OWL-S

José M. Vidal
Sat Apr 3 16:06:54 EST 2004

We introduce OWL-S. This talk is based on:
e The OWL Services Coalition. (OWL-S Technical Overview"

e Unknown tag=Massimo Paolucci and Katia Sycara. |[Autonomous Semantic Web Services.?
IEEFE Internet Computing, 7(5):34-41, 2003.

1 Introduction

e WSDL is a simple standard for describing webservices. It provides functionality similar to an
APL

e If we hope to have agent compose just-in-time services from individual components, we will
need more semantically-rich descriptions of services.

e That is, an agent needs to have some understanding of what getStockQuote (string symbol)
does.

e OWL-Services is a set of ontologies, written in OWL, which can be used to describe (at a
higher/more detailed semantic level) what a service does.

e Previously known as DAML-S.

2 Upper Ontology for Services

e Resources are available out in the net.

e The OWL-S ontology defines a Service as the central class for describing interfaces, part of
the OWL-S [Service Ontology?.

o What does the service require and provide for the users? This is given by the ServiceProfile.
An agent uses it to determine whether the service meets it’s needs.

e How does it work? Given by the ServiceModel. Gives details.

e How is it used? Given by the Service Grounding. It tells how to access the service.

http://www.daml.org/services/owl-s/1.0/owl-s.html
http://jmvidal.cse.sc.edu/library/paolucci03a.pdf
http://www.daml.org/services/owl-s/1.0/Service.owl

3 Service Profiles

o The ServiceProfile ontology® supports the use of three types of information.

1. A human readable description of the service and its provider.

2. A specification of the functionalities that are provided by the service.

3. Attributes which provide additional information and requirements (e.g., quality guaran-
tees, expected response, geographic constraints, etc.)

e The functionalities are specified by declaring the IOPEs:

— The Inputs the service expects.
— The Output information returned.
— The Preconditions that have to be satisfied in order to use the service.

— The expected Effects from running the service.

3.1 ServiceProfile Ontology

supports

Servicedrounding
ServiceModel
lservi celNans

intendedburpose| out put (Paranet erDesaription

DescribedBy

gerviceprofile

input ; .
¥ eographi cRadiug

degreeofoualit

serviceParamet ar
recondition

paramet orllame o
restrictedlo o
refersTo

ConditionDescription

communicaticonThrg
>

textDezoription) -
< serviceType

serviceCategory
ualityGuarantees

gualityRating >

providedBy

Tequest edBy

conditionNa.mel
statement >
PRLEEN ELEESIN LraferaTo j.
< phone | physical Address »
< fax webURL »

3.2 Profile Description Attributes

e serviceName is the name (ID).

¢ intendedPurpose tells what constitutes successful accomplishment of service execution.
e textDescription English description.

e providedBy who provides it.

¢ requestedBy who requests this service.

3.3 Functional Description Attributes

e These attributes describe the interface.

e input describes the input(s) the service can receive.

e output

e precondition describes what must be true in order to use the service.

e effect what will happen when the service runs.

http://www.daml.org/services/owl-s/1.0/Profile.owl

3.4 Functional Attributes

e A collection of other attributes that the service might have which do not deal with the process
that the service implements.

e geographicRadius

e degreeOfQuality

e serviceParameter

e communicationThru
e serviceType

e serviceCategory

e qualityGuarantees

e qualityRating

4 Service Model

e Services are viewed as processes which are defined using a Process Ontology®.

e A process can have any number of inputs.

e It can have any number of outputs.

e It has a parameter that specifies the participants in the process.

e It can have any number of preconditions that must hold for the process to be invoked.
e It can have any number of effects.

e Outputs and effects can have conditions associated with them.

4.1 Process Ontology

SUPpOrts

serviceGrounding
ServiceModel
AN
hasProcess
ProcessModal
input >
recaiei o-Corocess G
¢ ;out put AN
ef f e
|eonput erdout put y,

lcomput edEf fect
Atomic Simple Composite) |computedPrecon:
Process R Process / clpand Process Lovecakle
Tealized

realizedBy collapse

DescribedBy

ServiceProfile

Sat of all subsat
of Process

comput edInput »

conposedBy

component &

ProcessComponent

ControlConstruct

FAN

Repeat Until

e An AtomicProcess is directly invocable, has not sub-processes, and executed in a single step.

http://www.daml.org/services/owl-s/1.0/Process.owl

4.2

4.4

5

A SimpleProcess is not invocable (not associated with a grounding). Its executed in a single
step. Used as an element of abstraction.

A CompositeProcess is decomposable into other process using control constructs. It is
composed0f a ControlConstruct which, in turn, has a components property that indicates
the ordering and conditional execution of the sub-processes.

Control Constructs

A Sequence is a list of Processes to be done in order.
A Split contains a bag of process components to be executed concurrently.
Unordered specifies a bag of process components that can be executed in any order.

Split+Join consists of concurrent execution of process components with barrier synchroniza-
tion.

A Choice has further properties chosen and chooseFrom which let you create customized
subsets.

The If-Then-Else class has properties ifCondition, then, and else, which implement the
statement.

Iterate does just that until the whileCondition or untilCondition are met.

Repeat-Until does a similar job.

Process Control Ontology

Its an ontology that represent methods for monitoring and controlling the progress of an
executing process.

It does not exist yet.

Time Ontology
OWL-S also defines a simple Time Ontology®.
It has two main classes: Instants and Intervals.
It has three properties that go from Interval to Instant:

— start-of
— end-of

— inside

Resources

There is also a Resource Ontology/ .
Processes generally require(consume) resources.

Resources have an AllocationType property which can be used to tell if the resource is
consumable (e.g., time) or reusable (e.g., paint).

http://www.isi.edu/~pan/damltime/time-entry.owl
http://www.daml.org/services/owl-s/1.0/Resource.owl

6

6.1

Congo Example

This example is from the walkthru.
Congo is a website that sells books.

Their services are LocateBook, PutInCart, Signln, CreateAcct, CreateProfile, LoadProfile,
SpecifyDeliveryDetails, FinalizeBuy.

You cat get the complete Congo example file set.

Describe the Program

Congo offers the CongoBuy service which is composed of smaller programs.
You should describe these programs first.

These individual programs are defined as Process.

Process Input and Output

The process ontology shows the various types of processes we can have.

The LocateBook service is atomic, so we declare it as such:

<process:AtomicProcess rdf:ID="LocateBook" >
<process:hasInput>
<process:Input rdf:ID="BookName" >
<process:parameterType rdf:resource="&xsd;#string" />
< /process:Input>
< /process:hasInput>
<process:hasOutput>
<process:ConditionalOutput rdf:ID="LocateBookOutput">
<process:coCondition rdf:resource="#InCatalogueBookInstance" />
<process:parameter Type rdf:resource="LocatedBookOutput" />
< /process:ConditionalOutput >
< /process:hasOutput>
< /process: AtomicProcess>

This also says that LocateBook takes as input a BookName, which is a string

The output is conditional. If #InCatalogueBookInstance then return LocatedBookOutput.

Process Preconditions and Effects

In order to tie a bunch of processes together (compose) we also need to know their preconditions
for execution and any side-effects they might have.

So, OWL-S also has precondition and effect (yes, like Al planner operators. 1970’s Al
research might yet find an application :-).

ExpressCongoBuy service has two preconditions: you must have an account and credit:

<process:AtomicProcess rdf:ID="ExpressCongoBuy" >
<process:hasInput>
<process:Input rdf:ID="ExpressCongoBuyBookISBN" >

http://www.daml.org/services/owl-s/1.0/examples.html

6.4

<process:parameter Type rdf:resource="4&xsd;#string" />
< /process:Input>
< /process:hasInput>
<process:hasInput>
<process:Input rdf:ID="CongoBuySignInInfo" >
<process:parameter Type rdf:resource="#SignInData" />
< /process:Input>
< /process:hasInput>
<process:hasPrecondition rdf:resource="#AcctExists" />
<process:hasPrecondition rdf:resource="#CreditExists" />
<process:hasEffect>
<process:ConditionalEffect rdf:ID="CongoOrderShippedEffect" >
<process:ceCondition rdf:resource="#BookInStock" />
<process:ceEffect rdf:resource="#O0rderShippedEffect" />
< /process:ConditionalEffect >
< /process:hasEffect >

<process:hasOutput>
<process:ConditionalOutput rdf:ID="CongoOrderShippedOutput" >
<process:coCondition rdf:resource="#BookInStock" />
<process:parameterType rdf:resource="#O0OrderShippedOutput" />
< /process:ConditionalOutput >
< / process:hasOutput>

<process:hasOutput>
<process:ConditionalOutput rdf:ID="CongoOutOfStockOutput" >
<process:coCondition rdf:resource="#BookOutOfStock" />
<process:parameter Type rdf:resource="#BookOutOfStockOutput" />
< /process:ConditionalOutput >
< /process:hasOutput>

< /process: AtomicProcess>

It has the effect of shipping the order, the the output tells if the book was in stock or not.

Composite Processes

A CompositeProcess is composed0f a bunch of ControlConstructs which can be things like
sequence, if-then-else, fork, while, etc.

Build them in a top-down manner.

FullCongoBuy has two steps: locating the book and then buying the book.

<process:CompositeProcess rdf:ID="FullCongoBuy" >
<process:composedOf>
<process:Sequence>
<process:components rdf:parseType="Collection" >
<process:AtomicProcess rdf:about="#LocateBook" />
<process:CompositeProcess rdf:about="#CongoBuyBook" />
< /process:components>
< /process:Sequence>
< /process:composed Of>

<!I-- All of the inputs and outputs of this composite process are
derived from the corresponding inputs and outputs of its atomic
processes and will normally be computed automatically by OWL-S tools. -->

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyBookName" >
<process:parameter Type rdf:resource="4&xsd;#string" />
< /process:Input>
< /process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuySignInInfo" >
<process:parameter Type rdf:resource="#SignInData" />
< /process:Input>
< /process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreateAcctInfo">
<process:parameter Type rdf:resource="#AcctInfo" />
< /process:Input>
< /process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreditCardNumber" >
<process:parameterType rdf:resource="&xsd;#decimal" />
< /process:Input>
< /process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreditCardType" >
<process:parameterType rdf:resource="#CreditCardType" />
< /process:Input>
< /process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreditCardExpirationDate" >
<process:parameterType rdf:resource="&xsd;#string" />
< /process:Input>
< /process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreditCardDelivery Address" >
<process:parameterType rdf:resource="&xsd;#string" />
< /process:Input>
< /process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyPackagingSelection" >
<process:parameterType rdf:resource="4&xsd;#string" />
< /process:Input>
< /process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyDeliveryTypeSelection" >

<process:parameterType rdf:resource="#DeliveryType" />
< /process:Input>
< /process:hasInput>

<process:hasOutput>
<process:ConditionalOutput rdf:ID="FullCongoBuyBookISBNOutput">
<process:coCondition rdf:resource="#InCatalogueBookInstance" />
<process:parameter Type rdf:resource="4&xsd;#string" />
< /process:ConditionalOutput >
< /process:hasOutput>

<process:hasOutput>
<process:UnConditionalOQutput rdf:ID="FullCongoBuyCreateAcctOutput" >
<process:parameterType rdf:resource="#CreateAcctOutputType" />
< /process:UnConditionalOutput >
< /process:hasOutput>
< /process:CompositeProcess> </-- End of Full Congo Buy -->

7 Conclusion

e OWL-S is more complex than WSDL.

e OWL-S gives a lot more details about how a process is composed of other process, what
sequence they must execute, etc.

e It’s processes are akin to Al-planning operators.

e Just-in-time service composition will be much more likely if services are described using OWL-
S. Unfortunately that will require extra effort on the programmer’s part (WSDL can be gen-
erated automatically).

e OWL-S is sits righ between web-services (RPCs over HTTP) and the Semantic Web vision.

Z

tes
http://www.daml.org/services/owl-s/1.0/owl-s.html|

http://jmvidal.cse.sc.edu/library/paolucci03a.pdf|
http://www.daml.org/services/owl-s/1.0/Service.ow]|
http://www.daml.org/services/owl-s/1.0/Profile.owl|
http://www.daml.org/services/owl-s/1.0/Process.owl|
http://www.isi.edu/ pan/damltime/time-entry.owl|
http://www.daml.org/services/owl-s /1.0 /Resource.owl|
http://www.daml.org/services/owl-s/1.0/examples.html|

This talk is available at http://jmvidal.cse.sc.edu/talks/owls

Copyright (© 2004 Jose M Vidal. All rights reserved.

11

http://jmvidal.cse.sc.edu/talks/owls

	1 Introduction
	2 Upper Ontology for Services
	3 Service Profiles
	3.1 ServiceProfile Ontology
	3.2 Profile Description Attributes
	3.3 Functional Description Attributes
	3.4 Functional Attributes

	4 Service Model
	4.1 Process Ontology
	4.2 Control Constructs
	4.3 Process Control Ontology
	4.4 Time Ontology

	5 Resources
	6 Congo Example
	6.1 Describe the Program
	6.2 Process Input and Output
	6.3 Process Preconditions and Effects
	6.4 Composite Processes

	7 Conclusion

