url = {http://jmvidal.cse.sc.edu/library/watkins92a.pdf},
doi = {10.1023/A:1022676722315},
cluster = {14924637959810158045}
}
Last modified: Wed Mar 9 10:13:48 EST 2011