
Robocup

José M. Vidal

Tue Oct 14 11:32:18 EDT 2003

This talk summarizes material from

• Soccerserver Manual1

• Robocup Simulator2

• Stacy Marsella, Milind Tambe, Jafar Adibi, Yaser Al-Onaiza, Gal A.
Kaminka, and Ion Muslea. Experiences Acquired in the Design of RoboCup
Teams: A Comparison of Two Fielded Teams.3 Journal of Autonomous
Agents and Multi-Agent Systems, (4)1/2:115–129, 2001.

1 Robocup

• An annual competition, held jointly with AI conferences.

• Small, medium, and large robotic leagues; legged league; simulation league;
RoboCup rescue league.

• Goal: A robotic team that can beat worldcup champions.

• Participants are mostly graduate and undergraduate students. There are
some ”professional” teams (they lose). A junior league attracts high-school
students.

1http://sserver.sourceforge.net/downloads.html#manual
2http://sserver.sourceforge.net/
3http://jmvidal.cse.sc.edu/library/marsella-jaamas01.pdf

1

http://sserver.sourceforge.net/downloads.html#manual
http://sserver.sourceforge.net/
http://jmvidal.cse.sc.edu/library/marsella-jaamas01.pdf
http://jmvidal.cse.sc.edu/library/marsella-jaamas01.pdf
http://sserver.sourceforge.net/downloads.html#manual
http://sserver.sourceforge.net/
http://jmvidal.cse.sc.edu/library/marsella-jaamas01.pdf

2 Soccerserver

• The Soccerserver is used in the simulator league.

• The simulator implements a realistic world.

– Actions do not always have their intended result.

– The ball loses speed as it rolls.

– There is noise in the inputs. The farther away something is the harder
it is to see correctly, if at all. The farther away the ball is the harder
it is to kick.

– There is wind (although we will be turning it off).

2

– The players get tired. After a sprint, a player needs to recuperate
before he can sprint again.

3 Architecture

• Uses UDP for communications. Messages can be lost (but they are almost
never lost on a LAN).

• Every player connects independently to the sserver.

• The soccermonitor is the GUI. I also connects to the server using UDP.

3

4 Physics

• The soccer field and all objects on it are 2-dimensional. There is no notion
of height on any object.

• The players and the ball are treated as circles. All distances and angles
used and reported are to the centers of the circles. The action model is
discrete

• All objects move according to Newtonian physics. They have a decay.
Move and Kick operations are implemented as vector additions to the
current velocity vector.

• If at the end of the simulation cycle, two objects overlap, then the objects
are moved back until they do not overlap.

• Noise is added to the movement of objects.

5 Player’s Input

• The player receives information from the sserver which tells it:

– What it sees, in polar coordinates relative to its current position and
viewing direction.

– This information includes the position of other players, the ball, goal
posts, fixed flags, and lines.

– The sense-body tells the player about its own body.

4

6 See

• Visual information arrives from the server in the following basic format:
(see Time ObjectInfo ObjectInfo ...) where ObjectInfo = (ObjName
Distance Direction DistChng DirChng BodyDir HeadDir) and

ObjName ::=
(player Teamname UniformNumber)

| (goal [l|r])
| (ball)
| (flag c)
| (flag [l|c|r] [t|b])
| (flag p [l|r] [t|c|b])
| (flag g [l|r] [t|b])
| (flag [l|r|t|b] 0)
| (flag [t|b] [l|r] [10|20|30|40|50])
| (flag [l|r] [t|b] [10|20|30])
| (line [l|r|t|b])

5

7 Player Actions

• (turn Moment) Change the direction of the player according to Moment.
Moment should be between minmoment and maxmoment (default is [-180,
180]). The actual change of direction is reduced when the player is moving
quickly.

• (turn-neck Angle) Adds Angle to the clients neck angle (ie angle at
which the view cone extends from the player) The neck angle must be
between [-90,90]. The neck angle is always relative to the angle of the
player, so if a turn command is issued, the view angle also changes.

• (dash Power) Increases the velocity of the player in the direction it is
facing by Power*dash-power-rate. Power should be between minpower
and maxpower (default: [-30, 100]). If power is negative, then the player
is effectively dashing backwards.

• (kick Power Direction) Kick the ball with Power in Direction if the
ball is near enough (the distance to the ball is less than kickable-margin
+ ball-size + player-size.). Power should be between minpower and
maxpower (default is [-30,100). Direction should be between minmoment
and maxmoment (default is [-180,180]).

• (move X Y) Move the player to the position (X,Y). The origin is the center
mark, and the X-axis and Y-axis are toward the opponent’s goal and
the right touchline respectively. Thus, X is usually negative to locate a
player in its own side of the field. This command is available only in the
before-kick-off mode, and for the goalie immediately after catching the
ball (see the catch) command.

• (catch Direction) Tries to catch the ball in direction Direction. Direction
should be in [-180, 180]. This command is permitted only for goalie
clients. The player (goalie) can catch the ball when the ball is in the
rectangle with width is goalie-catchable-area-w (default=1), length is
goalie-catchable-area-l (default=2) and the direction is Direction.
The probability the catch is successful if it is in the rectangle is given by
the parameter catch-probability. Also note that the goalie can only do
1 catch every few cycles (specified by the catch-ban-cycle parameter).
If the goalie tries to catch again during the ban cycle, the command is
ignored. If the catch is successful, the server goes into free kick mode.
Once it has caught the ball, the goalie can move within the penalty box
with the move command. The ball moves with the agent. However, a
catch does not immediately change the position or facing direction of the
goalie.

• (say Message) Broadcast Message to all players. Message is informed
immediately to clients as sensor information in the (hear ...) format
described below. Message must be a string with length less than 512

6

characters, and consists of alphanumeric characters and the symbols ”—+-
*/-.() —”. There is a maximum distance that messages can be heard. See
the section on auditory information for specifics.

• (change-view ANGLE-WIDTH QUALITY) Change angle of view cone and
quality of visual information. ANGLE-WIDTH must be one of wide (=180
degrees), normal (= 90 degrees) and narrow (=45 degrees). QUALITY must
be one of high and low. In the case of high quality, the server begins to
send detailed information about positions of objects to the client. In the
case of low quality, the server begins to send reduced information about
positions (only directions, no distance) of objects to the client. Default
values of angle and quality are normal and high respectively. On the
other hand, the frequency of visual information sent by the server changes
according to the angle and the quality: In the case that the angle is
normal and the quality is high, the information is sent every 150 milli-sec.
(The interval is modifiable by specifying send-step in the parameter file.)
When the angle changes to wide the frequency is halved, and when the
angle changes to narrow the frequency is doubled. When the quality is
low, the frequency is doubled. For example, when the angle is narrow and
the quality is low, the information is sent every 37.5 milli-sec.

• Discrete actions are received at any time. Every simulator-step (100ms)
the simulator updates the world model using these inputs. Only one action
per agent is accepted.

8 Sense Body

• In previous versions of the server, there was a sense-body command which
returned some information about the state of the player. This command
no longer exists in versions greater than 5.00. Instead, the following in-
formation is sent automatically to every client every sense-body-step
milliseconds.

•
(sense-body TIME
(view-mode QUALITY WIDTH)
(stamina STAMINA EFFORT)
(speed AMOUNT-OF-SPEED)
(head-angle RELATIVE-HEAD-ANGLE)
(kick KICK-COUNT)
(dash DASH-COUNT)
(turn TURN-COUNT)
(say SAY-COUNT)
(turn-neck TURN-NECK-COUNT))

7

9 Stamina

• Each player has its own stamina. There are three relevant parameters:

– stamina: used up when dashing and replenished slightly. Stamina
increases slightly every cycle. As recovery decreases, less stamina is
recovered.

– effort: determines how effective dashing is. The basic idea is that if
stamina gets low, effort decreases (with a minimum value given by
effort-min) and if stamina gets high enough, then effort increases
with a maximum of 1.0.

– recovery: controls how much stamina is recovered each cycle. This
is similar to effort except that recovery never increases.

• The player can dash only with Power lower than the current stamina. The
stamina decreases by the Power.

10 Tips

• Start with reliable low-level abilities: dribbling, passing (throwing and
catching), shooting, guarding.

• Passing is key. The ball moves a lot faster than an agent can.

• Some of the most common lessons learned last year.

1. Testing with another team will immediately reveal many bugs in the
program. Many waited until the tournament to do this—bad idea.

2. Changing one line of code can change the emergent behavior of the
whole team in unexpected way. This is what makes multiagent
system such fun (and challenging).

3. Placing a lot of System.out.println() in programs will slow it down
a lot. Of course.

4. The Java Virtual Machine’s thread scheduler is not fair or round-
robin . I don’t know why you would assume it was.

5. Always looking towards the ball to see where it is can make a player
very slow moving . Imagine that!

• Always think in terms of the team, even thought you are only programming
one agent.

• Get started NOW.

• Code, test team, repeat.

8

11 Lessons from ISIS

• ISIS is USC’s (west) team. The group has been led by Milind Tambe.

• There is a tradeoff in monitoring. You can either build a complex agent
that keeps track of everything around it (control tower), or simpler agents
that communicate the important information to each other (lookout per-
son). The case with simpler agents relies on joint commitments .

• Competition with collaboration is good. Having an overlap in the players’
zones allows for failure recovery (e.g., one player is tired, or can’t see the
ball, or is blocked by others....).

• Used C4.5 to learn what part of the goal to shoot for. Some decisions
are too hard to do by hand. However, learning also fails because it often
assumes a perfect opponent (worst-case scenario).’

• Social online learning must be undertaken with caution. That is, what
one player learns might not be useful to others (because they face different
challenges).

This talk is available at http://jmvidal.cse.sc.edu/talks/robocup

Copyright c© 2003 Jose M Vidal. All rights reserved.

9

http://jmvidal.cse.sc.edu/talks/robocup

	1 Robocup
	2 Soccerserver
	3 Architecture
	4 Physics
	5 Player's Input
	6 See
	7 Player Actions
	8 Sense Body
	9 Stamina
	10 Tips
	11 Lessons from ISIS

