
Parallelizing Compiler for Matrix Expressions
by

Jose M. Vidal

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE

DEGREE OF
BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1990

@ 1990 Jose M. Vidal

The author hereby grants to MIT permission to reproduce and to distribute copies
of this thesis document in whole or in part.

Signature of Author:

Certified by:

Department of Electrical Engineering and Computer Science
May 21, 1987

Anant Agarwal
Assistant Professor, Department of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by:
Leonard A. Gould

Chairman, Department Committee on Undergraduate Theses

Parallelizing Compiler for Matrix Expressions

by

Jose M. Vidal

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1990 in partial fulfillment of the

requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

ABSTRACT
We study the automatic compilation of matrix expressions on a fully connected,
shared memory parallel machine such a.s the Encore Multimax. For this task we have
developed a parallelizing compiler. This compiler takes as input a matrix expression
written in Lisp syntax and outputs a Mul-T program that will execute the desired
expression, given an arbitrary number of processors. Several different scheduling
techniques are used for this task. Tests have been run to compare the performance
of these techniques and the results of these tests are presented. The software was
designed so as to allow the easy addition of new operations and scheduling techniques.

Thesis Supervisor: Anant Agarwal
Title:Professor, Department of Electrical Engineering and Computer Science

Contents

1 Introduction

2 Problem Specification and Solutions

2.1

2.2

Problem Specification .

Possible Solutions . . .

3 Software structure

3.1

3.2

3.3

3.4

3.5

Overall Design .

Operations . . .

3.2.1

3.2.2

3.2.3

3.2.4

Matrix addition and subtraction .

Matrix multiply ..

L U decomposition .

Matrix inverse .

Data Abstraction

Parser

Code Generator

3

1

3

4

5

10

11

13

13

14

1.5

1.5

17

19

21

CONTENTS

4 Testing

4.1 Results .

5 Conclusion

A Description of the files

4

28

29

41

43

Chapter 1

Introduction

In the recent years there has been an increased prolification and preoccupation with

parallel architectures. This trend is evident in the appearance of numerous parallel

computers such as the Connection Machine, Encore Multimax, J-Machine and others.

These machines hope to increase their computing power by having several processors

acting in parallel. The idea is that each processor will execute a small part of the

program so that the whole program can be finished in a short amount of time, even

if the individual processors are not that fast. The task of assigning jobs to each

processor is usually left up to the programmer. This task can get very unpleasant .

We consider the special case of scheduling a matrix expression. The compiler

developed as part of this thesis takes as input a matrix expression and outputs an

executable Mul-T program which explicitly schedules the different operations within

the matrix expression. The operations supported by the compiler include matrix

1

CHAPTER 1. INTRODUCTION 2

addition, multiplication, subtraction, L U decomposition and inverse (although these

last two do not perform row exchanges). We use several scheduling techniques. Each

one of these has been implemented, and has been tested on several examples. The

results of these tests show which scheduling techniques work better under specific

circumstances.

These programs were designed as research tools to test the different schedulers but

they can also be reliably used to execute matrix expressions if this is so desired. As

they stand, these programs will be a great help to anyone who wants to solve matrix

equations on the Encore M ultimax or some other parallel machine that runs M ul-T.

Chapter 2

Problem Specification and

Solutions

As was mentioned, this thesis proposes to implement a solution to the problem of

scheduling a matrix expression given that we have an arbitrary number of processors.

In this chapter we will present the specific scheduling problem of executing a ma­

trix expressions on a multi-processor architecture. We will also explain the different

scheduling techniques used for solving this problem.

3

CHAPTER 2. PROBLEM SPECIFICATION AND SOLUTIONS

2.1 Problem Specification

4

The problem can best be illustrated with an example. Suppose that one desires to

calculate the value of formula 2.1 using p processors.

((A+A)+(B+B)) X ((C+C) X (D+D)) (2.1)

Here A, B, C and D are matrices and the operations performed on them are matrix

operations . All the matrices are different.. The same name is used only for historical

reasons . Finally, all operations are explicitly performed, no algebraic simplifications

are used. When calculating the expression it is clear that a partial order must be

followed. For example, the first multiplication, the one outside the parenthesis, can

only be performed after all other operations have finished since it needs the values

returned by these. Another factor that must be taken into account when scheduling

this expression is the problem of how many processors are going to be allocated to each

operation. We can then summarize the problem as that of scheduling all operations

in a matrix expression by giving them a partial ordering and assigning to each one

of them a specific number of processors. This has to be done while keeping in mind

that the data dependencies have to be respected and that the time taken to execute

the whole expression should be minimized.

The scheduling of the operations is accomplished with the use of futures which

enable parallelism to be expressed. It is important to note, however, that by using

CHAPTER 2. PROBLEM SPECIFICATION AND SOLUTIONS 5

these constructs we incur an overhead penalty. We should also strive to minimize this

overhead penalty.

2.2 Possible Solutions

When trying to schedule matrix expressions we are presented with various problems.

The first aspect of the problem that should be solved is the parallelizing the opera­

tions themselves. Luckily, since these are matrix operations, they possess a great deal

of parallelism. In matrix add, multiply and subtract all the individual adds and sub­

tracts can be performed in parallel. This means that there are no data. dependencies

and all that we have to worry about is the assigning of equal number of simple oper­

ations to each processor. Other operations like matrix inverse are somewhat harder

to parallelize.

After finding a way of performing the operations in parallel we are left with the

problem of scheduling the different operations in a. matrix expression. At first glance

it would seem that a. proper solution to the problem would be to allocate all processors

to the first task, wait until this task is done and then allocate all processors to the

second task and so on. This process would be repeated until all tasks or operations are

done. The ordering of the tasks here would simply depend on the data dependencies.

A program that implements this strategy would look for all the operations that it

can execute (i.e. all the operations that have their data. dependencies satisfied) and

choose one of these to execute. The chosen task will then be given all processors. The

CHAPTER 2. PROBLEM SPECIFICATION AND SOLUTIONS 6

time~

Figure 2.1: Scheduling all processors to each available task. Task numbers correspond
to operations that have to be performed. T 1 through T6 represent the results of tasks
1 through 6, respectively. Note that tasks 6 and 7 take longer to execute.

way this scheduler works can be seen in Figure 2.1, which illustrates how equation 2.1

would be parallelized using this scheme. Here the tasks are performed one after the

other and each one of them uses all of the available processors. This solution was

implemented, and it represents a basic solution to which the others were compared.

The algorithm, which we called Selectl basically serializes the computation of the

expression. By doing this it fails to take advantage of the available parallelism. But,

even more important, it creates a great number of futures and has to suffer due to

all the overhead that these carry with them. In fact the number of futures that it

creates is equal to the number of processors times the number of operations in the

expression. Such a number could get really big. It is also undesirable to pay a cost

that is directly proportional to the number of processors, since we want the elapsed

CHAPTER 2. PROBLEM SPECIFICATION AND SOLUTIONS 7

Time 1>

Figure 2.2: Scheduling all possible tasks by evenly dividing processors between them.
Notice how task 5 finishes before task 6 since it is a simpler task.

time to be reduced by the addition of more processors.

What is desired is a scheduler that minimizes the amount of switching between

processors. Each processor should handle the same task for as long as possible.

This situation can be accomplished by distributing the processors. A scheduler that

accomplishes this would try to execute all possible tasks at the same time.

This is what our second scheduler, Selectall, does. It finds all the tasks that can

be executed and, instead of choosing only one of these to be executed, it executes

all of them and divides the number of available processors evenly between them. In

our example, we would start by performing all of the four innermost additions. Each

one of these will be given p/ 4 processors where p is the total number of processors.

Figure 2.2 shows how the processors are shared between the tasks. This might. look

CHAPTER 2. PROBLEM SPECIFICATION AND SOLUTIONS 8

like a good scheduling technique but it can lead to a situation where there are idle

processors. This will happen if some of the operations are more time consuming than

others. In our example the left hand side of the multiplication will finish faster than

the right hand side. This means that the processors allocated to compute the left

hand side will be idle until the right hand side processors are finished. In Figure 2.2

we can, therefore, see that task 5 finishes before task 6 and the processors that were

assigned to task 5 stay idle until task 7 can begin. A new scheduling technique

similar to this one could be implemented, which takes this fact into account and

gives more processors to the tasks that need them. This technique, however, was not

implemented.

What was implemented, instead, was a slightly different technique which does,

in fact, give more processors to those tasks that need them the most. We call this

scheduling technique a tree heuristic, and it only works for expressions whose graphical

representation in a tree. For equation 2.1 this heuristic allocates more processors

to task 6 than to task 5. This way the harder task gets more processors and can

execute faster. The scheduling technique first decides how hard the operations is and

gives an appropriate number of processors to it. The number of processors assigned

is determined by a heuristic that estimates how much time a certain operation will

take. For a matrix expression we can define this heuristic to be a number proportional

to the size of the matrices, times a constant of proportionality that depends on the

operation being performed. The specifics of this heuristic will be discussed in the

CHAPTER 2. PROBLEM SPECIFICATION AND SOLUTIONS 9

next chapter.

The three scheduling heuristics implemented in this thesis are Selectl, Selectall

and Tree heuristic.

Chapter 3

Software structure

The ideas presented on the previous chapter were implemented on an Encore Multi­

max machine using Mul-T. Mul-T is dialect ofT. It has the same capabilities as T

except that it also supports futures. This construct allows the user to express paral­

lelism. By enclosing a task within a future we tell the machine to enqueue the task

for later execution, possibly by a different processor, and continue execution without

waiting for it to finish. The command touch forces a task to finish.Futures give the

programmer the power to schedule and distribute tasks as he wishes. In this chap­

ter we will explain the design and implementation techniques used for the different

programs.

10

CHAPTER 3. SOFTWARE STRUCTURE 11

3.1 Overall Design

The program takes as input an expression written in lisp-like format and outputs a

program written in Mul-T. There is, however, one intermediate representation be­

tween expressions and code, this representation takes the form of a. ca.nonica.l graph.

These graphs, since they are derived directly from the lisp expressions, have the

property of being directed acyclic graphs. These are used a.s canonical representa­

tions from which the compiler will derive various programs by applying the different

specialized scheduling heuristics that were presented before. One of the reason for

this representation is that it allows for the easy implementation of new scheduling

algorithms. The graph also allows the compilers much more flexibility in accessing

the different components and the structure of the expression. A block diagram of the

system is shown in Figure 3.1.

The input format follows lisp's convention of preceding the operands by the oper­

ation, but only unary or binary operations are allowed. The different operations are

represented by their respective symbols. Matrix addition is represented by +, sub­

traction by - , multiplication by*, LU decomposition by U and matrix inverse by% .

Figure 3.2 shows a sample input expression. Matrix inverse and L U decompositions

do not perform row exchanges. This was not implemented due to time constraints.

The use of DAGs is not allowed a.t the moment. DAGs coul be represented by using

let expressions in the input expression. The use of let expressions is not supported right

now but the program possesses a. couple of functions designed for the interpretation

CHAPTER 3. SOFTWARE STRUCTURE 12

Expression

Expression in Lisp syntax

with operators * + - % U

Canonical Graph

DAG with operators and matrices as nodes

Shows data dependencies

Code

Executable Mul-T program

Figure 3.1: Block diagram of the system.

(* (+ (+A A) (+ B B)) (* (+ C C) (+ D D)))

Figure 3.2: Sample input expression.

of let constructs. Let expressions poses the same syntax of a Lisp let expression. The

implementation of DAGs will minimize redundant computation by allowing the user

to specify reusable bindings.

The output format is in the form of executable Mul-T code. The compilers con-

struct a program that includes even the matrices themselves, so that it can be run

immediately. The output of the program is the result of calculating the given matrix

expression. Figures 3.4 to 3.6 show some samples of the output programs. These

will be explained in detail later.

CHAPTER 3. SOFTWARE STRUCTURE 13

3.2 Operations

Since all the operations are matrix operations they were parallelized by giving each

processor a part of the matrix to calculate. This is especially true for matrix addi-

tion and subtraction. Matrix inversion and LU decomposition were somewhat more

complicated to implement since they require some sequentiality.

3.2.1 Matrix addition and subtraction

These operations were implemented by dividing the number of processors between

the number of rows in the operand matrices. If a matrix has m rows and is to be

calculated with p processors then each processor is given lp/ntJ rows to calculate.

This is implemented by creating p futures, each of which will be handled by one

processor. We assume that, on the average, there will be more rows than processors. It

should be noted that the routine will never give more than one processor to each row.

This will not affect the execution of the program as long as the previous assumption

remains true. This assumption will prove to be right most of the time since the Encore

machine which was being used, can use at most sixteen processors1 . The procedure

specifications are as follows:

matadd = matrix-a matrix-b nproc

requires:matrix-a and matrix-b to be matrices.

1 If this constraint proves to be a problem then the matadd and matsub subroutines can be
changed to distribute the actual elements of the matrix among the processors

CHAPTER 3. SOFTWARE STRUCTURE

effects:returns a matrix that is the sum of matrix-a and

matrix-b. It uses nproc processors.

matsub = matrix-a matrix-b nproc

requires:matrix-a and matrix-b to be matrices.

effects:returns a matrix that is the subtraction of matrix-a

from matrix-b. It uses nproc processors.

3.2.2 Matrix multiply

14

This procedure implements an optimal blocking technique which divides the matrix

into a series of areas, each of which is assigned to one or more processors. 2 The

procedure specifications are as follows:

matmul_block = mat-a mat-b mat-e st1 len1 st2 len2 st3 len3

p1 p2 p3

requires:mat-a, mat-b and mat-e are matrices that start

at st1, st2, st3 and have length of len1, len2, len3

respectively. p1, p2 and p3 represent the number of

processors available . They are set by compile-matmul.

modifies:mat-c

effects:changes mat-e to be the matrix multiplication of

mat-a and mat-b

2This subroutine was written by S. Prasanna.

CHAPTER 3. SOFTWARE STRUCTURE 15

3.2.3 L U decomposition

This procedure takes a matrix that has no zeros on its diagonal and that, otherwise

requires no row exchanges, and returns the matrix in its upper triangular form. It

implements row elimination by finding successive pivots. The procedure requires a

certain amount of serialization. It first eliminates the numbers in the first column

below the diagonal. It does this by performing simple row elimination with the first

row. Since each row can be eliminated in parallel we can distribute all the rows

between processors in the same way that was done in matadd and matsub. After

assigning all rows to processors we make sure that they all have finished and then

recursively repeat the problem for a submatrix that is equal to the first matrix without

the first row and the first column. The specifications for this procedure are as follows:

dec = minrow maxrow mincol maxcol matrix p

requires:minrow and mincol are the m~n~mum rows and column

numbers. maxrow and maxcol are the maximum.

matrix is the matrix and p the number of processors

effects:returns the upper triangular form of matrix 1 matrix'

3.2.4 Matrix inverse

Matrix inverse is computed using gaussian elimination. Gaussian elimination was

chosen above other methods because it provides a greater degree of parallelization

and ease of implementation. Another method, like the determinant method, would

CHAPTER 3. SOFTWARE STRUCTURE 16

have proved too constraining in terms of the sequentiality that it imposes on the

procedure. The matrix inverse routine first attaches an identity matrix to the input

matrix, doubling the number of columns. This new matrix is then used as input

to the LU decomposition subroutine. The output of this is then sent to another

decomposition subroutine. This subroutine eliminates all the elements in the half

above the diagonal of the original matrix. That is to say, it returns a matrix where

the original input matrix (without the attached identity) has zeros everywhere except

on the diagonal. This new matrix is sent to a final subroutine that divides each row

by the number on it's row that is also part of the main diagonal. Finally, after this

is done the input matrix has been turned into the identity matrix and the identity

matrix has become the inverse of the input matrix. This second half of the matrix is

returned. All these procedures are executed sequentially since the data dependencies

require this to be so. It is very likely that a better scheme for computing matrix

inverse can be devised. One such scheme might try to use back substitution instead

of doing the second matrix decomposition. The specifications for this procedure are:

inverse = minrow maxrow mincol maxcol matrix p

requires:minrow and mincol are the minimum row and column

numbers. maxrow and maxcol are the maximum.

matrix is the matrix and p the number of processors

effects:returns the inverse matrix of matrix 'matrix'

CHAPTER 3. SOFTWARE STRUCTURE 17

Figure 3.3: Expression 2.1 as seen in its graphical representation. Note that the
numbers besides the nodes correspond to the task number .

3.3 Data Abstraction

The only data abstraction used in this program was a canonical graph, which was

used to represent the input expression and the data dependencies in it. A graph is

represented by the use of nodes. Nodes are the only data structure used. Each node,

by itself, represents either a matrix, an operation or a whole expression. Equation 2.1

can be seen in its graphical representation in Figure 3.3. A node is a structure which

holds a number of selector:value pairs, where the selectors and values are as follows:

type: Type of node, either prim, compound or io.

done: Flag to certify if a value for such a node has been calculated.

name: Holds the matrix or the name of a prim node.

optype: If the node is a prim node this contains the operation.

CHAPTER 3. SOFTWARE STRUCTURE 18

pred: Pointers to the predecessors of the node.

succ: Pointers to the successors of the node.

work: Number proportional to the amount of work performed by the node and its
predecessors.

rows: Number of rows in the array that is the output of the node.

cols: Number of cols in the array that is the output of the node.

The type of a node is used to differentiate from the different instances of nodes. If

the node contains a matrix, and therefore contains no predecessor pointers, it's type

is set to io node. A prim or primitive node does not contain a matrix but it does

contain one or more pointers to its predecessors, along with the operation that it will

perform on them. In place of the matrix it. contains the temporary name that the

code generator assigns to the value of the result of the operation. In Figure 3.3 the

nodes with the letters on them, from A to D, are io nodes. The rest of the nodes

are prim nodes. A compound node contains a graph and pointers to all the nodes

within the graph plus specialized pointers to the last node in the graph, the output

node, and the io nodes. Compound nodes allow for the storage of the graph within

a single node. Some of the advantages of this representation include the fact that we

can access all the nodes in the expression directly, without having to go through any

indirection. The programs can also be expanded such that these compound nodes are

used as io nodes for another expression.

The work selector contains the value of the work heuristic as applied to that node .

This heuristic will be explained later. It is important to note that the nodes are

CHAPTER 3. SOFTWARE STRUCTURE 19

doubly linked. This gives a more powerful representation, one that is needed for the

code generator and the schedulers to be able to generate the desired code.

3.4 Parser

The parser's job is to convert expressiOns into canonical graphs. Its operation is

rather straight forward. It recursively follows, in a top-down manner, the lisp input

expression while simultaneously constructing the desired nodes and the links between

them. The main subroutine is called make-nodes and takes in as arguments a parent

node and an expression. If the first element in this expression is an operation then

the node is given the type of prim and its pred list points to it's predecessors. These

are constructed recursively by one or more calls to make-nodes. If the expression is an

atom, then the node created is an io node. In such a case the value of the expression

(i.e. the matrix) is stored on the name selector. Once a node's predecessors have

been computed then the node is given the appropriate number of rows and columns.

These can be easily determined by looking at the operation and at the number of

rows and columns in the preceding matrices.

The node is also given a work number that is calculated from its size along with

the type of operation that it performs and the work done by its predecessors. The

work number roughly represents the amount of time taken for the execution of the

node and its subtree. All io nodes receive a work number that is equal to the zero .

A primitive node gets a work number that is equal to the sum of the work that is

CHAPTER 3. SOFTWARE STRUCTURE 20

predecessors do plus a number that is proportional to the amount of work done by

the node. Suppose that the input matrices to the node are M 1 and M 2 , with N 1 ,

N2 and N3, N4 rows and columns respectively. In case that the node's operation is

addition then the work number equals N 1 x N 2 • If the operation is multiplication then

the work number will be N 1 x N 2 x N4 • For matrix inverse we have to use a rough

approximation. We set the work number to be equal to 2N3 /3, where N is the number

of rows on the matrix (assuming a square matrix). Finally for matrix decomposition

we set it to be N 3 /3. When make-nodes ends then the graph is completed.

Make-nodes was designed so as to make the implementation of general DAGs

easier. Some extra subroutines were even constructed to exemplify how the parsing of

these was to be accomplished. The addition of more operations is achieved by adding

the desired operator to the global primitives constant and changing ma~~e-nodes to

recognize this new primitive. This requires the programmer to come up with some

heuristic for calculating the time that it would take to execute the desired operation

given that we know the size of the matrices its operating on. The specifications for

the parser procedure are as follows:

make-graph = exp

requires:exp be a lisp expression that contains only unary or

binary operators. All operands are matrices. The legal

operators are * + - % U.

effects:returns a graph that represents the input expression.

CHAPTER 3. SOFTWARE STRUCTURE

3.5 Code Generator

21

All the different scheduling algorithms explained in the previous chapter were imple­

mented. The first two schedulers, the one that selects one node at a time and the

one that selects all possible nodes, are based on the same algorithm. This algorithm

takes the form of a simple loop:

-Find all nodes whose data dependencies are satisfied.

(We start with all the io nodes)

-If there are none then end the process.

-Call a select subroutine which will choose some of these nodes.

-Schedule the chosen nodes and mark them as done.

-Go to the first step.

The algorithm produces the code at the same time it is executing. It keeps recursively

concatenating a series of let expressions which are functionally equivalent to the input

expression. The first scheduler, which we call selectl, uses the loop algorithm. It's

select subroutine will only choose one of the possible nodes. It will then check to

see if the node has any successors . If it does not then the scheduler is done and it

then creates a program that executes the given operation. The operation's operands

are the name fields of its predecessors. If the node does have successors then it will

return a binding list which will bind a temporary name to the value that. is the result

of the execution of the operation. This name will also be assigned to the name field

of the node. A sample program produced by this scheduler is shown in Figure 3.4.

CHAPTER 3. SOFTWARE STRUCTURE 22

The scheduler was run with eight processors on the expression seen in equation 2.1.

The program sequentially creates all the seven futures, and gives each one of them

eight processors.

The second algorithm, selecta.ll, also uses the loop algorithm. It selects all possible

nodes each time. This means that it creates one future for each node. But since we do

not want to allocate more futures than processors then each future will get a number

of processors that is equal to the total number of processors divided by the number of

selected nodes. This strategy evenly distributes processors, other different techniques

might be employed for the distribution of processors. This scheduler produced the

program shown in Figure 3.5. This program, it can be seen, creates four initial futures

to perform the for innermost additions (refer to equation 2.1), giving each one ofthese

two processors. It then allocates two futures for the addition and the multiplication,

giving each one of them four processors. Finally, it allocate a. final future for the

last multiplication, giving this one all eight processors. The specifications for these

procedures are as follows:

compile- graph = graph nproc select

requires: graph is a graph created by make - graph, nproc

is the number of available processors. Select is either

1 or 2.

effects: returns Mul-T code that ~ill execute the desired graph.

If select is 1 it ~ill use select1. If its 2 it ~ill

CHAPTER 3. SOFTWARE STRUCTURE 23

(DEFINE (RUN1) (BLOCK
(LET ((T. 192

(FUTURE
(LET ((_TEMP_1 'MATRIX-A) (_TEMP_2 'MATRIX-A))

(MATADD _TEMP_1 _TEMP_2 1 8)))))
(LET ((T.193 (FUTURE

(LET ((_TEMP_1 'MATRIX-B) (_TEMP_2 'MATRIX-B))
(MATADD _TEMP_1 _TEMP_2 1 8)))))

(TOUCH T.192) (TOUCH T.193)
(LET ((T.194 (FUTURE

(LET ((_TEMP_1 T.193) (_TEMP_2 T.192)
(_TEMP_3 (MAKE-MATRIX 4 4 0)))

(MATMUL_BLOCK _TEMP_1 _TEMP_2 _TEMP_3 0
4 0 4 0 4 2 2 2)))))

(LET ((T.195 (FUTURE
(LET ((_TEMP_1 'MATRIX-C)

(_TEMP_2 'MATRIX-C))
(MATADD _TEMP_1 _TEMP_2 1 8)))))

(LET ((T.196 (FUTURE
(LET ((_TEMP_1 'MATRIX-D)

(_TEMP_2 'MATRIX-D))
(MATADD _TEMP_1 TEMP_2 1 8)))))

(TOUCH T.195) (TOUCH T.196)
(LET ((T.197 (FUTURE

(LET ((_TEMP_1 T.196)
(_TEMP_ 2 T. 19 5))

(MATADD _TEMP_1 _TEMP_2 1 8)))))
(TOUCH T.194) (TOUCH T.197)
(LET ((T.198 (FUTURE (LET (

(_TEMP_1 T.197) (_TEMP_2 T.194)
(_TEMP_3 (MAKE-MATRIX 4 4 0)))

(MATMUL_BLOCK _TEMP_1
TEMP_2 _TEMP_3

0 4 0 4 0 4 2 2 2)))))
(TOUCH T.198))))))))))

Figure 3.4: Sample output program using S electl with eight processors.

CHAPTER 3. SOFTWARE STRUCTURE 24

use selectall.

The third technique that was explained will is called tree-heuristic. It works only

on expressions which are trees. This name comes from the fact that this scheduler

looks at the whole tree and applies a heuristic to determine how many processors

each node is going to get. For it to work we need each node to have its work selector

set to an appropriate value.

This scheduler is designed by a recursive technique. It implements a top-down

approach as opposed to the two previous techniques which implemented a bottom-up

code generator. It starts by producing code that will execute the last operation, that

is, the node with no successors. This operation is assigned all possible processors. The

scheduler then calls itself recursively on all of the nodes predecessors3 . We the split all

the available processors among the subtrees giving them a number of processors that

is proportional to the subtree load. We use a continuous approximation. 4 Figure 3.6

shows a sample program produced by this scheduler. It shows how some operations

get more processors than others. Specifically, we can see how the first two additions

get only one processor each since this subtree can be calculated much faster than the

other subtree with the multiplication. At the next level the multiplication gets six

processors while the addition gets only two. This clearly reflects the impact that the

size of the operations has on the scheduler.

compile-graph2 = graph nproc

3 We are limiting this number to 2.
4 This is explained by S. Prasanna. Ph.D. thesis.

CHAPTER 3. SOFTlVARE STRUCTURE

(DEFINE (RUN2) (BLOCK
(LET ((T.179 (FUTURE

(LET ((_TEMP_1 'MATRIX-A) (_TEMP_2 'MATRIX-A))
(MATADD _TEMP_1 _TEMP_2 1 2))))

(T.180 (FUTURE
(LET ((_TEMP_1 'MATRIX-B) (_TEMP_2 'MATRIX-B))

(MATADD _TEMP_1 _TEMP_2 1 2))))
(T.181 (FUTURE

(LET ((_TEMP_1 'MATRIX-C) (_TEMP_2 'MATRIX-C))
(MATADD _TEMP_1 _TEMP_2 1 2))))

(T .182 (FUTURE
(LET ((_TEMP_1 'MATRIX-D) (_TEMP_2 'MATRIX-D))

(MATADD _TEMP_1 _TEMP_2 1 2)))))
(TOUCH T.180) (TOUCH T.179) (TOUCH T.182) (TOUCH T.181)
(LET ((T.183

(FUTURE
(LET ((_TEMP_1 T.179) (_TEMP_2 T.180))

(MATADD _TEMP_1 _TEMP_2 1 4))))
(T.184 (FUTURE

(LET ((_TEMP_1 T.181) (_TEMP_2 T.182)
(_TEMP_3 (MAKE-MATRIX 4 4 0)))

(MATMUL_BLOCK _TEMP_1 _TEMP_2 _TEMP_3 0 4
0 4 0 4 2 1 2)))))

(TOUCH T.184) (TOUCH T.183)
(LET ((T.185 (FUTURE

25

(LET ((_TEMP_1 T.183) (_TEMP_2 T.184)
(_TEMP_3 (MAKE-MATRIX 4 4 0)))

(MATMUL_BLOCK _TEMP_1 _TEMP_2 _TEMP_3 0
4 0 4 0 4 2 2 2)))))

(TOUCH T.185))))))

Figure 3.5: Sample output program using Selectall with eight processors

CHAPTER 3. SOFTWARE STRUCTURE 26

requires: graph is a graph created by make-graph, nproc

is the number of available processors.

effects: returns Mul-T code that will execute the desired graph.

CHAPTER 3. SOFTWARE STRUCTURE 27

(DEFINE (RUN3) (BLOCK
(LET ((TEMP.186 (FUTURE

(LET ((TEMP.188 (FUTURE
(LET ((_TEMP_1 'MATRIX-A) (_TEMP_2 'MATRIX-A))

(MATADD _TEMP_1 _TEMP_2 1 1))))
(TEMP.189 (FUTURE

(LET ((_TEMP_1 'MATRIX-B) (_TEMP_2 'MATRIX-B))
(MATADD _TEMP_1 _TEMP_2 1 1)))))

(TOUCH TEMP.188) (TOUCH TEMP.189)
(LET ((_TEMP_1 TEMP.188) (_TEMP_2 TEMP.189))

(MATADD _TEMP_1 _TEMP_2 1 2)))))
(TEMP.187

(FUTURE (LET ((TEMP.190 (FUTURE
(LET ((_TEMP_1 'MATRIX-C) (_TEMP_2 'MATRIX-C))

(MATADD _TEMP_1 _TEMP_2 1 2))))
(TEMP.191 (FUTURE

(LET ((_TEMP_1 'MATRIX-D) (_TEMP_2 'MATRIX-D))
(MATADD _TEMP_1 _TEMP_2 1 2)))))

(TOUCH TEMP.190) (TOUCH TEMP.191)
(LET ((_TEMP_1 TEMP.190) (_TEMP_2 TEMP.191)

(_TEMP_3 (MAKE-MATRIX 4 4 0))
(PROC_WORK1 NIL) (PROC_WORK2 NIL)
(PROC_WORK3 NIL))

(SET PROC_WORK1 (FUTURE (MATMUL_BLOCK _TEMP_1
_TEMP_2 _TEMP_3 0 3 0 4 0 4 2 1 2)))

(SET PROC_WORK2 (FUTURE (MATMUL_BLOCK _TEMP_1
_TEMP_2 _TEMP_3 3 1 0 4 0 4 1 1 1)))

(SET PROC_WORK3 (FUTURE (MATMUL_BLOCK _TEMP_1
TEMP_2 _TEMP_3 4 0 0 4 0 4 1 1 1)))

(TOUCH PROC_WORK1) (TOUCH PROC_WORK2)
(TOUCH PROC_WORK3) _TEMP_3)))))

(TOUCH TEMP.186) (TOUCH TEMP.187)
(LET ((_TEMP_1 TEMP.186) (_TEMP_2 TEMP.187)

(_TEMP_3 (MAKE-MATRIX 4 4 0)))
(MATMUL_BLOCK _TEMP_1 _TEMP_2 _TEMP_3 0 4 0 4 0 4 2 2 2)))))

Figure 3.6: Sample output program using Tree Heuristic with eight processors

Chapter 4

Testing

This section covers the different tests performed on the system and the results that

were obtained from these tests. There are several reasons for performing the tests. We

would like, first of all, to know if the programs actually work and if they come up with

suitable answers. This was proven, the programs did compile and produce executable,

correct code. The second reason for performing the tests was to investigate which

one of the different scheduling techniques worked better and with which set of tests

cases. In other words, the tests determined which type of scheduling produced faster

code given a certain type of expression. The expressions were characterized by how

much inherent parallelism it contained (i.e. an very parallel expression is one with a

very wide graph and many leaves), and how big the actual expression was.

To find out which scheduling program produced the fastest code the programs

had to be timed. The timings were obtained from both tmult and mult. Tmult

28

CHAPTER 4. TESTING 29

IS a simulated versiOn of mult which runs on one processor. Mult is the parallel

language used, which can actually run the program in parallel g1vmg the desired

tasks to the available processors. The problem with using mult and the reason we

used tmult is that the time provided by mult is actual physical time. It doesn't. take

into account unix scheduling so that the times it returns are never completely correct.

Another problem with running mult is that the Encore machine never seemed to have

more than 8 processors running so the times acquired for the simulations had to be

restricted to this range. It will be noticed that the results obtained from mult. seem

to contain more noise. These mult results should, therefore, be taken in context these

disclaimers. On the other hand it must be also be noted that tmult. does not take

into account the communication time between processors. This was not a very big

factor, as can be seen by comparing the timings of tmult and mult graphs, but it did

change the results a little, and, it can be argued, in some important fashion.

4.1 Results

The expresswns used can be seen m table 4.1. They represent both common and

extreme cases. Each example tries to illustrate an interesting point about the differ­

ent scheduling techniques. All matrices can be assumed different since no algebraic

simplifications are performed.

The results of running expression A through the compiler and executing it can

be seen in Figures 4.1 and 4.2. This expression is a. basic expression. It is also

CHAPTER 4. TESTING 30

Test Expressions

A: ((x+y)·(a+b))
B: (a · (a · (c · ((x · y) · (y · z)))))
C: ((((a · b) · (c · d)) · ((a · b) · (c · d))) · (((a · b) · (c · d)) · ((a · b) · (c · d))))
D: ((((a + b) + (c + d)) + ((a + b) + (c + d))) + (((a · b) · (c + d)) · ((a + b) + (c + d))))
E:
F:

((a- 1. a-1) + (b-1 . b-1))
((((a · a) + (a · a))- 1) · ((a . a) + (a · a)))

Table 4.1: Table of test functions. All variables are 20 by 20 matrices.

Q.
::J

"0
(])
(])
Q.

(/)

6

5

4

3

2

Select1

Selectall

....:

o - - - o Tree Heuristic

....: -

. ~

1+---+---~--~--~~--~--~--~
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 4.1: Timings for expression A as seen in the simulator.

short and simple and contains only additions and multiplications. By looking at the

figures it is hard to find any discrepancies between the different compiling techniques.

This similarity is probably due to the fact that it is such a. small expression and the

advantages of one method over the other can not be easily seen at this scale. This

means that to make the results clearer and the advantages significant more complex

expressions have to be used.

CHAPTER 4. TESTING 31

a. 7
::J
'0 0 ·· ·. ·0 Select1 Q)
Q)

6 Selectall a. 6 --6
(/)

0 ---0 Tree Heuristic

5

4

3

2

1+---~--~---+--~----~--+---~
1 2 3 4 5 6 7 8

Number of Processors

Figure 4.2: Timings for expression A as seen in mult.

Expression B is a very sequential expression which makes it into an unbalanced

graph. The results of the tests with this expression can be seen in Figures 4.3 and 4.4.

The operations in this expression have to be performed, for the most part, one after

the other since the data dependencies require this to be so. The tests again are very

similar for all the scheduling techniques. The only noticeable aspect that can be

gathered is that select1 lags a little behind the others in the simulator result.s. This

can be attributed to that part of the expression that can be computed in parallel. The

other two techniques probably ran these operations in parallel and therefore gained

the small speedup that is seen. Notice how this disadvant.age of select1 is not seen in

the mult simulations. What probably happened is that. the communication overhead

time made that. slight advantage disappear. The fact that the mult times are identical

CHAPTER 4. TESTING 32

a. 8 ::J Select1 "0
Q)

Selectall Q)
7 a.

(/) Tree Heuristic

6

5

4

3

2

1
0 1 2 3 4 5 6 7 8 9 10111213141516

Number of Processors

Figure 4.3: Timings for expression B as seen in the simulator.

for all scheduling techniques seems to imply that we do not loose anything by applying

parallel techniques to a serial problem. The solution as computed in parallel takes

just as much time as if it was computed serially by applying all processors to each

task in sequence.

The first expression to show some actual discrepancy between the timing for the

different schedulers is expression C. These results are in Figures 4.5 and 4.6 . This ex-

pression produces a graph that possesses a considerable amount of parallelism. There

are up to eight multiplications in this graph that can be computed in parallel. It

is also, however, a very well distributed graph in that all the operations are multi-

plications. We see from the results of the simulator that selectall and tree heuristic

are somewhat faster that selectl. The difference even increases as the number of

CHAPTER 4. TESTING 33

Q.
::J

"'C
5 Select1 (]) 0 ·····0

(])
Q. 6 --6 Selectall (/)

0 ---0 Tree Heuristic
4

3

2

1+-~--r------~---4-----+-----+--
1 2 3 4 5 6

Number of Processors

Figure 4.4: Timings for expression B as seen in mult.

processors is increased. This proves that scheduling the operations serially, when we

have some parallelism available, is not a wise idea. However, the overhead costs that

result from the creation of futures lower the speed up that is achieved by giving more

processors to the task. Moreover, this overhead will only increase with the addition

of more processors, which is the reason why we do not get a linear speedup . These

results demonstrate to us that a parallel approach is indeed better than a. purely

serial one (around 40% better). It must be noted, however, that these same results

do not appear when the programs are run on mult. In mult all the scheduling heuris-

tics perform more or less the same. There is no dear advantage to compiling the

expression in parallel. This is probably due to the communication costs. Later on,

we will see other types of expression that do execute faster in parallel, even with the

CHAPTER 4. TESTING 34

Cl. 12
:::l

"0 Select1 Q)
Q)

10 Selectall Cl.
(f)

Tree Heuristic

8
• <{

6

{) '

4

2

0
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 4.5: Timings for expression C as seen in the simulator.

communication costs.

But which one of the parallelizing methods is better. To answer this question we

look at Figures 4. 7 and 4.8. These are the timings for expression D. This expression

has the same form as expression C except that the operators are different. If we

imagine it's graph form we would see that all the operation nodes are addition except

those on one branch that goes straight from the root to one of the leaves. Selectall is

the worse possible scheduling in this case. At each level it gives all the operation nodes

the same number of processors and waits for all of them to finish. This means that,

at every level, the multiplication node will get the same number of processors that all

the other addition nodes get. The multiplication will, of course, take a lot longer to

execute while, in the meantime, all the processors allocated to the additions will be left

CHAPTER 4. TESTING

a.
::J
'0
Q)
Q)
a.

(/)

9

8

7

6

5

4

3

2

1
1

0 · · · · ·0 Select1
6.--6. Selectall
o- - - o Tree Heuristic

2 3 4 5 6 7 8 9 10
Number of Processors

Figure 4.6: Timings for expression C as seen in mult.

35

idle. This is the reason why selectall is much slower than the two other techniques.

Between selectl and tree heuristic there is little difference. This difference makes

selectl faster than tree heuristic. The tests essentially say that it is faster to implement

the expression sequentially than it is to use a parallel method. My explanation for

this phenomena is that there are a great number of operations to perform and not

enough processors. This results in tree heuristic giving fractional processors to the

task. Fractional processors are, currently, resolved by sharing processors, which is

what. we were trying to prevent, or by creating more tasks. 1 This problem will only

be solved if we can give more processors to the problem. Notice how the speedups

of selectl and tree heuristic seem to match as the number of processors reaches it's

1 Refer to S. Prasanna. Ph.D. thesis.

CHAPTER 4. TESTING

a.
::J

"0
Q)
Q)
a.

Cl)

6

5

4

3

2

0· . ···0 Select1
Selectall
Tree Heuristic

()

0 I

.. Jr - - - r?J

I

.

I
I

I

~
I

1. (
(•

./
• • I . . I
I

I
I

1+---+---+---+---+---+---+---4-~
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 4. 7: Timings for expression D as seen in the simulator.

maximum. This can taken as an indication that the proposed solution is correct.

36

The timings for graph E can be seen in Figures 4.9 and 4.10. These look very

similar to graph A. This is due to the fact that the expression being calculated is

indeed very similar. This test shows that the incorporation of the inverse function

does not, in any dramatic way, change the behavior of the programs. Here, like in

the first test, we can appreciate how parallelism has a clear advantage over a purely

sequential approach. This advantage is even more clear on the mult results. The

inverse operation, therefore, seems to be a good candidate for parallelization within

an expressiOn.

Finally Figures 4.11 and 4.12 show the timings of expression F, which also uses the

inverse operation. The result of this operation is the identity matrix. This way the

CHAPTER 4. TESTING

a.
:::J
"0
Q)
Q)
a.

(/)

a.
:::J
"0
Q)
Q)
a.

(/)

6 " · · · · ·0 Select1 'V'

4

3

2

Selectall · ·<
Tree Heuri~tic. / f)- - - - -{

. /
0 / .· /

/

.·· lj
. . / . / .. /

0 /
.Jf

/

/

1+---~--~---+--~----~--+---~
1 2 3 4 5 6 7 8

Number of Processors

Figure 4.8: Timings for expression D as seen in mult.

9
0 · .. ··0 Select1

8 6 --6 Selectall
o-- - o Tree Heuristic .<

7

6

5

4

3

2

1
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 4.9: Timings for expression E as seen in the simulator.

37

CHAPTER 4.

a.
:J

"0
<D
<D a.

(/)

TESTING

5

4

3

2

••• <£>• •••••• • ({) · '

Select1
6 - 6 Selectall
o - - - o Tree Heuristic

1~--+---~--~---r--~---+----r
1 2 3 4 5 6 7 8

Number of Processors

Figure 4.10: Timings for expression E as seen in mult.

38

validity of the result can be easily checked. The graphs show how selectall executes

faster in the simulator. The reason for this that selectall allocates a.ll the processors

available to the computation of the inverse which is the most time consuming op-

era.tion in the expression. This fact can be checked if we follow the algorithm a.s it

is applied to the graph. Unfortunately this also means that we will have a.ll these

processors communicating with each other. This situation is made even worse by the

fact that the inverse operation requires a lot of communication between processors.

The more processors we have the greater the volume of the communication gets. This

could explain why we get a. drop in the speedup when doing the tests on mult a.nd

not in the simulator, but this is fa.r from certain. Since the simulator ignores commu-

nication it does not reduce it's speed up by much. Mult, however, might be slowed

CHAPTER 4. TESTING

a.
:::J
'0
(J)
(J)
a.

(/)

5

4

3

2

e- :-,..
; c, ...

; .. -../

Select1
Selectall

. < _ ~
.... •.- - ...

Tree Heuristic

1~~~~--~---+---r--~--~~
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 4.11: Timings for expression F as seen in the simulator.

down by communication delays.

39

CHAPTER 4. TESTING

Q.
:::J
"0
(])
(])
Q.

(f)

2

0 · · · · ·0 Select1
L0:, --6 Selectall
o - - - o Tree Heuristic

1¥L--+---+---+---+---+---~--~
1 2 3 4 5 6 7 8

Number of Processors

Figure 4.12: Timings for expression F as seen in mult.

40

Chapter 5

Conclusion

After seeing all the tests and comparing the results we must conclude that the par­

allelizing scheduling heuristics increase the speed of the evaluation of an expression.

There are however some doubts as to which scheduling heuristic is better. I believe

that the tree heuristic provides a better speedup. The fact that this was not seen

in all the tests is probably due to an error in the actual heuristic. After some fine­

tuning of the work heuristic, I think that this scheduler will achieve a much better

speed than what we can now see. It should also be modified to take into account

the communication overhead. In designing the different heuristics this overhead was

not taken into account. This assumption, however, did not have any major effect on

any of the test cases except with expression F. Here these delays might have possibly

caused some problems.

In general, the individual tests serve as indications of what scheduling technique

41

CHAPTER 5. CONCLUSION 42

works better in a specific case. The software is reliable and can be used as a tool for

computing the value of matrix expressions.

Further work would include the creation and addition of DAGs, which I have

mentioned throughout the document. The addition of more matrix operations would

also make it more usable. Some simple ones include multiplication by a constant

and addition with a constant. Some new and different scheduling heuristics could be

added and their effectiveness tested against the ones already implemented. Finally a

new matrix inverse might be implemented that does not do as much redundant work

as this one does.

Appendix A

Description of the files

demo This files loads all the other files and contains the timing mechanism used for

testing.

comp.t Contains the parser and the Selectl and Selectall compilers. The functions

make-graph and compile-graph can be found here.

comp2 .t Contains the tree heuristic code generator.

matmul.t Code for the execution of a matrix multiplication.

compmul.t Interface between the code for matrix multiply and the compiler.

matadd.t Code for matrix addition and subtraction.

matother.t Code for LU decomposition and matrix inverse.

util.t Various utilities used by the other programs.

43

APPENDIX A. DESCRIPTION OF THE FILES 44

ex.t Example graphs.

simplemul.t A simpler multiplication subroutine.

.. .. ._
\

THESIS RIECEIPT AND GRADE SHEET - I Not Valid Without Official Stamp

VIDAL M
This thesis, as required for the S.B. Degree, has been received by the
Department of Electrical Engineering & Computer Science, M.I.T.

Print Name (Last) (First) (Middle Initial)

Leave this space blank for official stamp
{ , "' "'C"\

(absolutely no more than 80 characters/spaces)

Print Supervisor's Name Print Academic Advisor's Name

Today's Date: _________ _ Course: 6-1 W
' (circle one)

-~,-; t/ /1 e. '! / r/ c/ C
Expected Graduate Date: --"'./-----'------

MIT lD Number --=~-c...:_;-'-o_-_{)_·_;_~_7--...::..3-'--7_.:::>_~: ______ _

Thesis registered for as:

Enter the total number of 6Th U units for which you have registered in ALL terms, but NOT those units which were
cancelled and not reinstated. (Minimum 12, maximum 30)

AREA BELOW TO BE FILLED OUT BY SUPERVISOR COMPLETELY

Enter the final Thesis Grade. Should this thesis be placed in the Library? ~ NO
~~eone)

An oral presentation has been conducted. ~ •/~---
(Please initial.)

Should the thesis be considered for the Electrical Engineering Thesis Prizes? YES NO
(circle one)

To be considered, both the thesis and a nominated note (use the space below, or the reverse of the White Grade Sheet) must be received
in 38-476 by the May INSTITUTE Deadline. The supervisor's note should explain the work's significance and the student's accomplishment.

For information about the Computer Science Thesis Prizes, the supervisor (not the student) should contact Prof. R. H. Halstead's
office (NE43-205, 3-3537).

Please provide the student with both oral and written evaluation of all aspects of the thesis project. Use the space below for consideration

of both the research and the write-up. .~ L 1 J J /;. (1
1 / \.... ({ ({.- V'({ ,.{_/ 1- (Of' f("/-V Pf,- I !(. . .

(.:u (I (-: f tU ('1 V' . -
:< · ~ • t {/y . / I "(o I I /) / • /" A- {t_{,ifl,fM{

'/ - f.na ~r-"" <"I {/1 : F trrA.r ·
L tQ f-"11· l/,J{//t/ 1-\.f t-JL<j ~fC~ / j- #- /

't (f 'AA ., a 1" v/ M1c e_,.t/VLG vt. (

f
) ") . ,j 1.

1/z, ~ . f\./ ~t{ (.._,-, • A I t./ /.A. ~ {-V
•'{ ". • • tlit.. ·' . v I ,. ~

,

4

• (fr 71 L;:.-..-vU!/1 ?, vj_.(_ J " 7/
., ,' I.:{ w t'i(~ t'Lty 1 .)-[.ff}-1 I . . /!" "7 U----lr ~1~ Vttt,., ~ r '"' ~ vt t .(2,(~

· i / r.4-1-YV((S:o f< -fl • ;vr..-<. ~;' t " ' 1 1~ · ~t~/ 1

(.1 :._ (.. f {.:U{: _. l-. X<-. ,0 ' _..e,_ I
t I • • /< ((,'l. f (...u.-(1,-{. '_"'!/' 1

, l t,/'-(9 /u:f.;L(~{ t '-/"'-; ''11 .t{. f..• t_ L..(__ ' r

I '

The supervisor should detach the back (GOLD) copy, and give ALL other copies to the student. Copies 1-3 must accompany the signed
thesis to 38-476, where they will be stamped, before being distributed by the student, as shown below.

#1 , WHITE (Grade Sheet): 38-476 #2, YELLOW (Thesis Receipt): Student
#3, PINK: Academic Advisor #4, GOLD: Thesis Supervisor

•• • .. • r • I

