
OWL-S

José M. Vidal

Sat Apr 3 16:06:54 EST 2004

We introduce OWL-S. This talk is based on:

• The OWL Services Coalition. OWL-S Technical Overview1

• Unknown tag=Massimo Paolucci and Katia Sycara. Autonomous Semantic Web Services.2

IEEE Internet Computing, 7(5):34–41, 2003.

1 Introduction

• WSDL is a simple standard for describing webservices. It provides functionality similar to an
API.

• If we hope to have agent compose just-in-time services from individual components, we will
need more semantically-rich descriptions of services.

• That is, an agent needs to have some understanding of what getStockQuote (string symbol)
does.

• OWL-Services is a set of ontologies, written in OWL, which can be used to describe (at a
higher/more detailed semantic level) what a service does.

• Previously known as DAML-S.

2 Upper Ontology for Services

• Resources are available out in the net.

• The OWL-S ontology defines a Service as the central class for describing interfaces, part of
the OWL-S Service Ontology3.

• What does the service require and provide for the users? This is given by the ServiceProfile.
An agent uses it to determine whether the service meets it’s needs.

• How does it work? Given by the ServiceModel. Gives details.

• How is it used? Given by the Service Grounding. It tells how to access the service.

1

http://www.daml.org/services/owl-s/1.0/owl-s.html
http://jmvidal.cse.sc.edu/library/paolucci03a.pdf
http://www.daml.org/services/owl-s/1.0/Service.owl

3 Service Profiles

• The ServiceProfile ontology4 supports the use of three types of information.

1. A human readable description of the service and its provider.

2. A specification of the functionalities that are provided by the service.

3. Attributes which provide additional information and requirements (e.g., quality guaran-
tees, expected response, geographic constraints, etc.)

• The functionalities are specified by declaring the IOPEs:

– The Inputs the service expects.

– The Output information returned.

– The Preconditions that have to be satisfied in order to use the service.

– The expected Effects from running the service.

3.1 ServiceProfile Ontology

3.2 Profile Description Attributes

• serviceName is the name (ID).

• intendedPurpose tells what constitutes successful accomplishment of service execution.

• textDescription English description.

• providedBy who provides it.

• requestedBy who requests this service.

3.3 Functional Description Attributes

• These attributes describe the interface.

• input describes the input(s) the service can receive.

• output

• precondition describes what must be true in order to use the service.

• effect what will happen when the service runs.

2

http://www.daml.org/services/owl-s/1.0/Profile.owl

3.4 Functional Attributes

• A collection of other attributes that the service might have which do not deal with the process
that the service implements.

• geographicRadius

• degreeOfQuality

• serviceParameter

• communicationThru

• serviceType

• serviceCategory

• qualityGuarantees

• qualityRating

4 Service Model

• Services are viewed as processes which are defined using a Process Ontology5.

• A process can have any number of inputs.

• It can have any number of outputs.

• It has a parameter that specifies the participants in the process.

• It can have any number of preconditions that must hold for the process to be invoked.

• It can have any number of effects.

• Outputs and effects can have conditions associated with them.

4.1 Process Ontology

• An AtomicProcess is directly invocable, has not sub-processes, and executed in a single step.

3

http://www.daml.org/services/owl-s/1.0/Process.owl

• A SimpleProcess is not invocable (not associated with a grounding). Its executed in a single
step. Used as an element of abstraction.

• A CompositeProcess is decomposable into other process using control constructs. It is
composedOf a ControlConstruct which, in turn, has a components property that indicates
the ordering and conditional execution of the sub-processes.

4.2 Control Constructs

• A Sequence is a list of Processes to be done in order.

• A Split contains a bag of process components to be executed concurrently.

• Unordered specifies a bag of process components that can be executed in any order.

• Split+Join consists of concurrent execution of process components with barrier synchroniza-
tion.

• A Choice has further properties chosen and chooseFrom which let you create customized
subsets.

• The If-Then-Else class has properties ifCondition, then, and else, which implement the
statement.

• Iterate does just that until the whileCondition or untilCondition are met.

• Repeat-Until does a similar job.

4.3 Process Control Ontology

• Its an ontology that represent methods for monitoring and controlling the progress of an
executing process.

• It does not exist yet.

4.4 Time Ontology

• OWL-S also defines a simple Time Ontology6.

• It has two main classes: Instants and Intervals.

• It has three properties that go from Interval to Instant:

– start-of

– end-of

– inside

5 Resources

• There is also a Resource Ontology7.

• Processes generally require(consume) resources.

• Resources have an AllocationType property which can be used to tell if the resource is
consumable (e.g., time) or reusable (e.g., paint).

4

http://www.isi.edu/~pan/damltime/time-entry.owl
http://www.daml.org/services/owl-s/1.0/Resource.owl

6 Congo Example

• This example is from the walkthru.

• Congo is a website that sells books.

• Their services are LocateBook, PutInCart, SignIn, CreateAcct, CreateProfile, LoadProfile,
SpecifyDeliveryDetails, FinalizeBuy.

• You cat get the complete Congo example file set8.

6.1 Describe the Program

• Congo offers the CongoBuy service which is composed of smaller programs.

• You should describe these programs first.

• These individual programs are defined as Process.

6.2 Process Input and Output

• The process ontology shows the various types of processes we can have.

• The LocateBook service is atomic, so we declare it as such:

<process:AtomicProcess rdf:ID="LocateBook">
<process:hasInput>

<process:Input rdf:ID="BookName">
<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>
</process:hasInput>
<process:hasOutput>

<process:ConditionalOutput rdf:ID="LocateBookOutput">
<process:coCondition rdf:resource="#InCatalogueBookInstance"/>

<process:parameterType rdf:resource="LocatedBookOutput"/>
</process:ConditionalOutput>

</process:hasOutput>
</process:AtomicProcess>

• This also says that LocateBook takes as input a BookName, which is a string

• The output is conditional. If #InCatalogueBookInstance then return LocatedBookOutput.

6.3 Process Preconditions and Effects

• In order to tie a bunch of processes together (compose) we also need to know their preconditions
for execution and any side-effects they might have.

• So, OWL-S also has precondition and effect (yes, like AI planner operators. 1970’s AI
research might yet find an application :-).

• ExpressCongoBuy service has two preconditions: you must have an account and credit:

<process:AtomicProcess rdf:ID="ExpressCongoBuy">
<process:hasInput>

<process:Input rdf:ID="ExpressCongoBuyBookISBN">

5

http://www.daml.org/services/owl-s/1.0/examples.html

<process:parameterType rdf:resource="&xsd;#string"/>
</process:Input>

</process:hasInput>
<process:hasInput>

<process:Input rdf:ID="CongoBuySignInInfo">
<process:parameterType rdf:resource="#SignInData"/>

</process:Input>
</process:hasInput>
<process:hasPrecondition rdf:resource="#AcctExists"/>
<process:hasPrecondition rdf:resource="#CreditExists"/>
<process:hasEffect>

<process:ConditionalEffect rdf:ID="CongoOrderShippedEffect">
<process:ceCondition rdf:resource="#BookInStock"/>
<process:ceEffect rdf:resource="#OrderShippedEffect"/>

</process:ConditionalEffect>
</process:hasEffect>

<process:hasOutput>
<process:ConditionalOutput rdf:ID="CongoOrderShippedOutput">

<process:coCondition rdf:resource="#BookInStock"/>
<process:parameterType rdf:resource="#OrderShippedOutput"/>

</process:ConditionalOutput>
</process:hasOutput>

<process:hasOutput>
<process:ConditionalOutput rdf:ID="CongoOutOfStockOutput">

<process:coCondition rdf:resource="#BookOutOfStock"/>
<process:parameterType rdf:resource="#BookOutOfStockOutput"/>

</process:ConditionalOutput>
</process:hasOutput>

</process:AtomicProcess>

• It has the effect of shipping the order, the the output tells if the book was in stock or not.

6.4 Composite Processes

• A CompositeProcess is composedOf a bunch of ControlConstructs which can be things like
sequence, if-then-else, fork, while, etc.

• Build them in a top-down manner.

• FullCongoBuy has two steps: locating the book and then buying the book.

<process:CompositeProcess rdf:ID="FullCongoBuy">
<process:composedOf>

<process:Sequence>
<process:components rdf:parseType="Collection">

<process:AtomicProcess rdf:about="#LocateBook"/>
<process:CompositeProcess rdf:about="#CongoBuyBook"/>

</process:components>
</process:Sequence>

</process:composedOf>

6

<!-- All of the inputs and outputs of this composite process are
derived from the corresponding inputs and outputs of its atomic
processes and will normally be computed automatically by OWL-S tools. -->

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyBookName">

<process:parameterType rdf:resource="&xsd;#string"/>
</process:Input>

</process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuySignInInfo">

<process:parameterType rdf:resource="#SignInData"/>
</process:Input>

</process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreateAcctInfo">

<process:parameterType rdf:resource="#AcctInfo"/>
</process:Input>

</process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreditCardNumber">

<process:parameterType rdf:resource="&xsd;#decimal"/>
</process:Input>

</process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreditCardType">
<process:parameterType rdf:resource="#CreditCardType"/>

</process:Input>
</process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreditCardExpirationDate">
<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>
</process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyCreditCardDeliveryAddress">
<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>
</process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyPackagingSelection">
<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>
</process:hasInput>

<process:hasInput>
<process:Input rdf:ID="FullCongoBuyDeliveryTypeSelection">

7

<process:parameterType rdf:resource="#DeliveryType"/>
</process:Input>

</process:hasInput>

<process:hasOutput>
<process:ConditionalOutput rdf:ID="FullCongoBuyBookISBNOutput">

<process:coCondition rdf:resource="#InCatalogueBookInstance"/>
<process:parameterType rdf:resource="&xsd;#string"/>

</process:ConditionalOutput>
</process:hasOutput>

<process:hasOutput>
<process:UnConditionalOutput rdf:ID="FullCongoBuyCreateAcctOutput">

<process:parameterType rdf:resource="#CreateAcctOutputType"/>
</process:UnConditionalOutput>

</process:hasOutput>
</process:CompositeProcess> <!-- End of Full Congo Buy -->

7 Conclusion

• OWL-S is more complex than WSDL.

• OWL-S gives a lot more details about how a process is composed of other process, what
sequence they must execute, etc.

• It’s processes are akin to AI-planning operators.

• Just-in-time service composition will be much more likely if services are described using OWL-
S. Unfortunately that will require extra effort on the programmer’s part (WSDL can be gen-
erated automatically).

• OWL-S is sits righ between web-services (RPCs over HTTP) and the Semantic Web vision.

Notes
1http://www.daml.org/services/owl-s/1.0/owl-s.html
2http://jmvidal.cse.sc.edu/library/paolucci03a.pdf
3http://www.daml.org/services/owl-s/1.0/Service.owl
4http://www.daml.org/services/owl-s/1.0/Profile.owl
5http://www.daml.org/services/owl-s/1.0/Process.owl
6http://www.isi.edu/ pan/damltime/time-entry.owl
7http://www.daml.org/services/owl-s/1.0/Resource.owl
8http://www.daml.org/services/owl-s/1.0/examples.html

This talk is available at http://jmvidal.cse.sc.edu/talks/owls

Copyright c© 2004 Jose M Vidal. All rights reserved.

8

http://jmvidal.cse.sc.edu/talks/owls

	1 Introduction
	2 Upper Ontology for Services
	3 Service Profiles
	3.1 ServiceProfile Ontology
	3.2 Profile Description Attributes
	3.3 Functional Description Attributes
	3.4 Functional Attributes

	4 Service Model
	4.1 Process Ontology
	4.2 Control Constructs
	4.3 Process Control Ontology
	4.4 Time Ontology

	5 Resources
	6 Congo Example
	6.1 Describe the Program
	6.2 Process Input and Output
	6.3 Process Preconditions and Effects
	6.4 Composite Processes

	7 Conclusion

