
CORBA

José M. Vidal

Mon Feb 23 10:58:17 EST 2004

This talk is based on:

• Douglas C. Schmidt1. CORBA Overview2.

• Object Management Group. CORBA Overview3 (Chaper 2) in CORBA 2.6 Formal Specifica-
tion4, 2002.

• Unknown tag=Steve Vinoski5. CORBA: Integrating Diverse Applications within Distributed
Heterogeneous Environments.6 IEEE Communications, (35)2, 1997.

• Dave Bartlett. OMG Interface Definition Language Definition Language7, 2000.

1 Why CORBA?

• Distributed heterogeneous systems are the norm:

1. There are always engineering tradeoffs with any technology.

2. Consumers are not brand loyal. We use the best cheap stuff.

3. Legacy systems seem to last forever.

• The Object Management Group (OMG8) was formed in 1989 to develop, adopt, and promote
standards for the development of applications in these environments.

– Largest software consortium in the world.

– OMA (CORBA), UML, CWM, Model-Driven Architecture.

• OMG publishes the standards. There are many companies that implement them and sell
ORBs.

• The OMG’s goal is the ”realization of a true commercial off-the-shelf software component
marketplace”. This vision drives the systems design.

2 Object Management Architecture

• The OMA is composed of object and reference models.

• Object Model: describes an object: ”an encapsulated entity with a distinct immutable
identity whose services can be accessed only through well-defined interfaces. Clients issue
requests to perform services on their behalf. The implementation and location of each object
are hidden from the client.

• Reference Model: describes architecture.

1

http://www.cs.wustl.edu/~schmidt/
http://www.cs.wustl.edu/~schmidt/corba-overview.html
http://www.omg.org/cgi-bin/doc?formal/01-12-40
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.iona.com/hyplan/vinoski
http://jmvidal.cse.sc.edu/library/vinoski97a.pdf
http://jmvidal.cse.sc.edu/library/vinoski97a.pdf
http://www-106.ibm.com/developerworks/webservices/library/co-corbajct3.html
http://www.omg.org


3 OMA Reference Model

Application Interface Domain Interfaces Common Facilities Object Services
Object Request Broker

• Object Services are domain-independent interfaces that are used by many distributed object
programs.

– Naming Service: find object based on name.

– Trading service: find object based on properties.

• Common Facilities are end-user-oriented interfaces.

– Distributed Document Component Facility.

• Domain Interfaces are application domain-oriented interfaces.

– Product Data Management Enablers: for manufacturing domain.

• Application Interfaces are developed for specific applications. They are not standardized.

4 Object Frameworks

• An object framework is a domain-specific group of objects that interact to provide a cus-
tomizable solution within that application domain.

• They are the ”big architecture picture” which guides OMA development.

• Frameworks are composed of components. Each component implements a number of interfaces.

• The components communicate with each other in a peer-to-peer fashion.

5 CORBA

Client Object Implementation
Dynamic Invocation IDL Stub IDL Skeleton

Object Adapter
ORB Core

• There is also an Interface Repository.

6 ORB Core

• The ORB hides from the client many things, including the following.

• Object Location

• Object Implementation: Programming language, operating system, hardware.

• Object Execution State: Active or inactive.

• Object Communication Mechanism: TCP/IP, shared memory, pipes, local call, etc.

– An object reference is created when object is created. It always refers to the same
object. It is immutable an opaque.

• Object Creation: There are three ways to get hold of an object:

1. Client invokes a creation request on a factory object which returns an object reference.

2



2. Invoke a lookup service such as a Naming Service or a Trading Service which store existing
object references.

3. Turn the reference into a string and back. These objects are called stringified and de-
stringified.

– ORB provides a simple naming service which can store object references of more general
naming services. ORB.resolve initial reference("NameService").

7 OMG Interface Definition Language

• Because CORBA is language-independent a way to define interfaces had to be developed that
is also language-independent.

• Interface in IDL gets automatically turned into code for your favorite programming language.

• IDL looks quite a bit like a C++ header file.

//OMG IDL
interface Factory {
Object create();

};

• It supports modules, which are groups of interfaces.

• It supports exceptions.

• It supports attributes, which are like data members.

• It supports many primitive data types.

7.1 IDL Types

• long (signed and unsigned)- 32-bit arithmetic types.

• long long(signed and unsigned)- 64-bit arithmetic types.

• short(signed and unsigned)- 16-bit arithmetic types.

• float, double, and long- IEEE 754-1985 floating point types.

• char and wchar- character and wide character types.

• boolean- Boolean type.

• octet- 8-bit value.

• enum- enumerated type.

• any- a tagged type that can hold a value of any OMG IDL type, including built-in types and
user-defined types.

• struct- data aggregation construct, like in C.

• union- like in C.

3



7.2 IDL Template Types

• Similar to C++ templates.

• A template type is a type that takes an argument at declaration-time. The actual type is,
therefore, only created at compile time.

• string and wstring can be bounded by providing a number argument:

– string<10> defines a string type of maximum length 10.

• sequence is a dynamic-length linear container (like Java Vector) whose maximum length and
element type can be specified in angle brackets (unlike in Java).

– sequence<Factory> defines a sequence of factories.

– sequence<Factory,10> only 10 factories allowed.

• fixed- a fixed-point decimal value with no more than 31 significant digits.

– fixed<5,2> has a precision of 5 and scale of 2. e.g., 999.99

7.3 IDL Example

module EmployeeInfoServer {
interface Employee;
interface Department;

exception EmployeeInfoException {
string message;

};

interface Employee {
unsigned long getId();
Department getDepartment();
float authorizeCommission(in float saleVolume)

raises (EmployeeInfoException);
attribute string name;
attribute string ssn;

};

typedef sequence<Employee> EmployeeList;

interface Department {
unsigned long getId();
attribute string name;
EmployeeList employees();

};
};

7.4 IDL Object Reference Types

• You can declare an IDL object reference by simply naming the desired interface type.

4



interface FactoryFinder {

//define a sequence of Factory object references
typedef sequence<Factory> FactorySeq;

FactorySeq find factories(in string interface name);
};

7.5 IDL Interface Inheritance

• IDL supports interface inheritance.

interface Factory{
Object create();

};

//Forware declaration of Spreadsheet interface
interface Spreadsheet;

//SpreadsheetFactory derives from Factory
interface SpreadsheetFactory : Factory {
Spreadsheet create spreadsheet();

};

• The create function is inherited from Factory.

• An object reference of a derived interface can be substituted anywhere object references from
base interface are allowed.

• All interfaces are implicitly derived from the Object interface defined in the CORBA module.

7.6 IDL Language Mapping

• OMG has standardized language mappings.

OMG IDL Type C++ Mapping Type
long, short long, short
float, double float, double
enum enum
char char
boolean boolean
octet unsigned char
any Any class
struct struct
union class
string char*
wstring wchar t*
sequence class
fixed Fixed template class
object reference pointer or object
interface class

• modules map to C++ namespaces.

5



• In C, since it does not have objects, objects are written as abstract data types.

• There is also an IDL to Java mapping9

8 Interface Repository

• Usually, applications use static knowledge of IDL types to compile.

• But, sometimes they need run-time knowledge (e.g., the interface changes and we do not want
to recompile).

• The IR allows the OMG IDL type system to be accessed and written programmatically at
runtime.

• Using the IR interface, applications can traverse an entire hierarchy of IDL information.

• Or, we can use CORB::Object.get interface() which returns an InterfaceDef object. Since
all objects inherit from Object they all define this function.

9 Stubs and Skeletons

• The IDL compiler generates client-side stubs and server-side skeletons.

• They are built into the application and have a priori knowledge of the IDL interfaces being
invoked.

• Using stubs and skeletons to access CORBA object functions (dispatch) is often called static
invocation.

• The stub works with the ORB to marshal the request. The receiving ORB unmarshals it.

10 Dynamic Invocation

• In addition to static invocation via stubs, CORBA also supports dynamic invocation via two
interfaces.

• Dynamic Invocation Interface supports dynamic client request invocation.

• Dynamic Skeleton Interface provides dynamic dispatch to objects.

• They can be viewed as ”generic stub” and ”generic skeleton”, respectively.

10.1 Dynamic Invocation Interface

• Using it, a client can invoke requests on any object without having compile-time knowledge of
the object’s interface.

• How? CORBA::Object interface implements Request create request() function.

1. Get a request pseudo-object.

2. Set argument values on it.

3. Invoke it.

• The invocation can be:

– Synchronous: Block waiting for the response.

6

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm


– Deferred Synchronous: The client makes the call and continues processing, later col-
lects the response.

– Oneway Invocation: Make the request. There is no response.

• Using the DII is costly (time) since the ORB usually accesses the IR.

10.2 Dynamic Skeleton Interface

• The DSI allows servers to be written without having skeletons for the objects being invoked
compiled statically into the program.

• A feature not often used.

11 Adapters

• The adapter design pattern10 looks like this:

11.1 Object Adapter

• It is the glue between CORBA object implementations and the ORB itself. It is responsible
for many things.

• Object registration: supplies operations that allow programming language entities to be
registered as implementations for CORBA objects.

• Object reference generation: generates them.

• Server process activations: start it if need it.

• Object activation: activate them if they are not already active.

• Request de-multiplexing: cooperate with ORB to ensure that requests can be received over
multiple connection.

• Object upcalls: dispatch requests to registered objects.

12 Inter-ORB Protocols

• Before CORBA 2.0 different vendors ORBs could not talk to each other.

• GIOP- General Inter-ORB protocol specifies transfer syntax and message formats for any
connection-oriented transport.

• IIOP- Internet Inter-ORB Protocol specifies how GIOP is built over TCP/IP transports.

• IIOP is mandatory for 2.0 and later ORBs.

7

http://www.wikipedia.org/wiki/Adapter_pattern


Notes
1http://www.cs.wustl.edu/ schmidt/
2http://www.cs.wustl.edu/ schmidt/corba-overview.html
3http://www.omg.org/cgi-bin/doc?formal/01-12-40
4http://www.omg.org/technology/documents/formal/corba 2.htm
5http://www.iona.com/hyplan/vinoski
6http://jmvidal.cse.sc.edu/library/vinoski97a.pdf
7http://www-106.ibm.com/developerworks/webservices/library/co-corbajct3.html
8http://www.omg.org
9http://www.omg.org/technology/documents/formal/java language mapping to omg idl.htm

10http://www.wikipedia.org/wiki/Adapter pattern
This talk is available at http://jmvidal.cse.sc.edu/talks/corba

Copyright c© 2004 Jose M Vidal. All rights reserved.

8

http://jmvidal.cse.sc.edu/talks/corba

	1 Why CORBA?
	2 Object Management Architecture
	3 OMA Reference Model
	4 Object Frameworks
	5 CORBA
	6 ORB Core
	7 OMG Interface Definition Language
	7.1 IDL Types
	7.2 IDL Template Types
	7.3 IDL Example
	7.4 IDL Object Reference Types
	7.5 IDL Interface Inheritance
	7.6 IDL Language Mapping

	8 Interface Repository
	9 Stubs and Skeletons
	10 Dynamic Invocation
	10.1 Dynamic Invocation Interface
	10.2 Dynamic Skeleton Interface

	11 Adapters
	11.1 Object Adapter

	12 Inter-ORB Protocols

