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Abstract. Q-learning (Watkins, 1989) is a simple way for agents to learn how to act optimally in controlled Markovian
domains. It amounts to an incremental method for dynamic programming which imposes limited computational
demands. It works by successively improving its evaluations of the quality of particular actions at particular states.

This paper presents and proves in detail a convergence theorem for Q,-learning based on that outlined in Watkins
(1989). We show that Q-learning converges to the optimum action-values with probability 1 so long as all actions
are repeatedly sampled in all states and the action-values are represented discretely. We also sketch extensions
to the cases of non-discounted, but absorbing, Markov environments, and where many Q values can be changed
each iteration, rather than just one.
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1. Introduction

Q-learning (Watkins, 1989) is a form of model-free reinforcement learning. It can also be
viewed as a method of asynchronous dynamic programming (DP). It provides agents with
the capability of learning to act optimally in Markovian domains by experiencing the con-
sequences of actions, without requiring them to build maps of the domains.

Learning proceeds similarly to Sutton's (1984; 1988) method of temporal differences
(TD): an agent tries an action at a particular state, and evaluates its consequences in terms
of the immediate reward or penalty it receives and its estimate of the value of the state
to which it is taken. By trying all actions in all states repeatedly, it learns which are best
overall, judged by long-term discounted reward. Q-learning is a primitive (Watkins, 1989)
form of learning, but, as such, it can operate as the basis of far more sophisticated devices.
Examples of its use include Barto and Singh (1990), Sutton (1990), Chapman and Kael-
bling (1991), Mahadevan and Connell (1991), and Lin (1992), who developed it inde-
pendently. There are also various industrial applications.

This paper presents the proof outlined by Watkins (1989) that Q-learning converges. Sec-
tion 2 describes the problem, the method, and the notation, section 3 gives an overview
of the proof, and section 4 discusses two extensions. Formal details are left as far as pos-
sible to the appendix. Watkins (1989) should be consulted for a more extensive discussion
of Q-learning, including its relationship with dynamic programming and TD. See also Werbos
(1977).
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2. The task for Q-learning

Consider a computational agent moving around some discrete, finite world, choosing one
from a finite collection of actions at every time step. The world constitutes a controlled
Markov process with the agent as a controller. At step n, the agent is equipped to register
the state xn (€ X) of the world, an can choose its action an (€ 2)1 accordingly. The agent
receives a probabilistic reward rn, whose mean value (RXn (an) depends only on the state
and action, and the state of the world changes probabilistically to yn according to the law:

The task facing the agent is that of determining an optimal policy, one that maximizes total
discounted expected reward. By discounted reward, we mean that rewards received s steps
hence are worth less than rewards received now, by a factor of ys (0 < y < 1). Under
a policy T, the value of state x is

because the agent expects to receive (Rx(r(x)) immediately for performing the action I
recommends, and then moves to a state that is 'worth' V*(y) to it, with probability
Pxy [>(*)]. The theory of DP (Bellman & Dreyfus, 1962; Ross, 1983) assures us that there
is at least one optimal stationary policy T* which is such that

is as well as an agent can do from state x. Although this might look circular, it is actually
well defined, and DP provides a number of methods for calculating V* and one T*( assum-
ing that (Rx(a) and Pxy[a] are known. The task facing a Q, learner is that of determining
a f* without initially knowing these values. There are traditional methods (e.g., Sato, Abe
& Takeda, 1988) for learning (Rx(a) and Pxy[a] while concurrently performing DP, but
any assumption of certainty equivalence, i.e., calculating actions as if the current model
were accurate, costs dearly in the early stages of learning (Barto & Singh, 1990). Watkins
(1989) classes ^-learning as incremental dynamic programming, because of the step-by-
step manner in which it determines the optimal policy.

For a policy T, define Q, values (or action-values) as:

In other words, the 3, value is the expected discounted reward for executing action a at
state x and following policy T thereafter. The object in Q-learning is to estimate the 5,
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values for an optimal policy. For convenience, define these as Q*(x, a) = Q**(x, a), Vx, a.
It is straightforward to show that V*(x) = maxa Q*(x, a) and that if a* is an action at which
the maximum is attained, then an optimal policy can be formed as r*(x) = a*. Herein
lies the utility of the Q, values—if an agent can learn them, it can easily decide what it
is optimal to do. Although there may be more than one optimal policy or a*, the 5* values
are unique.

In Q-learning, the agent's experience consists of a sequence of distinct stages or episodes.
In the nth episode, the agent:

• observes its current state xn,
• selects and performs an action an,
• observes the subsequent state yn,
• receives an immediate payoff rn, and
• adjusts its Qn-1 values using a learning factor an, according to:

where

is the best the agent thinks it can do from state y. Of course, in the early stages of learn-
ing, the Q, values may not accurately reflect the policy they implicitly define (the maxi-
mizing actions in equation 2). The initial Q, values, Q,0(X, a), for all states and actions
are assumed given.

Note that this description assumes a look-up table representation for the Q,n(x, a).
Watkins (1989) shows that ^-learning may not converge correctly for other representations.

The most important condition implicit in the convergence theorem given below is that
the sequence of episodes that forms the basis of learning must include an infinite number
of episodes for each starting state and action. This may be considered a strong condition
on the way states and actions are selected—however, under the stochastic conditions of
the theorem, no method could be guaranteed to find an optimal policy under weaker con-
ditions. Note, however, that the episodes need not form a continuous sequence—that is
the y of one episode need not be the x of the next episode.

The following theorem defines a set of conditions under which Qn(x, a) - Q*(x, a)
as n - o. Define n i(x, a) as the index of the ith time that action a is tried in state x.
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Theorem

Given bounded rewards \rn\ < (R, learning rates 0 < an < 1, and

then Qn(x, a) - G*(x, a) as n - o, Vx, a, with probability 1.

3. The convergence proof

The key to the convergence proof is an artificial controlled Markov process called the action-
replay process ARP, which is constructed from the episode sequence and the learning rate
sequence an.

A formal description of the ARP is given in the appendix, but the easiest way to think
of it is in terms of a card game. Imagine each episode (xt, at, yt, rt, at,) written on a card.
All the cards together form an infinite deck, with the first episode-card next-to-bottom
and stretching infinitely upwards, in order. The bottom card (numbered 0) has written on
it the agent's initial values Q0(x, a) for all pairs of x and a. A state of the ARP, (x, n),
consists of a card number (or level) n, together with a state x from the real process. The
actions permitted in the ARP are the same as those permitted in the real process.

The next state of the ARP, given current state (x, n) and action a, is determined as follows.
First, all the cards for episodes later than n are eliminated, leaving just a finite deck. Cards
are then removed one at a time from top of this deck and examined until one is found whose
starting state and action match x and a, say at episode t. Then a biased coin is flipped,
with probability a, of coming out heads, and 1 - a, of tails. If the coin turns up heads,
the episode recorded on this card is replayed, a process described below; if the coin turns
up tails, this card too is thrown away and the search continues for another card matching
x and a. If the bottom card is reached, the game stops in a special, absorbing, state, and
just provides the reward written on this card for x, a, namely Qo(x, a).

Replaying the episode on card t consists of emitting the reward, rt , written on the card,
and then moving to the next state (yt, t - 1} in the ARP, where yt is the state to which
the real process went on that episode. Card t itself is thrown away. The next state transition
of the ARP will be taken based on just the remaining deck.

The above completely specifies how state transitions and rewards are determined in the
ARP. Define P^tiyim) [a] and (Rjn)(a) as the transition-probability matrices and expected
rewards of the ARP. Also define:

as the probabilities that, for each x, n and a, executing action a at state (x,n) in the ARP
leads to state y of the real process at some lower level in the deck.
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As defined above, the ARP is as much a controlled Markov process as is the real pro-
cess. One can therefore consider sequences of states and controls, and also optimal dis-
counted C* values for the ARP.2 Note that during such a sequence, episode cards are only
removed from the deck, and are never replaced. Therefore, after a finite number of actions,
the bottom card will always be reached.

3.1. Lemmas

Two lemmas form the heart of the proof. One shows that, effectively by construction, the
optimal Q, value for ARP state (x, n) and action a is just Qn(x, a). The next shows that
for almost all possible decks, P^[a] converge to Pxy[a] and Rx(n)(a) converge to Sx(a)
as n - o. Informal statements of the lemmas and outlines of their proofs are given below;
consult the appendix for the formal statements.

Lemma A

Qn(x, a) are the optimal action values for ARP states (x, n) and ARP actions a.

The ARP was directly constructed to have this property. The proof proceeds by backwards
induction, following the ARP down through the stack of past episodes.

Lemma B

Lemma B concerns the convergence of the ARP to the real process. The first two steps
are preparatory; the next two specify the form of the convergence and provide foundations
for proving that it occurs.

B.1

Consider a discounted, bounded-reward, finite Markov process. From any starting state
x, the difference between the value of that state under the finite sequence of s actions and
its value under that same sequence followed by any other actions tends to 0 as s - o.

This follows from the presence of the discount factor which weighs the (s + l)th state
by ys - 0 as s - o.

B.2

Given any level /, there exists another yet higher level, h, such that the probability can
be made arbitrarily small of straying below l after taking 5 actions in the ARP, starting
from above h.

The probability, starting at level h of the ARP of straying below any fixed level / tends
to 0 as h - o. Therefore there is some sufficiently high level for which s actions can
be safely accommodated, with an arbitrarily high probability of leaving the ARP above /.
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B.3

With probability 1, the probabilities P$[a] and expected rewards (RJ(n)(a) in the ARP con-
verge and tend to the transition matrices and expected rewards in the real process as the
level n increases to infinity. This, together with B.2, makes it appropriate to consider
P^\d\ rather than the ARP transition matrices P$^,fy,m)[a], i.e., essentially ignoring the
level at which the ARP enters state y.

The ARP effectively estimates the mean rewards and transitions of the real process over
all the episodes. Since its raw data are unbiased, the conditions on the sums and sums
of squares of the learning rates cn i(X , a) ensure the convergence with probability one.

B.4

Consider executing a series of s actions in the ARP and in the real process. If the proba-
bilities P^[a] and expected rewards (R(n)(a ) at appropriate levels of the ARP for each
of the actions, are close to Px y[a] and (R x (a ) ,Va , x, y, respectively, then the value of the
series of actions in the ARP will be close to its value in the real process.

The discrepancy in the action values over a finite number s of actions between the values
of two approximately equal Markov processes grows at most quadratically with s. So,
if the transition probabilities and rewards are close, then the values of the actions must
be close too.

3.2. The theorem

Putting these together, the ARP tends towards the real process, and so its optimal Q, values
do too. But 3n(a, x) are the optimal Q values for the nth level of the ARP (by Lemma A),
and so tend to Q*(x, a).

Assume, without loss of generality, that Q 0 ( X , a) < R/(l - y) and that (R > 1.

Given e > 0, choose s such that

By B.3, with probability 1, it is possible to choose / sufficiently large such that for
n > l, and Va, x, y,

and

By B.2, choose h sufficiently large such that for n > h, the probability, after taking
s actions, of ending up at a level lower than l is less than min{(e(l - y)/6s(A),
(e/3s(s + 1)<R)}. This means that
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and

where the primes on P'(n) and (R' ( n } indicate that these are conditional on the level in
the ARP after the sth step being greater than /.

Then, for n > h, by B.4, compare the value QARp((x, n), a 1 , . . . , as) of taking ac-
tions a1, ..., as at state x in the ARP, with Q,(x, a1, ..., as) of taking them in the
real process:3

Where, in equation 4, the first term counts the cost of conditions for B.2 not holding,
as the cost of straying below / is bounded by 2s<R /(1 - 7). The second term is the cost,
from B.4, of the incorrect rewards and transition probabilities.

However, by B.1, the effect of taking only s actions makes a difference of less than e/6
for both the ARP and the real process. Also since equation 4 applies to any set of ac-
tions, it applies perforce to a set of actions optimal for either the ARP or the real proc-
ess. Therefore

So, with probability 1, Qn(x, a) - Q*(x, a) as n - o as required.

4. Discussions and conclusions

For the sake of clarity, the theorem proved above was somewhat restricted. Two par-
ticular extensions to the version of ^-learning described above have been used in prac-
tice. One is the non-discounted case (7 = 1), but for a Markov process with absorbing
goal states, and the other is to the case where many of the 5 values are updated in each
iteration rather than just one (Barto, Bradtke & Singh, 1991). The convergence result holds
for both of these, and this section sketches the modifications to the proof that are necessary.

A process with absorbing goal states has one or more states which are bound in the end
to trap the agent. This ultimate certainty of being trapped plays the role that 7 < 1 played
in the earlier proof, in ensuring that the value of state x under any policy r, Vw(x), is
bounded, and that lemma B.1 holds, i.e., that the difference between considering infinite
and finite (s) numbers of actions tends to 0 as s - o.

Since the process would always get trapped were it allowed to run, for every state x there
is some number of actions u(x) such that no matter what they are, there is a probability
p(x) > 0 of having reached one of the goal states after executing those actions. Take
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u* = max x {u (x ) } , and p* = minx{p(x)} > 0 (since there is only a finite number of
states). Then a crude upper bound for V*(x) is

since in each « * steps the agent earns a reward of less than u *R, and has probability less
than (1 — p*) of not having been trapped. Similarly, the effect of measuring the reward
after only ou* steps is less than (1 - p*)*u*® - 0 as j - o, and so an equivalent
of lemma B.1 does hold.

Changing more than one Q value on each iteration requires a minor modification to the
action replay process ARP such that an action can be taken at any level at which it was
executed in the real process—i.e., more than one action can be taken at each level. As
long as the stochastic convergence conditions in equation 3 are still satisfied, the proof
requires no non-trivial modification. The Qn(x, a) values are still optimal for the modified
ARP, and this still tends to the real process in the original manner. Intuitively, the proof
relies on the ARP estimating rewards and transition functions based on many episodes,
and this is just speeded up by changing more than one Q value per iteration.

Although the paper has so far presented an apparent dichotomy between 9-learning and
methods based on certainty equivalence, such as Sato, Abe and Takeda (1988), in fact there
is more of a continuum. If the agent can remember the details of its learning episodes,
then, after altering the learning rates, it can use each of them more than once (which is
equivalent to putting cards that were thrown away, back in, lower down on the ARP stack).
This biases the Q-learning process towards the particular sample of the rewards and transi-
tions that it has experienced. In the limit of re-presenting 'old' cards infinitely often, this
reuse amounts to the certainty equivalence step of calculating the optimal actions for the
observed sample of the Markovian environment rather than the actual environment itself.

The theorem above only proves the convergence of a restricted version of Watkins' (1989)
comprehensive Q-learning algorithm, since it does not permit updates based on the rewards
from more than one iteration. This addition was pioneered by Sutton (1984; 1988) in his
TD(X) algorithm, in which a reward from a step taken r iterations previously is weighted
by Xr, where X < 1. Unfortunately, the theorem does not extend trivially to this case, and
alternative proof methods such as those in Kushner and Clark (1978) may be required.

This paper has presented the proof outlined by Watkins (1989) that ^.-learning converges
with probability one under reasonable conditions on the learning rates and the Markovian
environment. Such a guarantee has previously eluded most methods of reinforcement
learning.
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Notes

1. In general, the set of available actions may differ from state to state. Here we assume it does not, to simplify
the notation. The theorem we present can straightfowardly be extended to the general case.

2. The discount factor for the ARP will be taken to be y, the same as for the real process.
3. The bars over the £ indicate that the sum is over only a finite number of actions, with 0 terminal reward.

Appendix

The action-replay process

The definition of the ARP is contingent on a particular sequence of episodes observed
in the real process. The state space of the ARP is {(x, n)}, for x a state of the real process
and n > 1, together with one, special, absorbing state, and the action space is {a} for
a an action from the real process.

The stochastic reward and state transition consequent on performing action a at state
{x, n) is given as follows. For convenience, define ni = n i(x, a), as the index of the ith

time action a was tried at state x. Define

if x, a has been executed before episode n

otherwise

such that ni* is the last time before episode n that x, a was exeucted in the real process.
If i* = 0, the reward is set as Q0(x, a), and the ARP absorbs. Otherwise, let

be the index of the episode that is replayed or taken, chosen probabilistically from the
collection of existing samples from the real process. If ie = 0, then the reward is set at
Qo(x, a) and the ARP absorbs, as above, Otherwise, taking ie provides reward rnie, and
causes a state transition to (ynie, ne — 1) which is at level nie - 1. This last point is
crucial, taking an action in the ARP always causes a state transition to a lower level—so
it ultimately terminates. The discount factor in the ARP is 7, the same as in the real process.
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Lemma A: Qn are optimal for the ARP

Qn(x, a) are the optimal action values for ARP states {x, n) and ARP actions a. That is

and

Proof

By induction. From the construction of the ARP, Q 0 ( X , a) is the optimal—indeed the only
possible—action value of (x, 0), a. Therefore,

Hence the theorem holds for n = 0.
Suppose that the values of £n-1, as produced by the ^-learning rule, are the optimal

action values for the ARP at level n — 1, that is

This implies that the V n - 1 ( x ) are the optimal values V* for the ARP at the n - 1th level,
that is

Now consider the cases in trying to perform action a in (x, n). If x, a = xn, an, then this
is the same as performing a in (x, n - 1), and £ n (x , a) = Q n - 1 ( x , a ) . Therefore,

Otherwise, performing an in {xn, n}

• with probability 1 - an is exactly the same as performing an in (xn, n - 1), or
• with probability an yields immediate reward rn and new state (yn, n — 1).

Therefore the optimal action value in the ARP of {xn, n}, an is

from the induction hypothesis and the $n interation formula in equation 1.
Hence, Q,n(x, a) = Q*ARP({x, n), a), Va, x, as required.
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Lemma B

B.1 Discounting infinite sequences

Consider a discounted, bounded-reward, finite Markov process with transition matrix
Pxy[a]. From any starting state x, the difference between the value of that state under any
set of s actions and under those same s actions followed by any arbitrary policy tends to
0 as s - o.

Proof

Ignoring the value of the s + 1th state incurs a penalty of

But if all rewards are bounded by R, | V*(x)\ < R/(l - 7), and so

B.2 The probability of straying below level l is executing s actions can be make arbitrarily
small

Given any level l, there exists another yet higher level, h, such that the probability can
be made arbitrarily small of straying below / after taking s actions in the ARP, starting
from above h.

Proof

Define ih as the largest i such that n'(x, a) ^ n, and il as the smallest such that ni(x, a) > l.
Then, defining xno = 1, the probability of straying below l starting from (x, n), n > l
executing action a is:

where, as before, ni = ni(x, a). But njl;/(l - «„') < exp(- E)t,; «„«) - 0 as n and
hence ih - o. Furthermore, since the state and action spaces are finite, given n, there
exists some level n1 such that starting above there from any (x, a) leads to a level above
/ with probability at least 1 - 17. This argument iterates for the second action with n1 as
the new lower limit. n can be chosen appropriately to set the overall probability of straying
below / less than any arbitrary e > 0.
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B. 3 Rewards and transition probabilities converge with probabability 1

With probability 1, the probabilities P%\a] and expected rewards (RJn)(a) in the ARP con-
verge and tend to the transition matrices and expected rewards in the real process as the
level n increases to infinity.

Proof

A standard theorem in stochastic convergence (e.g., theorem 2.3.1 of Kushner & Clark,
1978) states that if Xn are updated according to

where 0 < 8B < 1, £,"i 3n = o, £?!, p% < o, and £n, are bounded random variables
with mean E, then

with probability 1.

If R ( x , n )(a) is the expected immediate reward for performing action a from state x at level
n in the ARP, then & ( x , n ) (a) satisfies

where the R and the a satisfy the conditions of the theorem with E = 6x(a), and
remembering that ni is the ith occasion on which action a was tried at state x. Therefore
®(x,n)(a) - Rx((a) as n - o, with probbility one. Also, since there is only a finite num-
ber of states and actions, the convergence is uniform.

Similarly, define

as a (random variable) indicator function of the nth transition, mean value Pxy(a). Then,
with P^}\a] as the probability of ending up at state y based on a transition from state x
using action a at level n in the ARP,

and so, by the theorem, P^\a} - Pxy[a] (the transition matrix in the real process) as
n - o, with probability one.

Since, in addition, all observations from the real process are independent, and, by B.2,
the probability of straying below a fixed level k can be made arbitrarily small, the transi-
tion probabilities and expected rewards for a single step conditional on ending up at a level
greater than k also converge to Pxy[a] and Rx(a) as n - o.
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B.4 Close rewards and transitions imply close values

Let P!y[a], for i = 1 ... s be the transition matrices of s Markov chains, and RJ(a) be
the reward functions. Consider the s-step chain formed from the concatenation of these—
i.e., starting from state x1, move to state x2 according to /^[fl]], then state X3, according
to Px2x3[a2], and so on, with commensurate rewards. Given n > 0, if P i [ a ] are within
n/R of Pxy[a], Va, x, y, and Rx(a) ... Rx(a) are within n of Rx(a), Va, x, then the
value of the s actions in the concatenated chain is within ns(s + l)/2 of their value in the
real process.

Proof

Define:

as the expected reward in the real process for executing two actions, a1 and a2 at state x,
and

as the equivalent in the concatenated chain for exactly the same actions.
Then, since / Rx(a) - &x(a)\ < n and Pxy[a] - Pxy[a] < n / R , Va, i, x, y,

Similarly, for s actions,

This applies to the ARP if the rewards and transition matrices at the successively lower
levels are sufficiently close to those in the real process—the main body of the theorem
quantifies the cost of this condition failing.
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