CORBA

José M. Vidal
Mon Feb 23 10:58:17 EST 2004

This talk is based on:

Douglas C. Schmidt!!. CORBA Overview?.

Object Management Group. CORBA Overview? (Chaper 2) in CORBA 2.6 Formal Specifica-
tion?, 2002.

Unknown tag=Steve Vinoski’. CORBA: Integrating Diverse Applications within Distributed
Heterogeneous Environments.® IEEE Communications, (35)2, 1997.

Dave Bartlett. OMG Interface Definition Language Definition Language/, 2000.

Why CORBA?

Distributed heterogeneous systems are the norm:

1. There are always engineering tradeoffs with any technology.
2. Consumers are not brand loyal. We use the best cheap stuff.

3. Legacy systems seem to last forever.

The Object Management Group (OMG?) was formed in 1989 to develop, adopt, and promote
standards for the development of applications in these environments.

— Largest software consortium in the world.
— OMA (CORBA), UML, CWM, Model-Driven Architecture.

OMG publishes the standards. There are many companies that implement them and sell
ORBs.

The OMG’s goal is the "realization of a true commercial off-the-shelf software component
marketplace”. This vision drives the systems design.

Object Management Architecture

The OMA is composed of object and reference models.

Object Model: describes an object: ”an encapsulated entity with a distinct immutable
identity whose services can be accessed only through well-defined interfaces. Clients issue
requests to perform services on their behalf. The implementation and location of each object
are hidden from the client.

Reference Model: describes architecture.

http://www.cs.wustl.edu/~schmidt/
http://www.cs.wustl.edu/~schmidt/corba-overview.html
http://www.omg.org/cgi-bin/doc?formal/01-12-40
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.iona.com/hyplan/vinoski
http://jmvidal.cse.sc.edu/library/vinoski97a.pdf
http://jmvidal.cse.sc.edu/library/vinoski97a.pdf
http://www-106.ibm.com/developerworks/webservices/library/co-corbajct3.html
http://www.omg.org

3

OMA Reference Model

Application Interface \ Domain Interfaces \ Common Facilities \ Object Services

Object Request Broker

5

Object Services are domain-independent interfaces that are used by many distributed object
programs.

— Naming Service: find object based on name.

— Trading service: find object based on properties.
Common Facilities are end-user-oriented interfaces.
— Distributed Document Component Facility.
Domain Interfaces are application domain-oriented interfaces.
— Product Data Management Enablers: for manufacturing domain.

Application Interfaces are developed for specific applications. They are not standardized.

Object Frameworks

An object framework is a domain-specific group of objects that interact to provide a cus-
tomizable solution within that application domain.

They are the ”big architecture picture” which guides OMA development.
Frameworks are composed of components. Each component implements a number of interfaces.

The components communicate with each other in a peer-to-peer fashion.

CORBA

Client Object Implementation
Dynamic Invocation IDL Stub IDI. Skeleton
Object Adapter

ORB Core

6

There is also an Interface Repository.

ORB Core

The ORB hides from the client many things, including the following.

Object Location

Object Implementation: Programming language, operating system, hardware.
Object Execution State: Active or inactive.

Object Communication Mechanism: TCP/IP, shared memory, pipes, local call, etc.

— An object reference is created when object is created. It always refers to the same
object. It is immutable an opaque.

Object Creation: There are three ways to get hold of an object:

1. Client invokes a creation request on a factory object which returns an object reference.

7

2. Invoke a lookup service such as a Naming Service or a Trading Service which store existing
object references.

3. Turn the reference into a string and back. These objects are called stringified and de-
stringified.

— ORB provides a simple naming service which can store object references of more general
naming services. ORB.resolve_initial reference("NameService").

OMG Interface Definition Language

Because CORBA is language-independent a way to define interfaces had to be developed that
is also language-independent.

Interface in IDL gets automatically turned into code for your favorite programming language.

IDL looks quite a bit like a C++ header file.

//OMG IDL
interface Factory {
Object create();

b

It supports modules, which are groups of interfaces.
It supports exceptions.
It supports attributes, which are like data members.

It supports many primitive data types.

IDL Types
long (signed and unsigned)- 32-bit arithmetic types.
long long(signed and unsigned)- 64-bit arithmetic types.
short(signed and unsigned)- 16-bit arithmetic types.
float, double, and long- IEEE 754-1985 floating point types.
char and wchar- character and wide character types.
boolean- Boolean type.
octet- 8-bit value.
enum- enumerated type.

any- a tagged type that can hold a value of any OMG IDL type, including built-in types and
user-defined types.

struct- data aggregation construct, like in C.

union- like in C.

7.2

7.3

IDL Template Types
Similar to C++ templates.

A template type is a type that takes an argument at declaration-time. The actual type is,
therefore, only created at compile time.

string and wstring can be bounded by providing a number argument:
— string<10> defines a string type of maximum length 10.

sequence is a dynamic-length linear container (like Java Vector) whose maximum length and
element type can be specified in angle brackets (unlike in Java).

— sequence<Factory> defines a sequence of factories.

— sequence<Factory, 10> only 10 factories allowed.
fixed- a fixed-point decimal value with no more than 31 significant digits.

— fixed<5,2> has a precision of 5 and scale of 2. e.g., 999.99

IDL Example

module EmployeelnfoServer {
interface Employee;
interface Department;

exception EmployeelnfoException {
string message;

b

interface Employee {
unsigned long getId();
Department getDepartment/();
float authorizeCommission(in float saleVolume)

raises (EmployeelnfoException);

attribute string name;
attribute string ssn;

h

typedef sequence<Employee> EmployeeList;

interface Department {
unsigned long getId();
attribute string name;

5
%

7.4

EmployeeList employees();

IDL Object Reference Types

e You can declare an IDL object reference by simply naming the desired interface type.

interface FactoryFinder {

//define a sequence of Factory object references
typedef sequence<Factory> FactorySeq;

FactorySeq find factories(in string interface_name);

b

7.5 IDL Interface Inheritance

e IDL supports interface inheritance.

interface Factory{
Object create();

b

//Forware declaration of Spreadsheet interface
interface Spreadsheet;

//SpreadsheetFactory derives from Factory
interface SpreadsheetFactory : Factory {
Spreadsheet create_spreadsheet();

|5

e The create function is inherited from Factory.

e An object reference of a derived interface can be substituted anywhere object references from
base interface are allowed.

e All interfaces are implicitly derived from the Object interface defined in the CORBA module.

7.6 IDL Language Mapping
e OMG has standardized language mappings.

OMG IDL Type C++ Mapping Type
long, short long, short

float, double float, double
enum enum

char char

boolean boolean

octet unsigned char

any Any class

struct struct

union class

string charx*

wstring wchar_tx*

sequence class

fixed Fixed template class
object reference pointer or object
interface class

e modules map to C++ namespaces.

8

In C, since it does not have objects, objects are written as abstract data types.

There is also an IDL to Java mapping’

Interface Repository

Usually, applications use static knowledge of IDL types to compile.

But, sometimes they need run-time knowledge (e.g., the interface changes and we do not want
to recompile).

The IR allows the OMG IDL type system to be accessed and written programmatically at
runtime.

Using the IR interface, applications can traverse an entire hierarchy of IDL information.

Or, we can use CORB: :Object.get_interface () which returns an InterfaceDef object. Since
all objects inherit from Object they all define this function.

Stubs and Skeletons

The IDL compiler generates client-side stubs and server-side skeletons.

They are built into the application and have a priori knowledge of the IDL interfaces being
invoked.

Using stubs and skeletons to access CORBA object functions (dispatch) is often called static
invocation.

The stub works with the ORB to marshal the request. The receiving ORB unmarshals it.

Dynamic Invocation

In addition to static invocation via stubs, CORBA also supports dynamic invocation via two
interfaces.

Dynamic Invocation Interface supports dynamic client request invocation.
Dynamic Skeleton Interface provides dynamic dispatch to objects.

They can be viewed as ”generic stub” and ”generic skeleton”, respectively.

10.1 Dynamic Invocation Interface

Using it, a client can invoke requests on any object without having compile-time knowledge of
the object’s interface.

How? CORBA: :0bject interface implements Request create_request() function.

1. Get a request pseudo-object.
2. Set argument values on it.

3. Invoke it.
The invocation can be:

— Synchronous: Block waiting for the response.

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm

— Deferred Synchronous: The client makes the call and continues processing, later col-
lects the response.

— Oneway Invocation: Make the request. There is no response.

e Using the DII is costly (time) since the ORB usually accesses the IR.

10.2 Dynamic Skeleton Interface

e The DSI allows servers to be written without having skeletons for the objects being invoked
compiled statically into the program.

e A feature not often used.

11 Adapters

e The ladapter design pattern'® looks like this:

Client |_ p| «interfaces Adaptee
Target
+SpecificRequest()

+Request()
Via Inheritance !
L
[

Adapter

™
+Request() SpecificRequest()

Via Composition

Adaptee
Adapter / +Spect FioRequest(]

+adaptes: Adaptes
+Request()

adaptee, SpecificReguest|) ﬁ

11.1 Object Adapter

e It is the glue between CORBA object implementations and the ORB itself. It is responsible
for many things.

e Object registration: supplies operations that allow programming language entities to be
registered as implementations for CORBA objects.

e Object reference generation: generates them.
e Server process activations: start it if need it.
e Object activation: activate them if they are not already active.

e Request de-multiplexing: cooperate with ORB to ensure that requests can be received over
multiple connection.

e Object upcalls: dispatch requests to registered objects.

12 Inter-ORB Protocols

e Before CORBA 2.0 different vendors ORBs could not talk to each other.

e GIOP- General Inter-ORB protocol specifies transfer syntax and message formats for any
connection-oriented transport.

e IIOP- Internet Inter-ORB Protocol specifies how GIOP is built over TCP/IP transports.
e [IOP is mandatory for 2.0 and later ORBs.

http://www.wikipedia.org/wiki/Adapter_pattern

Notes

Hhttp://www.cs.wustl.edu/ schmidt /|

http://www.cs.wustl.edu/ schmidt/corba-overview.html|

http://www.omg.org/cgi-bin/doc?formal/01-12-40|

http://www.omg.org/technology /documents/formal /corba_2.htm|

http://www.iona.com /hyplan/vinoskil

http://jmvidal.cse.sc.edu/library/vinoski97a.pdf|

http://www-106.ibm.com/developerworks/webservices/library/co-corbajct3.html|

http://www.omg.org|

http://www.omg.org/technology/documents/formal /java_language-mapping_to_omg_idl.htm|

1

http: //www.wikipedia.org/wiki/Adapter_pattern|

This talk is available at http://jmvidal.cse.sc.edu/talks/corba

Copyright © 2004 Jose M Vidal. All rights reserved.

http://jmvidal.cse.sc.edu/talks/corba

	1 Why CORBA?
	2 Object Management Architecture
	3 OMA Reference Model
	4 Object Frameworks
	5 CORBA
	6 ORB Core
	7 OMG Interface Definition Language
	7.1 IDL Types
	7.2 IDL Template Types
	7.3 IDL Example
	7.4 IDL Object Reference Types
	7.5 IDL Interface Inheritance
	7.6 IDL Language Mapping

	8 Interface Repository
	9 Stubs and Skeletons
	10 Dynamic Invocation
	10.1 Dynamic Invocation Interface
	10.2 Dynamic Skeleton Interface

	11 Adapters
	11.1 Object Adapter

	12 Inter-ORB Protocols

