

A SOFTWARE ARCHITECTURE FOR DISTRIBUTED WORKFLOW
ENACTMENT WITH AGENTS AND WEB SERVICES

by

Paul Allen Buhler

Bachelor of Science
The Citadel, 1986

Master of Science
Johns Hopkins University, 1990

__

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in the

Department of Computer Science and Engineering

College of Engineering and Information Technology

University of South Carolina

2004

Dissertation Advisor

Committee Member

Committee Member

Committee Member

Dean of the Graduate School

i

Dedication

To my family…

for their seemingly infinite patience.

especially my wife Melanie, for holding things together through my periods of
distraction.

to my children: Leslie, Patrick and Heather who have trouble remembering a time

when I was not a student.

To my parents…

who first instilled the belief that I could accomplish whatever I set my mind to.

to my father, who will always be the original Dr. Buhler – your battle with cancer

has taught me more about perseverance and strength than you know.

ii

Acknowledgements

I would like to thank each of the members of my dissertation committee for their time,

commitment and steady encouragement over the years.

I especially wish to acknowledge my dissertation advisor Dr. José Vidal for his financial

support, which helped keep me afloat. It is an honor to be your first doctoral student; I

feel we have both learned valuable lessons as we have felt our way through this process.

I am indebted to Dr. Michael Huhns who first encouraged me to study at the University

of South Carolina. Dr. Huhns provided the first inspiration for this work over a lunchtime

conversation at the Barcelo Sants hotel in Barcelona, Spain during the Autonomous

Agents 2000 conference.

I appreciate Dr. Larry Stephens for introducing me to the topic of Knowledge

Representation and Reasoning. His course has provided foundational knowledge that I

intended to leverage in the domain of Semantic Web services.

I express my deepest gratitude to Dr. Christopher Starr for his unwavering friendship and

untold support over the years.

Finally, I would be remiss if I did not recognize the encouragement and support I have

received from the administration, my colleagues, and my students at the College of

Charleston.

iii

Preface

The research described in this dissertation foretells a future in which traditional

approaches to writing software via creative processes will be supplanted by new

techniques based upon compositional paradigms. This shift toward composition will

enable wide-scale reuse of both hardware and software assets. Compositional approaches

will open the door to new application areas (e.g., Business Process Management

Systems) and change fundamental problem solving approaches in others. Software

structures will become flexible and agile, allowing applications to respond intelligently to

changes in their operational environment.

The underlying structure of this dissertation is itself driven by the theme of

composition. This dissertation is composed in part of a collection of papers that I have

authored and assembled into a coherent whole. As such, the individual chapters of this

work have the ability to stand-alone; however, when viewed collectively, the proverbial

whole is greater than the sum of its parts. An introductory chapter serves to unite the

works and provides the lens through which brings the whole into focus. The chapters,

based upon an externally reviewed and accepted submission to a journal, conference, or

workshop are identified below:

Chapter 2

P. Buhler and J. M. Vidal, "Towards adaptive workflow enactment using multiagent
systems," Information Technology and Management Journal: Special Issue on
Universal Enterprise Integration, Vol 6, No 1, 2005, pg 61 - 87.

Reprinted with the permission of Kluwer Academic Publishers.

iv

Chapter 3

P. Buhler and J. M. Vidal, "Integrating Agent Services into BPEL4WS Defined
Workflows," presented at the Fourth International Workshop on Web-Oriented
Software Technologies (IWWOST '04), Munich, Germany, 2004.

Chapter 4

P. Buhler and J. M. Vidal, "Enacting BPEL4WS Specified Workflows with
Multiagent Systems," presented at the Second Web Services and Agent-based
Engineering Workshop (WSABE '04), New York, 2004.

v

Table of Contents

CHAPTER 1 BACKGROUND AND OVERVIEW.. 1

1.1 Research goals and methodology.. 6

1.1.1 Hypothesis... 7

1.1.2 Research Methodology.. 7

1.2 Overview of the remaining chapters ... 10

CHAPTER 2 TOWARDS ADAPTIVE WORKFLOW ENACTMENT USING MULTIAGENT

SYSTEMS ... 12

2.1 Introduction... 12

2.2 Enterprise Software... 14

2.2.1 Enterprise Software Architecture Trends ... 15

2.2.2 Web services as Enterprise Software Components....................................... 18

2.3 Workflow Management Systems.. 21

2.3.1 Adaptive Workflow in Context .. 22

2.3.2 Workflow Reference Model... 24

2.3.3 Workflow Tools ... 26

2.4 BPEL4WS... 27

2.5 DAML-S ... 32

2.6 Agent-based Workflow Approaches... 35

2.6.1 BPEL4WS for multiagent systems... 37

2.6.2 Multiagent workflow enactment as an autonomic system............................. 43

2.7 Related developments ... 45

2.8 Conclusion and future work.. 47

vi

CHAPTER 3 INTEGRATING AGENT SERVICES INTO BPEL4WS DEFINED

WORKFLOWS.. 48

3.1 Introduction... 48

3.2 An Example BPEL4WS Workflow .. 50

3.3 Infrastructure... 52

3.3.1 BPWS4J... 53

3.3.2 WSAG.. 55

3.3.3 JADE... 56

3.4 End-To-End Demonstration.. 57

3.4.1 The Software Development Process.. 58

3.4.2 Putting the Pieces Together .. 59

3.5 Conclusion .. 63

CHAPTER 4 ENACTING BPEL4WS SPECIFIED WORKFLOWS WITH MULTIAGENT

SYSTEMS ... 66

4.1 Introduction... 66

4.2 A Sample BPEL4WS Workflow .. 67

4.3 Architecture and Design ... 70

4.4 Coordination of the Workflow Agents ... 72

4.4.1 Xindice as a Coordination Medium .. 73

4.4.2 CPNs as a Flow Control Mechanism.. 75

4.5 Implementation Details... 79

4.5.1 Target Agents .. 79

4.5.2 Distributed Workflow Agents.. 80

vii

4.6 System Configuration ... 84

4.6.1 Configuring the WSAG ... 84

4.6.2 Configuring the Workflow Agents... 86

4.7 Conclusion .. 89

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 90

5.1 Major Research Contribution.. 90

5.2 Future Research Directions... 92

5.2.1 Externalization of Business Rules... 92

5.2.2 Dynamic Business Partner Selection .. 92

5.2.3 Automated Petri Net Creation .. 93

5.2.4 Semantic Service Replacement ... 93

5.2.5 Multiagent System Design Methodology .. 94

viii

List of Tables

Table 1.1 Research questions in software engineering... 8

Table 1.2 Research results in software engineering.. 9

Table 1.3 Validation techniques in software engineering... 9

Table 2.1 Component Model Standards.. 20

ix

List of Figures

Figure 1.1 The evolution of system assumptions.. 3

Figure 1.2 The ingredients of a Universal Business Integration Platform.......................... 4

Figure 1.3 The dissertation work as an act of synthesis ... 5

Figure 1.4 Relative maturities of relevant technologies ... 6

Figure 2.1 Evolution of programming paradigms... 16

Figure 2.2 Evolution of Enterprise Software Architectures.. 17

Figure 2.3 Workflow Perspectives.. 23

Figure 2.4 WfMC Reference Architecture © WfMC ... 25

Figure 2.5 A WSDL file for a currency exchange rate Web service 28

Figure 2.7 An Example BPEL4WS Workflow Description ... 31

Figure 2.8 Service-Oriented Architecture Model ... 32

Figure 2.9 Building Blocks Mapped to BPEL4WS Activities ... 39

Figure 2.10 Architectural Components of the Multiagent Enactment Mechanism 42

Figure 3.1 A Use Case Maps model of the BPEL4WS example...................................... 52

Figure 3.2 BPWS4J viewed as a layered model. .. 53

Figure 3.3 The WSAG enables messaging between Web services and agents. 55

Figure 3.4 Jade’s Remote Agent Management utility .. 56

Figure 3.5 Invoking the workflow from the command-line ... 59

Figure 3.6 WSAG Deployed Web services screen ... 62

Figure 3.7 BPWS4J Partner Identification Screen.. 62

Figure 4.1 A UCM diagram for the example workflow. .. 70

Figure 4.2 Example documents stored in Xindice .. 75

x

Figure 4.3 A PN Model for the example workflow. ... 76

Figure 4.4 Refinement of P2 with a subnet... 78

Figure 4.5 UML Sequence diagram with sample messages ... 79

Figure 4.6 UCM diagram of a Target Agent... 80

Figure 4.7 UCM diagram of a Distributed Workflow Agent.. 81

Figure 4.8 The components of the distributed enactment mechanism.............................. 84

Figure 4.9 Configuration of the Gateway Agent .. 85

Figure 4.10 The collection of workflow agents in the system.. 89

Figure 5.1 Various multiagent workflow adaptation strategies .. 91

1

Chapter 1

Background and Overview

Today’s software systems are becoming more net-centric, distributed, and heterogeneous.

Moore’s law (processor power), Gilder’s law (bandwidth expansion), and Metcalfe’s law

(network dynamics) predict a future that will require us to change our current perceptions

about computing [1, pg 268][2]. Hardware, software and networking technology will

combine in a milieu in which they become ubiquitous and inseparable. The acceleration

of technology and time-to-market pressures makes it increasingly difficult to produce

software. In order to achieve the promise of the information age, software developers will

require new abstractions that will allow them to manage the overwhelming complexity of

this digital landscape.

In 1999, NSF sponsored a workshop to discuss software engineering research

strategies. The participants at the workshop drew several conclusions about software

engineering research, one of which is particularly relevant to the vision of my work. This

conclusion is summarized by the metaphor “skate to where the puck is going,” meaning

researchers need to be more forward thinking. “Heterogeneous distributed systems,

dynamically changing software structures, and interactions among autonomous agents,”

were explicitly mentioned as requiring focused research [3].

Traditional software engineering methodologies are giving way to new software

development paradigms. Component-based software engineering and agent-oriented

2

software engineering are two paradigms that are garnering much attention. Although

typically thought of as separate disciplines, it is likely that they are not only related, but

also ultimately dependent upon one another. I believe that passive software components

can be liberated by the proactive and social nature of agents. In effect agent-based

technologies will provide the mechanism for components to seek work, enter into

cooperative agreements and thus otherwise address the requirements of dynamic,

heterogeneous environments.

In order to turn this vision into reality, the complexity involved in the combination of

software components and agents must be managed via carefully constructed software

architecture. In fact, the overwhelming complexity of contemporary software systems has

revealed that principled software architecture is a separate discipline from process-

focused software engineering. This should come as no surprise since architecture and

engineering have long been viewed as separate professions. The following quote helps

illustrate the difference between these two domains and their distinct points of view.

Consider the role of an architect versus that of an engineer in a

construction project. Engineers think about the techniques and skills in

constructing the building. Architects think about the art and technique of

designing the building. Engineers think about how they can build better

doors and stronger beams. Architects think about how the building will

respond functionally and aesthetically to the needs of its inhabitants.

Engineers think in terms of analysis – the process of solving a problem by

breaking it into components. Architects think in terms of synthesis – the

process of putting components together into a coherent system. Engineers

implement and construct. Architects create and configure. You need both to

create a building that is solidly built and yet creatively envisioned. But

architecture must precede engineering. And as the complexity and scope of

3

the building increases, the task of the architect becomes more important

and difficult. [1]

Underlying the now central role of software architecture is the changing landscape of

software systems. The emerging ubiquity and distribution of computational resources is

forcing the development community to grapple with a new set of system assumptions.

Figure 1.1 [4] highlights these fundamental changes.

Figure 1.1 The evolution of system assumptions

The adoption of distributed system assumptions is dramatically affecting information

technology deployments within the corporate enterprise. Globalization and competitive

pressures have forced business to turn toward technological solutions that enable agile

business processes that are responsive to changes in the marketplace and enterprise

environment. Information technology is no longer considered a necessary evil, but rather

an essential lubricant – reducing integration friction between applications and business

functions. In fact, many in the business process integration community believe that the

foundations of a Universal Business Integration Platform (UBIP) are emerging [5].

Figure 1.2 depicts the components of a UBIP.

Traditionally, Enterprise Applications Integration (EAI) and Enterprise Information

Integration (EII) were viewed as the essential ingredients of an integration strategy. This

view has expanded to include both Service-Oriented Computing (SOC) and Business

Process Management Systems (BPMS). In Figure 1.2, SOC is represented by Service

4

Oriented Architectures (SOA), Web services, and Service Oriented Development of

Applications (SODA). BPMS is depicted as Business Process Orchestration (BPO),

Business Activity Monitoring (BAM) and Business Intelligence (BI).

Figure 1.2 The ingredients of a Universal Business Integration Platform

Although the availability of a full-fledged UBIP is still distant, active research in

SOC and BPMS has established enough technological underpinnings to allow

corporations to begin to explore dynamic business processes in the form of virtual

enterprises. Virtual enterprises integrate business functions across organizational

boundaries; in other words, business units from various organizations align themselves to

perform work. The alignment mechanism is a shared workflow or process definition,

which structures the activities performed by the participating partners. The partnering

5

arrangement within a virtual enterprise is dynamic; partners can change over time in

response to environmental changes.

The dynamic and temporal characteristics of workflow processes in a virtual

enterprise create many research opportunities and it is against this backdrop that I place

my own work. Ultimately, as depicted in Figure 1.3, my research is a synthesis of the

many areas of study, each important in its own right.

Figure 1.3 The dissertation work as an act of synthesis

As an aid to further explore the nature of the dissertation work, Figure 1.4 uses the

Redwine-Riddle software technology maturation phases [6] to categorize concepts and

technologies that are relevant to dynamic, agent-based workflow enactment engines. This

diagram clearly illustrates that the solution space is complicated due to the integration of

several technologies, each of which evolves independently and varies in its level of

maturity.

6

Figure 1.4 Relative maturities of relevant technologies

Another insight that can be gleaned from Figure 1.4 is that traditional top-down

research is occurring from the left to right, whereas bottom-up integrative research

proceeds from right to left. Both approaches are valuable and essential to the innovation

process. Perhaps as a generalization it could be said that science advances from the left,

whereas engineering advances from the right. Software engineering, and more

specifically software architecture is critical when taking an integrative approach to

research. In fact, software architecture research has been defined as “the principled study

of the overall structure of software systems, especially the relations among subsystems

and components” [7].

1.1 Research goals and methodology
This dissertation explores the relationship between software agents and component

technologies, specifically Web services. Generally, it discusses mechanisms that allow

software agents to be loosely coupled to the behaviors they possess. This loose coupling

takes the form of run-time binding to Web services, which define individual behaviors.

The long-term benefit of this approach will be that an agent can use its autonomy to

7

realign its behaviors by binding to alternative Web services in response to environmental

dynamics. Likewise, an agent could also have the ability to use a coalition of similar

services, in conjunction with a consensus forming mechanism, to establish a behavior that

exhibits enhanced robustness and resiliency via redundancy [8].

1.1.1 Hypothesis

The fundamental question behind the work described in this dissertation is whether it is

possible to create a software architecture for functionally equivalent workflow enactment,

combining agent-based and service-oriented computing concepts and utilizing models of

weak coordination and loosely coupled interaction.

Incidentally, an earlier hypothesis of this work was that the relationships between the

participant Web services in a business process could be used as a specification of the

initial social order of agents in a multiagent system, wherein each agent acts as a proxy

for a Web service participating in the process. I have concluded that it will not be

possible to establish the true sociality of agents until further advancements in the area of

semantically described Web services takes place. For if an agent does not possess a

semantically rich description of the behaviors it possesses, it has no basis for negotiating

social commitments with other agents.

1.1.2 Research Methodology

At the International Conference of Software Engineering held in 2001, Mary Shaw

presented a keynote speech titled The Coming-of-age of Software Architecture Research.

Her presentation and supporting papers [7, 9] present a classification scheme that

captures the methodologies through which software architecture research is conducted.

She also provides a framework for addressing whether the combination of research

question, research strategy and validation establish compelling results.

8

The classifications of research questions that Shaw identifies are found in Table 1.1

[9]. The research that I have conducted primarily falls into the Feasibility category based

upon the research question being asked. Regarding research strategy/results, Shaw’s

categories are found in Table 1.2 [9]. The research strategy described in this dissertation

falls within the Specific solution category, and uses the system building approach where

the running system embodies the result. Finally, Shaw categorizes validation techniques;

some of the defined categories can be seen in Table 1.3 [7]. Of interest to my dissertation

work is the Implementation category, which captures the essence of the systems that I

have constructed.

The research methodology I followed is one of the combinations prescribed by

Shaw. Specifically, to address questions of feasibility, use a system building approach

and allow the implementation itself to serve as a validation of the work and a

confirmation of the hypothesis.

Table 1.1 Research questions in software engineering

Type of question Examples
Method or means of

development
How can we do/create (or automate doing) X?
What is a better way to do/create X?

Method for analysis How can I evaluate the quality/correctness of X?
How do I choose between X and Y?

Design, evaluation, or analysis
of a particular instance

What is a (better) design or implementation for
application X?

What is property X of artifact/method Y?
How does X compare to Y?
What is the current state of X/practice of Y?

Generalization or
characterization

Given X, what will Y (necessarily) be?
What, exactly, do we mean by X?
What are the important characteristics of X?
What is a good formal empirical model for X?
What are the varieties of X, how are they related?

Feasibility Does X even exist and if so what is it like?
Is it possible to accomplish X at all?

9

Table 1.2 Research results in software engineering

Type of result Examples
Procedure or technique New or better way to do some task, such as design, implementation,

measurement, evaluation, selection from alternatives.
Includes operational techniques for implementation, representation,

management, and analysis, but not advice or guidance.
Qualitative or

descriptive model
Structure or taxonomy for a problem area; architectural style,

framework, or design pattern; non-formal domain analysis
Well-grounded checklists, well-argued informal generalizations,

guidance for integrating other results.
Empirical model Empirical predictive model based on observed data
Analytic model Structural model precise enough to support formal analysis or

automatic manipulation
Notation or tool Formal language to support technique or model (should have a

calculus, semantics, or other basis for computing or inference)
Implemented tool that embodies a technique

Specific solution Solution to application problem that shows use of software
engineering principles – may be design, rather than
implementation

Careful analysis of a system or its development
Running system that embodies a result; it may be the carrier of the

result or its implementation may illustrate a principle that can be
applied elsewhere

Answer or judgment Result of a specific analysis, evaluation, or comparison
Report Interesting observations, rule of thumb

Table 1.3 Validation techniques in software engineering

Technique Character of validation
Persuasion

Technique
Design
Example

I have thought hard about this, and I believe that …
…if you do it in the following way, then…
…a system constructed like this would…
…walking through this example show how my idea works.

Implementation
System
Technique

Here is a prototype of a system that…
…exists in code or other concrete form
…is represented as a set of proceures

Evaluation
Descriptive model
Qualitative model
Empirical

quantitative
model

Given these criteria, here’s how an object rates…
…in a comparison of many objects
…by making subjective judgments against a checklist
…by counting or measuring something

Analysis
Analytic formal

model
Empirical

predictive model

Given the facts, these consequences…
…are rigorous, usually symbolic, in the form of derivation and proof
…are predicted by the model in a controlled situation (usually with

statistical analysis)

10

1.2 Overview of the remaining chapters
The organization for the remainder of the dissertation is as follows:

• Chapter 2 provides a critical survey of workflow, workflow description

languages, web services and agent technologies. It proposes that workflow

description languages and their associated design tools can be used to specify a

multiagent system. Specifically, it advances the idea that the Business Process

Execution Language for Web Services (BPEL4WS) can be used as a design

specification language for a multiagent system, which can then intelligently adapt

to changing environmental conditions.

• Chapter 3 details the development of a demonstration system that explores the

use of the Web Service Agent Gateway (WSAG) for generating Web service

interfaces to software agents. These agent services can then be transparently

integrated into BPEL4WS defined workflows. These workflow specifications can

subsequently be enacted with existing workflow execution technologies that

exhibit properties of strong, centralized coordination. The development of this

demonstration system illustrates the power of compositional approaches to system

creation. It also serves to reinforce the importance of open standards, since the

integration of the separate components is dependent upon the interoperability that

standards provide. This work is an important first step toward fully integrated

agent-based workflow management systems.

• Chapter 4 describes the development of a distributed, functionally equivalent

agent-based workflow enactment mechanism. This system demonstrates that a

BPEL4WS workflow description can be viewed as a definition for a multiagent

system in which the agents serve as proactive proxies for the underlying passive

11

Web services. Although the Semantic Web initiative is working toward

semantically rich descriptions of Web services, which can be reasoned about by

agents, the current state-of-the-art does not yet allow for collections of agents

representing semantic Web services to organize themselves to enact workflows.

Therefore, this work is critically important as it serves as a bridge from existing,

static views of workflow enactment to future, agent-based, dynamic workflow

engines.

• Chapter 5 consists of a brief conclusion and discussion of ongoing and future

work.

12

Chapter 2

Towards Adaptive Workflow Enactment
Using Multiagent Systems

2.1 Introduction
Advances in Information Technology (IT) are creating opportunities for business

enterprises to redesign their information and process management systems. Foundational

technologies for a universal enterprise integration platform are emerging. The refinement

of service-oriented architectures and the emergence of web-enabled, semantically

described services allow us to envision a future where these Web services become the

next generation of enterprise components. Recently, the term servicization [1] has been

coined to discuss the act of converting existing enterprise applications into Web services.

This new enterprise software vision will require new integration strategies. “The

traditional programmed interactions between people and software are [being] replaced by

task-focused interactions that are dynamic and flexible” [1, pg 216]. This places new

demands on software architectures because they will need to support computing with

“dynamically-formed, task-specific, coalitions of distributed autonomous resources” [10,

pg 99]. These changes are a logical consequence of the seminal work in coordination

technology done by Gelertner. As a result of Gelertner’s work, the old computer science

adage Applications = Algorithms + Data Structures is being replaced by Applications =

Computation + Coordination [11].

13

It is now generally accepted that Gelertner was correct when he theorized that

computation was orthogonal to coordination [12]. This orthogonality was implied by

DeRemer, who wrote in 1976, “Structuring a large collection of modules to form a

‘system’ is an essentially distinct and different intellectual activity from the construction

of the individual modules [themselves]” [13]. From these perspectives, a software system

is viewed as an ensemble of coordinables and their orchestrated interactions.

Coordinables are entities that function as independent units of computation. The

coordinated interaction of the computational units produces the desired behavior of the

system. Obvious parallels to workflow systems exist; the workflow activities are the

coordinables and business processes coordinate their interaction.

Leymann asserts that workflow construction can be viewed as a two-level

programming problem [14, pg 217]. His view is that the implementation of workflow

activities is akin to traditional programming, or programming in the small. Activities

encapsulate well-defined functionality that typically involves low-level data access

routines and algorithmic processing. In contrast, the building of the workflow’s process

model is akin to programming in the large. The process model prescribes coordination

rules by providing a means to express the sequencing of the activities and the flow of data

amongst them.

I advocate the synthesis of Gelertner’s and Leymann’s points of view. I believe that

the statements workflow = activities + processes and applications = computation +

coordination are equivalent. The chapter presents my contribution to enterprise

integration, the use of multiagent systems for flexible enactment of enterprise workflows.

My view can be summarized by the aphorism Adaptive Workflow Engines = Web

14

services + Agents. In this context, the Web services provide the computational resources

and the Agents provide the coordination framework. I propose the use of the Business

Process Execution Language for Web Services (BPEL4WS) as a specification language

for expressing the initial social order of the multiagent system.

In this chapter a brief background of enterprise software is presented. This is

followed by a section that examines the relationship between predominate software

abstractions and enterprise software architecture. An examination of workflow systems

motivates the discussion of BPEL4WS, DAML-S and agents. Finally, the chapter

concludes with a discussion of related and future work.

2.2 Enterprise Software
Business enterprises are organizations that perform collective work. In order to achieve

necessary operational efficiencies, the work needs to be governed by processes that

define the flow of work throughout the organization. Regulated business processes are

important because they reduce transactional costs when compared to ad-hoc approaches.

In fact, according to Coase [15], the existence of the enterprise itself is dependent upon

its ability to achieve lower internal transactional costs than the cost of performing the

same work in open markets. Of course enterprises cannot service every need internally,

because at some point the overhead burden of these operations exceeds the acquisition

cost from the marketplace. When this occurs, businesses form partnerships and

cooperative agreements with one another.

Economic arguments and competitive pressures have stimulated business to spend

heavily on IT. IT holds the promise of reducing transactional costs via management of

business processes and information. Initial IT spending was used to procure enterprise

15

applications that manage information relating customers, suppliers, partners and

employees; these key entities are those with whom the enterprise interacts and transacts.

Enterprise applications are categorized by the types of information and interactions they

manage. For example, Customer Relationship Management (CRM), Supply Chain

Management (SCM) and Enterprise Resource Planning (ERP) are the traditional

categories of enterprise applications.

After enterprise applications were in place, IT spending targeted Enterprise

Application Integration (EAI) initiatives. EAI allows businesses to further leverage their

investment in enterprise software by providing the infrastructure to enable the sharing of

data across organizational, system, and application boundaries. EAI improves the

visibility and flow of information within the organization, thus increasing the enterprises

responsiveness to marketplace demands.

2.2.1 Enterprise Software Architecture Trends

Since enterprise integration solutions are software driven, it is important to examine them

within the context of software development abstractions. This discussion will illuminate

the interdependence of enterprise software architecture, IT, and software development

abstractions.

The evolution of programming paradigms has been occurring for half a century.

Programming has transitioned from the earliest days of hard-wired machines to today’s

component and agent-based approaches. Figure 2.1, a modified version of [16, Table 1],

clearly demonstrates that software abstractions have been evolving toward

implementation methodologies that feature increasing levels of localization. Localization

is a side effect of encapsulation and it is important because it reduces the interdependence

between units of code. When units of code are tightly coupled, they become tangled and

16

difficult to independently deploy. Ideally, software developers work with abstractions

that enable the design and implementation of systems with units of code that exhibit loose

coupling and high functional cohesion [17]. These features are desirable because they

enable greater software reuse.

Figure 2.1 Evolution of programming paradigms1

Over time, enterprise software architecture has evolved in step with IT trends and the

influence of software abstractions; Figure 2.2, based in part upon [18, Figure 1], charts

this evolution. In the mid-1970’s structured programming allowed developers to

modularize their software in more controllable ways. In the late 1970’s and early 80’s,

relational databases entered the marketplace. These two developments enabled software

architectures that separated the application logic from the data that the application

processed. This separation was leveraged by the client/server computing model which

became predominate with the introduction of Local Area Network (LAN) technology and

the shift toward desktop computing.

1 Components are predominately stateless; however, stateful components do exist, e.g. stateful session
beans. For this reason, State is designated as ‘Mixed’ in the Component-Based column.

17

Figure 2.2 Evolution of Enterprise Software Architectures

In the late 80’s and early 90’s, the widespread adoption of networks and Graphical

User Interfaces (GUIs) brought about the next architectural shift. GUI programming

employs an event-driven programming model, which is best managed by the Model-

View-Controller (MVC) software architecture. MVC enforces separation of concerns: the

Model encapsulates the application state which is maintained as data; the Controller

defines the application’s behavior in response to GUI events; and the View is responsible

for the presentation of the model to the user. MVC architectures are deeply rooted in

object-oriented technology.

In the late 90’s and early 2000’s, the Internet became an integration platform for

enterprise applications. The MVC architecture is the basis for the familiar N-tier server-

side architecture found in today’s Internet based enterprise applications. Many of these

server-side applications utilize the Java 2 Platform, Enterprise Edition (J2EE™) [19],

which provides a component-based modular architecture. As an integration platform, the

18

Internet has proven to be very flexible. Open standards, which reduce vendor lock-in and

increase interoperability, are enabling corporate e-business initiatives. As businesses

integrate across organizational boundaries, it becomes important to separate the ‘public’

process logic from the ‘private’ business logic. The process logic specifies the order and

conditions under which things get done; whereas, the business logic specifies what gets

done. Business Process Management (BPM) software is an emerging classification of

integration software that treats business processes as first-class entities.

In Figure 2.1, it can be seen that the agent-oriented software abstraction is destined

to have an impact on enterprise software architectures. Currently, much attention is being

focused on Web services and their suitability to BPM applications. A closer examination

of Web services in the context of enterprise software follows.

2.2.2 Web services as Enterprise Software Components

Software components are created in order that they may be composed. As stated by

Szyperski [20], “Composition enables prefabricated ‘things’ to be reused by rearranging

them in ever new composites.” Composing an application via reuse of existing software

assets can dramatically reduce the development time. Likewise, the quality of the

application will also increase, if the reused software has previously been proven through

testing and successful deployment. Obviously any software engineering technique that

has the ability to reduce development time while simultaneously increasing the quality of

the product is noteworthy.

The range of Component-Based Software Engineering (CBSE) practice can be

constrained by the definition of a software component. The definition of a software

component is hotly debated; a sampling of common definitions can be found in [20-23].

For the purposes of this chapter, the definition presented by Heineman will be used. This

19

definition was selected for several reasons: it has undergone extensive review and

revision; the definition is architecturally neutral in that it does not favor any specific

implementation language or component model; and it is abstract enough to be inclusive

of the other commonly referenced definitions of a software component. The software

component definition found in [21, pg 7] is:

A software component is a software element that conforms to a component

model and can be independently deployed and composed without

modification according to a composition standard.

A component model consists of a collection of standards that govern the interaction

and composition of software components that conform to the model. Standards are

essential to the concept of open systems, which are simply a collection of interacting

software and hardware components. The interaction within the open system is defined by

interface specifications that are complete, publicly available and non-proprietary [24].

Table 2.1 [25] summarizes the basic elements of a component model.

From a workflow perspective, a composite software system can be viewed as a

sequence of services operating upon data. Ideally these services should be language,

platform and location independent [26]. Such services would then be interoperable,

where interoperability is characterized by the “ability of two or more software

components to cooperate despite differences in language, interface, and execution

platform” [27]. Web services represent a new class of interoperable, web-enabled

software service. Several specifications have been developed that form the basis of a

component model for Web services; specifically, SOAP (Simple Object Access

Protocol), WSDL (Web Service Description Language) and UDDI (Universal

Description, Discovery, and Integration). These specifications are used to invoke,

20

describe, publish, and discover Web services. They also embrace an open systems point

of view: XML (eXtensible Markup Language) is utilized to exchange data in a neutral

format and component communication occurs via open transport protocol like HTTP.

Table 2.1 Component Model Standards

Standards for Description
Interfaces Specification of component behavior and properties; definition of Interface

Description Languages (IDL)
Naming Global unique names for interfaces and components
Meta Data Information about components, interfaces, and their relationships; APIs to

services providing such information
Interoperability Communication and data exchange among components from different

vendors, implemented in different languages
Customization Interfaces for customizing components. User-friendly customization tools

will use these interfaces
Composition Interfaces and rules for combining components to create larger structures

and for substituting and adding components to existing structures
Evolution Support Rules and services for replacing components or interfaces by newer

versions
Packaging and
Deployment

Packaging implementation and resources needed for installing and
configuring a component

Two important features of Web services are that they have a network-addressable

interface and they can be used to represent business concepts or services. These two

characteristics are essential to the concept of enterprise components as introduced in [22].

Web services have become the enterprise components for the next generation of

enterprise-level software and are now viewed as the new building blocks for enterprise

software systems. As with any building block metaphor, the challenge is how to arrange

or compose the building blocks into larger structures. As indicated in Table 2,

composition standards are a critical element of a robust component model. From the

enterprise application perspective, compositions of Web services can be viewed as a

workflow; the next section will introduce appropriate workflow concepts.

21

2.3 Workflow Management Systems
The Workflow Management Coalition (WfMC) is an international standards-setting

organization of workflow vendors, users, analysts and university/research groups. The

WfMC has been responsible for the creation of a workflow reference model and a

glossary of standardized workflow terminology. These resources will be used to define

workflow concepts with more precision. Several key terms are important to

understanding the nature of workflow and to provide an underpinning for a discussion of

contemporary trends in workflow management systems. The WfMC Terminology and

Glossary [28] document provides the following definitions:

Workflow – the automation of a business process, in whole or part, during

which documents, information or tasks are passed from one participant to

another for action, according to a set of procedural rules.

Business Process – a set of one or more linked procedures or activities

which collectively realize a business objective or policy goal, normally

within the context of an organizational structure defining functional roles

and relationships.

Process Definition – the representation of a business process in a form

which supports automated manipulation, such as modeling, or enactment by

a workflow management system. The process definition consists of a

network of activities and their relationships, criteria to indicate the start

and termination of the process, and information about the individual

activities, such as participants, associated IT applications and data, etc.

Workflow Management System – a system that defines, creates and

manages the execution of workflows through the use of software, running on

one or more workflow engines, which is able to interpret the process

definition, interact with workflow participants and, where required, invoke

the use of IT tools and applications.

22

In summary, a process definition is an abstract representation of a business process

that can be consumed by a workflow management system in order to enact the workflow.

2.3.1 Adaptive Workflow in Context

Traditionally, workflow management systems have not been designed for dynamic

environments requiring adaptive response. Currently, the need for adaptive workflow is

being driven by the demands of e-commerce in both B2B and B2C space. Initial B2B

automation activities were centered on Electronic Data Interchange (EDI) initiatives.

More recent work in the B2B space has focused on the development and deployment of

ebXML (electronic business XML). With both EDI and ebXML the collaborating

business partners predefine the terms of their electronic interaction. As discussed by Jenz,

these technologies enforce regulated B2B interaction and as such, they create closed

communities of business partners [29]. In comparison, views toward virtual organizations

require flexible, on-the-fly alignment of business partners; in other words, adaptive

workflow capabilities. These loose collaborations of business partners operate in open,

non-regulated B2B/B2C scenarios [29]; intuitively, pre-negotiated collaboration

agreements are a hindrance in these environments.

Available workflow management systems span a range of capability. This is not

surprising since businesses in any segment can benefit from workflow management. For

example the insurance industry benefited greatly from document management systems,

which reduce physical paperwork, increase the availability of documents, and control the

flow of information during processing. As shown in Figure 2.3(a), adapted from [14, pg

10], workflows can be broadly categorized by their business value and repetition rates.

Focusing on the two highest value workflow categories, Figure 2.3(b), a modification of

[30, 193], differentiates collaborative and production-oriented workflows.

23

Collaborative and production-oriented workflows are distinguished by measures of

structure and centricity. Collaborative workflows are information centric. Typically,

human interpretation of information drives the workflow in a loosely structured manner.

Collaborative workflows are sometimes described by the term Computer Supported

Cooperative Work (CSCW); groupware and other shared workspace tools are often the

vehicles for CSCW. In comparison, production workflows are process driven due to their

highly repetitive nature. To achieve the efficiency required of production workflow, the

processes are highly structured. Today’s agile manufacturing environments are controlled

by Manufacturing Execution Systems (MES) that schedule production based upon highly

detailed process plans. As indicated in Figure 2.3(b), the requirements of adaptive

workflow fall between these two broad categories.

Figure 2.3 Workflow Perspectives

Adaptive workflows need to react to changing environmental conditions. Currently,

businesses change their workflows through two primary mechanisms: Business Process

Reengineering (BPR) and Continuous Process Improvement (CPI). Figure 2.3(c), adapted

from [30, pg 239], illustrates the difference between BPR and CPI. BPR is the periodic

analysis and subsequent redesign of the intra- and inter- business processes used by an

24

organization. BPR is used to overhaul processes in order to create operational efficiencies

that improve quality and save time and cost. Conversely, CPI focuses on continuous

improvement through the application of small and orderly changes. Workflows are

continuously examined in order to find ways to increase quality and reduce waste.

Adaptive workflows respond to changing conditions through adaptive change. As shown

in Figure 2.3(c), adaptive change is not constrained by measures of frequency or impact.

Current workflow initiatives have embraced the Web service model. Given the

current state of technology, Web service based workflows typically are deployed behind

corporate firewalls and are used for intra-organizational workflow. The reason for this is

that Web service specifications are weak in regards to issues of security, transaction

management, internationalization, et al. Inevitably, as standards evolve to address these

deficiencies, workflows will transition from the domain of intranets to that of the

Internet. This transition will be accompanied by a new set of problems.

When an intranet-based workflow system executes, it does so with a collection of

services that are owned and managed by the same organization. In this environment,

service interruptions are infrequent and typically scheduled due to consolidated system

management. In contrast, Internet-based workflows must be designed for resilient

operation as service partners periodically become unavailable due to decentralized system

management and the lack of network service guarantees. The evolution from intra- to

inter- net based workflows will increase the design and run-time complexity, since the

coordination mechanism must become more fault tolerant.

2.3.2 Workflow Reference Model

The Workflow Reference Model describes a generic architecture for workflow

management systems [31]. The model, depicted in Figure 2.4, shows the functional

25

components of a workflow system and identifies the major interfaces between them

Although the workflow reference model was created in 1995, it still provides a relevant

architecture for discussing workflow management systems today.

.

Figure 2.4 WfMC Reference Architecture © WfMC

As illustrated, a process definition of a business process is generated by Process

Definition Tools. These tools typically allow a process designer to create a diagrammatic

representation of business processes. The diagrams are then saved in a Process

Description Language (PDL) that is received by the Workflow Enactment Service via

Interface 1. The enactment services utilize one or more local workflow engines that

interpret and execute the PDL. While the workflow is being enacted, it can be

administered and monitored via interface 5. The executing business process may interact

with other automated business processes via interface 4. Interface 2 provides a

mechanism for engaging a human participant in the workflow process, whereas interface

3 is designed for invoking applications without human intervention.

26

2.3.3 Workflow Tools

As discussed in section 2.2, enterprise software architecture has evolved over time.

Likewise, according to Singh and Huhns, the concept of workflow technology has

developed in a generational manner; each generation leveraging the computational

capabilities and management theories of their time. They identify four generations of

workflow advancement and project a fifth generation based upon agent technology. The

four generations they identify are: manual, closed, database-centric, and workflow tools

oriented [32]. Contemporary approaches to business process automation are primarily

focused on 4th generation approaches, that is, they are workflow tools oriented.

The majority of workflow tools target process definition. Business processes can be

complex and difficult to comprehend. If a business process is incomprehensible, it cannot

be effectively communicated, analyzed nor checked for correctness or completeness.

UML activity diagrams can be used to represent workflows. These diagrams provide a

high-level graphical description of the various task dependencies. The diagrams were

designed to be human-readable. The activity diagram notation supports the expression of

concurrent activity flows, the use of conditional branching, and the mapping of activities

to specific actors. However, activity diagrams are insufficient for the purposes of

enactment by an automatic system.

In the past few years, PDLs have been heavily influenced by XML and Web

services. There are several ongoing initiatives that are defining XML-based PDLs to

describe workflows composed of Web services. Although XML is human readable, its

strength is in providing an unambiguous mechanism for the exchange of information.

Fortunately, workflow design tools insulate the modeler from the complexity of the

underlying PDL. The current generation of workflow design tools allows the process

27

modeler to generate executable workflows directly from their visual representation.

BPEL4WS, an XML-based language for expressing the composition of Web services, is

poised to become the target PDL for the next generation of workflow design tools.

2.4 BPEL4WS
During the summer of 2002, IBM, Microsoft and BEA released a new PDL named

BPEL4WS [33]. BPEL4WS represents the merger of two other PDLs, IBM’s Web

Services Flow Language (WSFL) and Microsoft’s XLANG. BPEL4WS provides both

graph-based and block-based control structures, making it capable of representing a wide

range of control flows. Aalst has compared the expressiveness of several PDLs, and has

confirmed that BPEL4WS represents the union of WSFL and XLANG [34]. This merger

has created the market consolidation necessary to make BPEL4WS the de facto standard

for expressing workflows consisting of Web services.

BPEL4WS can be used to describe executable business processes and abstract

processes. Abstract processes are used to create behavioral specifications consisting of

the mutually visible messages exchanged between transacting parties executing a

business protocol. BPEL4WS relies upon the following XML-based specifications:

WSDL 1.1, XML Schema 1.0, XPath 1.0 and WS-Addressing.

Structurally, a BPEL4WS file describes a workflow by stating whom the participants

are, what services they must implement in order to belong to the workflow, and the

control flow of the workflow process. The BPEL4WS process model is built on top of

the WSDL 1.1 service model and assumes all primitive actions are described as WSDL

portTypes. That is, a BPEL4WS description describes the choreography of a set of

messages all of which are described by their WSDL definitions. Importantly, WSDL is

28

also used to describe the external interface to the workflow. This allows BPEL4WS to be

compositionally complete, which means that the composition of Web services are

exposed as a single Web service eligible to participate in other compositions [11].

Since BPEL4WS is highly dependent upon WSDL, a closer examination of the

structure of a WSDL file is in order. Figure 2.5 presents the contents and an explanation

of a WSDL file for a publicly available currency exchange rate Web service.

<definitions> specifies one or more services.
<types> section provides information about
any complex data types used in the document.
Note: the <types> section is not present in this
example because only simple types are used.
<message> is an abstract definition of the
data being communicated. This Web service
defines two messages: getRateRequest and
getRateResponse.

<portType> provides an abstract set of
operations supported by the endpoints.
<operation> describes the action provided
by the service. This service has an operation
named getQuote that takes a getRateRequest
message and returns a getRateResponse
message.

<binding> describes how the operation is
invoked. It specifies the protocol and data
format for the operations and messages.

<service> specifies the port address(es) of
the binding.

<port> defines a communication endpoint.

<?xml version="1.0"?>

<definitions name="CurrencyExchangeService"
 targetNamespace="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"
 xmlns:tns="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="getRateRequest">
 <part name="country1" type=”xsd:string"/>
 <part name="country2" type="xsd:string"/>
 </message>

 <message name="getRateResponse">
 <part name="Result" type="xsd:float"/>
 </message>

 <portType name="CurrencyExchangePortType">
 <operation name="getRate">
 <input message="tns:getRateRequest" />
 <output message="tns:getRateResponse" />
 </operation>
 </portType>

 <binding name="CurrencyExchangeBinding" type="tns:CurrencyExchangePortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getRate">
 <soap:operation soapAction=""/>
 <input >
 <soap:body use="encoded" namespace="urn:xmethods-CurrencyExchange"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output >
 <soap:body use="encoded" namespace="urn:xmethods-CurrencyExchange"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <service name="CurrencyExchangeService">
 <documentation>
 Returns the exchange rate between two currencies
 </documentation>
 <port name="CurrencyExchangePort" binding="tns:CurrencyExchangeBinding">
 <soap:address location="http://services.xmethods.net:80/soap"/>
 </port>
 </service>

</definitions>

Figure 2.5 A WSDL file for a currency exchange rate Web service

Figure 2.6 presents a skeletal view of the primary sections of a BPEL4WS file. The

<partners> section declares the different parties that participate in the workflow

process. Each partner is given a service link type and the role it will perform as part of

the service link. The service link types are named entities that provide a mapping

29

between role names and WSDL portTypes that the role must support. The <variables>

section defines the variables used by the process. Variables store past messages and are

needed to maintain the state of the workflow process as it executes. The

<faultHandlers> section describes the fault handlers used by the workflow. All faults

generated by the workflow must be given a name. The fault handlers define the activities

that will be performed when a fault is raised. The process definition of the workflow

occurs after the fault handlers section and before the close process tag.

<process>

 <partners>

 <partner/>

 </partners>

 <variables>

 <variable/>

 </variables>

 <faultHandlers>

 <catch/>

 <catchAll/>

 </faultHandlers>

</process>

<!-- Workflow Definition Occurs Here -->

<process> specifies a process.

<partners> section declares the different
parties that participate in the workflow.

<variables> section defines the data
variables used by the process.

<faultHandlers> section which defines
the activities that should execute in
response to a fault which occurs during
the enactment of the process.

<catchAll> default handler for faults
that are not specifically caught.

<partner> defines a workflow participant

<variable> defines a named variable,
associated with a WSDL message type.

<catch> handles a specific fault

Figure 2.6 Primary BPEL4WS Sections

A workflow process is defined in BPEL4WS using activity constructs. The primary

constructs are:

<sequence> specifies that its contents must be executed in the order presented;

<flow> specifies that the contents are executed in parallel;

<while> indicates that an activity is repeated until a given criteria has been met;

<switch> allows the conditional execution of one of many activities;

<pick> blocks until a specified message arrives or a time-out occurs; when either

one occurs its associated activity is executed;

<receive> designates that a message is to be received;

30

<reply> sends a message;

<invoke> construct invokes an operation on a specified partner, portType pair;

<throw> is used to raise a fault;

<wait> pauses the execution for a specified time

Figure 2.7 contains a sample BPEL4WS workflow definition with the structuring

activity tags in boldface. This service provides the ability to obtain a stock quote from the

NYSE in any currency. For example, the service could be called to obtain a quote for

shares of IBM expressed in Swiss Francs. An analysis of this workflow reveals that the

service is composed from three other Web services. The three external Web services are

the stockQuoteProvider, the currencyExchangeProvider, and the

simpleFloatMultProvider. A narrative description of the steps in the workflow follows:

1. a service request message is received from the requestor.

2. the stock symbol is copied from the request message and the stockQuoteProvider

is invoked to obtain the quote.

3. the country name is copied from the request message and the

currencyExhangeProvider is invoked to obtain the rate of exchange between US

dollars and the foreign currency

4. the returned quote and the exchange rate are sent to the simpleFloatMultProvider,

which multiplies these values to convert the quote to the foreign currency

5. the converted quote is copied into the reply message which is sent to the service

requester.

Note that steps 2 and 3 have no data dependencies; therefore they can execute

concurrently. This is specified in the BPEL4WS by placing steps 2 and 3 within a

<flow> block.

31

Figure 2.7 An Example BPEL4WS Workflow Description

32

2.5 DAML-S
As compelling a technology as BPEL4WS is, it does not fully address the challenge of

composing workflow systems from Web services. BPEL4WS is focused on expressing

the mechanics of the workflow, but not its semantics. Web services are compatible with

Service-Oriented Architectures (SOA), which support run-time discovery and invocation.

Ultimately, SOAs require semantic service descriptions in order to be broadly functional.

Figure 2.8 illustrates the elements of a SOA.

Figure 2.8 Service-Oriented Architecture Model

The semantic web initiative is developing technologies for locating web resources

based upon their semantic content. Included in this vision is DAML-S, a specification for

providing semantic markup for Web Services. DAML-S is being designed to support the

following Web Service related tasks: discovery, invocation, composition and

interoperation, and execution monitoring [35]. DAML-S provides a machine-

interpretable, ontology-backed semantic description of both atomic and composite Web

services. As stated in [36], the markup provides:

declarative advertisements for service properties and capabilities which can

be used for automatic service discovery;

declarative APIs for individual Web Services that are necessary for

automatic Web Service execution; and

declarative specifications of the prerequisites and consequences of

33

individual service use that are necessary for automatic service composition

and interoperation

As discussed, DAML-S is being designed to ease composition issues by providing

information that will allow Web Services to smartly interoperate. For a discussion of the

relationship of DAML-S to other standards like UDDI, WSDL, and ebXML see [37].

A short example will provide justification of the need for a semantic markup

language like DAML-S. Consider the following use-case scenario: “A London-based

firm that wants to automate purchasing. Upon execution of an initial request for the

purchase of 1,000 units of some item, the resulting query passes over the network to a

Web service run by the supplier in Germany. That supplier in turn calls a Web service

that calculates shipping cost, a second that computes tax, and a third that converts

between pounds and euros. The German supplier then returns a consolidated quote to the

original caller in London” [38]. Intuitively, an automated workflow engine could make

use of the CurrencyExchangeService Web service, corresponding to the WSDL file

presented in Figure 2.5, to convert the price from euros to pounds. Or could it?

Without DAML-S or some other semantic annotation, the answer is no. Even if the

service were located via a UDDI search, an automated workflow engine would not know

what data to provide upon invocation. To the human reader, the names (country1 and

country2) and the types (string) of the arguments in the getRateRequest message provides

some contextual clues as to what these variables should contain; however, to an

automated process this syntactic information is meaningless. However, if the service was

described with a semantically rich notation, it might declare something like:

CurrencyExchangeService is a Web service that accepts two ISO 3166-1-Alpha-2

country codes and returns an exchange rate whose value is a floating point number.

34

Given the proper ontological structures, it would be possible to perform automated

reasoning. From the structure of the requester’s address, it would be likely to conclude

that London is a city. Inference rules that establish that cities are found in countries could

derive that London is found in a country named United Kingdom. Finally, countries have

attributes and in my ontology, one of them is the ISO 3166-1-Alpha-2 country codes,

which for the United Kingdom is GB.

Semantic markup of the service also provides information about what function the

service performs. If the workflow enactment mechanism had knowledge about the role

the CurrencyExchangeService played in the overall process, it would be possible to adapt

the workflow in intelligent ways. If the German parts supplier in my example were

supplying parts to another company in Germany, the CurrencyExchangeService

obviously would not be required. A more sophisticated level of reasoning would need to

occur if the German company was selling parts to a customer in France. In the ontology,

countries also have an attribute of ISO 4217 Currency Type Symbol. This information

could provide the adaptive workflow mechanism knowledge that both Germany and

France use the same EUR currency type; therefore invoking the

CurrencyExchangeService would be an unnecessary operation.

Given the demonstrated importance of semantic markup, it is worth considering the

relationship between DAML-S and BPEL4WS. The DAML-S service model overlaps

with BPEL4WS functionality; specifically, the Process Ontology contains the concept of

a Composite Process. In DAML-S, composite processes can be recursively decomposed

into a set of Web services that are related to one another via control constructs. The

DAML-S control constructs are block-structured and therefore lacks the ordering

35

flexibility provided by BPEL4WS links. I suggest that BPEL4WS and DAML-S are

compatible due to the fact that BPEL4WS is compositionally complete. BPEL4WS

exposes a single WSDL interface for the composite process it contains and could

therefore be marked-up in DAML-S as an atomic process. This results in the composite

process itself, rather than its internal processing being described in DAML-S. This is the

same mechanism used by DAML-S for handling DAML-S composite processes. A

DAML-S composite process is transformed into a simple process via the collapse

property. The simple process is mapped to an atomic process by the realizedBy property.

In DAML-S, atomic processes are grounded to WSDL operations [35].

2.6 Agent-based Workflow Approaches
In my earlier work [39], I established a relationship between semantically described Web

services and agents. My vision is to use Semantic Web services as external behaviors for

proactive agents. Huhns further distinguishes between Web services and agents. Some of

the distinctions he provides are: Web services know only about themselves, they do not

possess any meta-level awareness; Web services are not designed to utilize or understand

ontologies; Web services are not capable of autonomous action, intentional

communication, or deliberatively cooperative behavior [40]. In contrast, agents possess

all of these capabilities.

As previously introduced, Singh and Huhns, anticipate that 5th generation workflow

systems will employ agent-based technologies [32]. Others share this view, specifically

[41-43]. To place this in perspective, an agent is a system that exhibits properties like:

situatedness, autonomy, reactivity, pro-activeness, and social ability [44]. The social

metaphor gives power to the agent-oriented paradigm; it is one of the characteristics that

36

makes the agent abstraction particularly suitability for developing complex, distributed

systems [45, 46]. If a collection of sociable agents, representing individual services,

cooperate and coordinate they would have the capability to enact any workflow that is

composed of the represented services. In other words, agents have the capability to

dynamically form social structures through which they share commitments to the

common goal of workflow enactment. The individual agents, through their coordinated

interactions achieve globally coherent behavior; they act as a collective entity known as a

multiagent system.

Workflow enactment by a multiagent system can be viewed as an act of cooperative

problem solving. “Cooperative problem solving occurs when a group of autonomous

agents choose to work together to achieve a common goal” [47]. For cooperative problem

solving to occur, an agent in the multiagent society must recognize that the best path to

achieving a goal is to enlist the help of other agents. Social commitments arise when one

agent makes a commitment to another. Typically a social commitment comes about due

to a social dependency. As defined in [48, pg 113] a social dependence can be defined as:

(SocialDependence x y a p) ≡ (Goal x p) ∧ ¬(CanDo x a) ∧

 (CanDo y a) ∧ ((DoneBy y a) ⇒ Eventually p)

[Meaning] agent x depends on agent y with regard to act a for realizing

state p, when p is a goal of x and x is unable to realize p while y is able to

do so.

As indicated, for such a social dependency to be established, agent x and agent y

must be able to reason about their ability to perform act a, and have knowledge that the

performance of a will establish state p. The concept of first-order ability states that for

agent x to have first-order ability regarding the establishment of state p, it must know

37

explicitly whether ∃a((CanDo x, a) ∧ ((DoneBy x a) ⇒ Eventually p)) [47, pg 150].. If

agent x desires to achieve state p, but knows ¬(FirstOrderAbility x, p), then it must solicit

assistance in order to attain the goal.

I believe that the advent of the semantic web and the emergence of a Web Services

component model can facilitate agent-based workflow management in dynamic real-time

environments. If agents use semantically described Web Services, then the semantic

service descriptions become the basis for determining the agent’s first-order abilities.

Likewise, a common semantic markup for Web Services will facilitate effective

communication between agents. Social agents that have access to an ontology-backed

semantic description of their behaviors should be better able to proactively coordinate

themselves at the macro-level.

2.6.1 BPEL4WS for multiagent systems.

Unfortunately, despite the promise of the semantic web, its application in deployable,

commercial applications is still distant. Given this fact, is the concept of using multiagent

systems for workflow enactment still viable? The answer to this question is a resounding

yes, for even without semantic information, agents can employ their autonomy to perform

local workflow optimizations. Of course, a troubling issue remains. As discussed in the

previous section, agents need semantic descriptions of their behaviors in order to reason

about their own capabilities and the capabilities of the other agents in the system. This

reasoning ability is crucial for cooperative problem solving to occur. If agents are

unaware of their first-order ability, how is it possible for a multiagent system to organize

itself?

I propose a novel approach, which is to use a BPEL4WS process description to

impose an initial social order upon a collection of agents. Since BPEL4WS describes the

38

relationships between the Web services in the workflow, agents representing the Web

services would know their relationships a priori. Notably, the relationships between the

Web services in the workflow are embedded in the process logic of the BPEL4WS file. A

mechanism to extract this relational information is required if it is to be used to

coordinate the interactions of the agents. My strategy is to construct a Petri Net (PN) for

the workflow, which is then partitioned based upon partner information. Agents within a

multiagent system represent each partner and enact the workflow in a distributed manner.

PNs are recognized as a useful workflow modeling tool. The reader is referred to

[49] for a collection of PN related material. Their unambiguous and precise semantics

allow a workflow model to be analyzed. Such analysis can prove many properties about

a workflow process, including the absence of livelock and deadlock conditions. For my

purposes, an assumption is made that the BPEL4WS process description represents a

well-formed workflow process. Aalst presents a methodology to generate PNs via the

repetitive replacement of elemental PNs with other PNs [30]. In order to leverage this

replacement property, a collection of elemental building blocks is required. Figure 2.9

based in part on [30, Figure 4.11], illustrates a collection of PN building blocks along

with a mapping to the appropriate BPEL4WS activity.

39

BPEL4WS ActivityBuilding Blocks

<recieve>, <reply>,
<invoke>

x basic building block

<sequence>x y sequence

x

y

<switch>explicit OR-split

<while>

x

y

iteration

<flow>

x

y

AND construct

x

y

implicit OR-split <pick>

Figure 2.9 Building Blocks Mapped to BPEL4WS Activities

Although the mapping from building blocks to BPEL4WS activities is incomplete, it

is sufficient to represent many workflows. It is my opinion that after the basic workflow

process is converted to PN form, it can be augmented with the <link>, <terminate>,

<wait>, et al. activities. To demonstrate the application of the replacement property, the

workflow description found in Figure 2.7, will be used to illustrate the conversion of

40

BPEL4WS to PN form. To begin, represent each BPEL4WS basic activity as a building

block.

where x is the activity named request.<receive> A.

where x is the activity named getStockQuote.<invoke>B.

where x is the activity named getCurrencyExchange.<invoke>C.

where x is the activity named doSimpleFloatMult.<invoke>D.

x

x

x

x

x where x is the activity named response.<reply>E.

Utilizing the mapping presented in Figure 8, repeatedly apply the replacement property,
consuming the BPEL4WS process description. Starting with a sequence building block,
replace x with A and replace y with a flow construct, yielding F.

Starting with F, replace x with B and replace y with net C, yielding G.

In a sequence building block, replace x with G and y with D, yielding H.

In a sequence building block, replace x with H and y with E, resulting in I.

The final PN in expanded form:

B

C

A

x

y

AF.

B

C

AG.

G DH.

H EI.

D E

After the BPEL4WS file has been converted to PN form, it can be decomposed to

establish the relationships between the Web services. This is accomplished by traversing

41

the PN in the forward direction, noting the input and output tokens consumed and sent by

each partner. This information, along with variable manipulation instructions is sufficient

to allow the agents to coordinate the enactment of the workflow.

The architecture for the multiagent enactment of the example workflow is illustrated

in Figure 2.10. This architecture relies upon the work of The Foundation for Intelligent

Physical Agents (FIPA), which can be thought of as a component model that enables

agents from heterogeneous origins to collaborate in open environments [50]. In this

architecture, the following communications pathways exist:

• agent to agent communication occurs via FIPA’s Agent Communication

Language (ACL) and is facilitate by a FIPA compliant Agent Management

System (AMS).

• agent to Web service communication is accomplished via SOAP messages.

• agent to shared dataspace communication utilizes appropriate

protocols/interfaces provided by the dataspace. The dataspace is used to store

BPEL4WS process variables, which maintain the state of the workflow process.

42

St
oc

k
Lo

ok
up

Pr
oc

es
s A

ge
nt

C
ur

re
nc

y
co

nv
er

si
on

Se
rv

ic
e A

ge
nt

Ex
ch

an
ge

 R
at

e
Se

rv
ic

e A
ge

nt
D

el
ay

ed
 S

to
ck

 Q
uo

te
Se

rv
ic

e A
ge

nt

Shared Dataspace for
BPEL4WS Process Variables

FIPA compl iant Agent
Management System

Web Services

<ACL>

<SOAP>

<SOAP>

Figure 2.10 Architectural Components of the Multiagent Enactment
Mechanism

A few example scenarios will demonstrate how the agents can adapt the workflow

based upon knowledge acquired from: cached interaction histories with their respective

Web services, semantic markup, or coded by the application developer.

1. at time zero, a request for a quote of IBM stock in Euro currency is received. No

interaction history is present and the entire workflow executes.

2. a request for IBM in US dollars occurs two minutes later. Since the conversion is

between like currencies, the Exchange Rate Service Agent doesn’t invoke the

exchange rate Web service. Likewise, since the delayed stock quote Web service

has a QOS guarantee of 15 minutes, the Delayed Stock Quote Service Agent

43

determines that the cached quote for IBM is valid; therefore the underlying Web

service is not invoked.

3. five minutes later a request containing IBM and Swiss Francs arrives. This

invocation of the workflow utilizes the cached quote for IBM, but requires that

the currency exchange rate be computed.

2.6.2 Multiagent workflow enactment as an autonomic system

I believe that IBM’s Autonomic Computing initiative provides an interesting vantage

point from which to consider adaptive workflow. As noted in IBM’s Autonomic

Computing Manifesto [51], complexity itself is a byproduct of automation; workflow

management systems by their very definition are the automation of a business process.

One of the tenants of the autonomic computing initiative is to remove the complexity

from the end-user and embed it in the infrastructure of the system. Sophisticated self-

governing processes then manage the infrastructure. These processes possess several key

characteristics; among them are: self-configuration, self-optimization, self-healing, and

self-preservation. Each of these characteristics speaks to the need for adaptation that is

designed to achieve specific goals.

Using multiagent systems for workflow enactment is only the first step that enables

the exploration of many other fundamental questions. As noted in [52] autonomic

systems will consist of autonomic elements that will have policy driven relationships with

one another. If the BPEL4WS workflow description were interpreted as a strict policy

statement, then a static enactment mechanism is appropriate; however, if interpreted as a

policy guideline, multiagent enactment mechanisms provide a degree of process agility.

A sampling of some of the questions to be explored:

44

• How might the concept of adjustable autonomy be used to enable multiagent

enactment across the spectrum of workflow types, from collaboration to production?

In production workflows, multiagent implementation may provide execution-

monitoring advantages; even without the agents possessing a high-degree's of

autonomy. On the other end of the spectrum, agents that monitor the interaction of the

participants in a CSCW scenario could potentially discover interaction patterns,

formalize process rules and utilize their autonomy to enact elements of the ad-hoc

workflow without manual intervention (self-configuring).

• How might agents leverage workflow design tools that can capture the business logic

and rationale for service selection and flow? This meta-process information could

latter be utilized by the autonomous agents for process redesign (self-optimization).

Having a design specification for the MAS provides self-knowledge, which could be

leveraged for self-optimization. For example, agents can use the workflow description

to determine the impact of hypothetical changes, or use it, along with knowledge of

available resources, to find other resources that can be exploited.

• How might BPEL4WS be extended to allow the specification of multiple,

functionally equivalent partners at each end of the service link? In a supply chain

management scenario, the agents could use this information to tailor the workflow to

deliver different QOS levels based upon cost, time or quality constraints (self-

configuring, self-optimizing). Likewise, the list of partners might represent primary

and secondary service providers; in the event of primary partner failure, the workflow

could automatically engage the secondary partner (self-healing).

45

• How might an agent's active monitoring of service invocation patterns be useful for

the purposes of detecting/correcting inappropriate service access? (self-protection)

Perhaps, agents could use a BPEL4WS process description to identify normal

behavior and signal everything else as abnormal. Abnormal behaviors would have to

be further analyzed to determine if they are a real threat or a legitimate deviation

enacted by the agents in an effort to optimize the system's behavior.

• How might the abstract process notion be useful as a specification that can be

instantiated by agents? (self-configuring) An abstract process definition is non-

deterministic and does not specify under what conditions each branch is chosen. As

such, it can be used by agents to determine the set of "legal" actions and leaves the

choice to the agent's reasoning. One can envision the use of abstract specifications (if

made very flexible) as very high-level system behavioral limits. The agents would

then be free to implement any specific system behavior that falls within this space.

2.7 Related developments
Adaptive workflow capabilities, achieved through multiagent enactment mechanisms,

will be influenced by developments related to: BPM software and PDL developments,

Web services, the semantic web, and Agent-Oriented Software Engineering (AOSE). The

pace of change in each of these areas is quickening as commercial entities strive to

capture early market share and consortia like WfMC, BPMI, and W3C struggle to

maintain their relevance. In the BPM solution space, this scramble is being driven by

market analysis that predicts the BPM market will be worth $6.32 billion in 2005, up

from $2.26 billion in 2001 [53]. Interestingly, evidence that establishes the need for self-

configuring, self-optimizing BPM systems is found in this same research report, which

46

shows that for every dollar spent on BPM software in 2001, three dollars were spent on

related professional integration services.

In the domain of PDL development, I feel that BPEL4WS will become the de facto

standard as soon as Microsoft and IBM retool their product offerings for release in 2003.

IBM has released BPWS4J on their Alphaworks site [54]. BPWS4J provides a preview of

the capabilities that will be available in future versions of WebSphere Studio Application

Developer Integration Edition and the WebSphere Application Server. BPWS4J consists

of an Eclipse based graphical editor for designing workflows expressed in BPEL4WS

PDL. The BPEL4WS workflow descriptions can then be executed on the BPEL4WS

workflow engine. Both the WfMC and BPMI have release statements indicating that their

own process description languages, XPDL and BPML respectively, are more capable

than the BPEL4WS specification; however, they embrace BPEL4WS as a positive

development for the BPM industry [55, 56].

Although not at the same frenetic pace, developments are also occurring in the space

of Web services, the semantic web and AOSE. Regarding Web services, the WSDL and

SOAP specifications are completing an update cycle. The semantic web is transitioning

ontology languages from DAML+OIL to the new Web Ontology Language (OWL). The

field of AOSE is beginning to pay close attention to the Web service developments. FIPA

has formed a technical committee to propose an integration strategy for FIPA compliant

agents to interoperate with Web services.

On the academic front, several researchers are working at the intersection of agents

and workflow. Specifically, [32, 41, 43] have written about the potential benefits of

introducing agent technology into workflow enactment mechanisms. In [43, pg 575],

47

Marinescu discusses the use of the Bond agent architecture to enact a workflow

description captured in XPDL. Most closely related to my vision of using contemporary

BPM tools and Web services for multiagent systems design is the work described in [57].

In this paper, Korhonen, et al. describes the creation of a workflow ontology that is used

to describe both agents and Web services. They hope to build a workflow enactment

mechanism that can utilize the ontology to bridge the communications gap between

agents and Web services.

2.8 Conclusion and future work
In this chapter, my goal has been to contextualize thoughts of multiagent systems as a

workflow enactment mechanism. I predict that the landscape of enterprise integration will

undergo dramatic changes in the next 3-7 years as Web services usher in a new era and

BPM applications replace traditional EAI efforts. In these turbulent times historic

perspective is necessary for setting appropriate expectation levels. For the reasons

presented in Sections 2.2 and 2.6, I firmly believe that the historic trajectory of software

development paradigms and IT advancements will establish multiagent systems as the

workflow enactment mechanism of the future. The business community, while being

inundated with Web service hype and PDL confusion need to remain vigilant for the

emergence of disruptive technologies in the BPM application area. Agent-oriented

software is maturing at the same time as the semantic web activity. The combination of

these two technologies may truly establish the Internet connected virtual enterprises of

the future.

48

Chapter 3

Integrating Agent Services into
BPEL4WS Defined Workflows

3.1 Introduction
Business processes, which are rooted in the concept of workflows, are essentially social

networks; as such, they lend themselves to analysis via agent-based simulation. Recently,

several large corporations, such as Procter & Gamble, Southwest Airlines, Merck, and

Ford Motor Company have touted the benefits of agent-based simulations which have

identified ways to optimize their operations. In these simulations, software agents

represent the individual components of the system. The agent’s behaviors are modeled

after their real-world counterparts. After validating the accuracy of the simulation, by

comparing its performance to the real-world system, individual agent’s behavior rules can

be modified to assess the impact of the change on the system. Procter & Gamble claims

that agent-based simulations have been used to identify optimizations of its supply chain,

which are saving the company US $300 million annually [58].

Currently, two trends are changing the way businesses interact with their

environments. The first of these trends is the incorporation of real-time data into business

processes. Corporate leaders believe that having the ability to adapt their processes in

near real-time will provide a competitive edge; however, the introduction of

environmental dynamics may simply destabilize business processes because the sociality

of the business process is not typically recognized. The second trend is the dynamic

49

realignment of business partners enabled by advances in information technology. The

need for adaptive processes is being driven by the demands of e-commerce in both B2B

and B2C spaces.

Initial B2B automation activities were centered on Electronic Data Interchange

(EDI) initiatives. More recent work in the B2B space has focused on the development

and deployment of ebXML (electronic business XML). With both EDI and ebXML the

collaborating business partners predefine the terms of their electronic interaction. As

discussed by Jenz, these technologies enforce regulated B2B interaction and as such, they

create closed communities of business partners. [29]. In comparison, views toward virtual

organizations require flexible, on-the-fly alignment of business partners; in other words,

adaptive workflow capabilities. These loose collaborations of business partners operate in

open, non-regulated B2B/B2C scenarios where pre-negotiated collaboration agreements

are a hindrance in these environments [29].

Business process management software is gaining momentum due to the emergence

of a de facto standard for describing a business process as compositions of Web services.

This standard is named BPEL4WS, which is an acronym for Business Process Execution

Language for Web services [33]. In my earlier works [39], [59], [60], [61] I have

explored the relationship between Web services, Multiagent Systems (MAS), and

workflows. My vision is to create adaptive workflow capability through decentralized

workflow enactment mechanisms that combine Web service and agent technologies.

The applicability of MAS to workflow enactment has previously been noted [32];

however, it is only recently that the notion of using passive Web services as externally

defined behaviors of proactive agents has become palatable. Besides differentiating Web

50

services and agents based upon a measure of proactivity, there are several other important

distinctions worth noting. Some of the distinguishing characteristics provided by Huhns

are: Web services know only about themselves, they do not possess any meta-level

awareness; Web services are not designed to utilize or understand ontologies; and Web

services are not capable of autonomous action, intentional communication, or

deliberatively cooperative behavior [40]. In contrast, agents possess all of these

capabilities.

This chapter discusses the first step toward moving agents out of the simulation

environment and injecting them into the workflow itself. To facilitate this discussion, an

example BPEL4WS process is introduced. This sample process serves as a running

example throughout the rest of the chapter. Next, the major components of the software

infrastructure, which allows the integration of the agents into the workflow, are

described. The chapter proceeds to discuss the end-to-end demonstration of the workflow

engine calling an agent service. The chapter concludes with a summary of its contribution

and a discussion of future directions for this work.

3.2 An Example BPEL4WS Workflow
BPEL4WS is a Web service composition language; as such it allows the specification of

a collection of Web services and the coordination of their interaction. When thought of

from a business process perspective, BPEL4WS can be said to be a process description

language suitable for defining workflows where the activities to be performed consist of

Web service invocations. A thorough explanation of BPEL4WS is beyond the scope of

this chapter; however, the following sample is provided to help the uninitiated develop an

51

intuition about BPEL4WS. Please note that namespace and variable information has been

removed from the example in an effort to simplify its presentation.

<process
 name="stockLookupProcess">
 <partners>
 <partner name="requestor"/>
 <partner name="stockQuoteProvider"/>
 <partner name="currencyExchangeProvider"/>
 <partner name="simpleFloatMultProvider"/>
 </partners>
 <variables>
 ...
 </variables>
 <sequence name="main">
 <receive name="request"</receive>
 <flow name="getQuoteandExchangeRate">
 <invoke name="getStockQuote"
 operation="getQuote"
 inputVariable="stockQuoteRequest"
 outputVariable="stockQuoteResponse">
 </invoke>
 <invoke name="getExchangeRate"
 operation="getRate"
 inputVariable="currencyExchangeRateRequest"
 outputVariable="currencyExchangeRateResponse">
 </invoke>
 </flow>
 <invoke name="multiplyFloat"
 operation="multiply"
 inputVariable="simpleFloatMultRequest"
 outputVariable="simpleFloatMultResponse">
 </invoke>
 <reply name="response"
 operation="requestLookup"
 variable="response">
 </reply>
 </sequence>
</process>

The basic functionality of this workflow is to provide a stock quote that is converted

into the requestor’s local currency. If invoked with the arguments “IBM” and

“Switzerland” the stock quote for IBM would be converted into Swiss Francs before

being returned. This workflow has four participating partners: the service requestor, who

requests the execution of the workflow; the stock quote provider, a Web service that

provides delayed stock quotes; the currency exchange rate provider, a Web service that

52

provides exchange rates between countries; and the simple floating point multiplication

provider, a Web service that multiplies two numbers and returns their product. Figure 3.1,

provides a graphical view of the structure of the workflow in Use Case Maps (UCM)

notation [62]. UCM is intuitive; the line represents the thread of control, which passes

through the partners of the workflow. The workflow process starts at the end of the line

designated with a ball, which corresponds with the <sequence> tag in the process

definition. The process ends at the end caped by a line, this aligns with the </sequence>

tag.. Tracing this line from start to finish provides an accurate account of the temporal

ordering of the workflow’s activities. Notably, the line splits and joins in the middle of

the process, this corresponds to the <flow>, </flow> tags respectively. In BPEL4WS

activities found inside a flow block are executed concurrently.

Figure 3.1 A Use Case Maps model of the BPEL4WS example

3.3 Infrastructure
In order to demonstrate the integration of an agent into a workflow, a platform to carry

out this research was needed. The major components of the platform are the BPWS4J

Editor and Engine 2.0 [54], the Web service Agent Gateway (WSAG) 1.0 [63], and

53

JADE (Java Agent DEvelopment framework) 3.1 [64]. In addition to these primary

components, the following are also used: J2SE 1.4.2, Eclipse 2.1, Tomcat 4.1.29, Axis

1.1, and webMethods Glue Standard Edition 4.1.2. Each of the major components will be

briefly discussed in subsequent sections.

3.3.1 BPWS4J

BPWS4J is the common name for the IBM Business Process Execution Language for

Web services Java Run Time. BPWS4J provides two essential functions to the

infrastructure. The first contribution is the BPWS4J Editor, which is a plug-in for the

Eclipse environment. The Editor allows for the graphical creation of a BPEL4WS defined

workflow. Having the capability to diagrammatically define the workflow is helpful

because it is unwieldy to write programs in XML. The second essential function is the

BPWS4J Engine, which provides an enactment service for BPEL4WS workflows. The

engine consumes a workflow specification and deploys it as a Web service. When the

Web service is invoked, the underlying workflow executes.

Figure 3.2 BPWS4J viewed as a layered model.

54

The BPWS4J’s Engine coordinates the activities that occur in the Business Process

Layer (see Figure 3.2). BPWS4J enacts the business process as encoded in the BPEL4WS

file. BPWS4J locates and binds to the service endpoints based upon information found in

the user supplied WSDL files. In Figure 3.2, the middle layer contains the service

endpoints and the services are found in the lowest layer. The Web services are insulated

from their respective endpoints by Web service deployment middleware. Although the

business process is separated from the Web services, they are relatively tightly coupled

due to the dependence on explicit operation and message syntax embedded in the

BPEL4WS workflow description.

The communication between the layers identified in Figure 3.2 occurs in a bi-

directional and synchronous manner. Layered models with synchronous communication

channels are characteristic of distributed applications [65]. BPWS4J coordinates the

execution of workflow as a distributed application; thus it can be concluded that BPWS4J

is not an application integration platform. Although the difference between distributed

applications and application integration is subtle, it is fundamental to my desire to

develop decentralized agent-based workflow enactment mechanisms.

Agents can be viewed as independent applications that provide services to one

another through loosely coupled, asynchronous message exchange. Agents are able to

take advantage of the non-blocking nature of their messaging by overlapping other

processing with their communicative acts. The agent uses its autonomy to determine what

work to perform; however, I can envision an agent searching for ways to optimize the

workflow in which it is engaged. This might occur through finding other service partners

55

that provide better quality of service, or learning from its interaction histories with

existing partners so as to maximize the utility of their future interactions.

3.3.2 WSAG

The WSAG is a partial implementation of the Agentcities Web services Working Group’s

Technical Recommendation on the integration of Web services into the

Agentcities/openNet platform [66]. Gateway agents reside in the WSAG and are

responsible for managing conversations with target agents. The WSAG provides the

capability to pass a Web service invocation request through a gateway agent to a target

agent. The target agent services the request and responds back through the gateway to the

Web service client. Thus the WSAG functions as a translator between SOAP message

traffic and ACL (Agent Communication Language) based communicative acts (see

Figure 3.3). ACL messages are exchanged asynchronously, whereas SOAP message

exchange occurs synchronously.

Figure 3.3 The WSAG enables messaging between Web services and
agents.

Copyright © 2002-2003 Agentcities Task Force (ACTF).

The WSAG software consists of two related components: one, a set of tools which

greatly assist in the generation of gateway agents; and two, a gateway configuration and

deployment application that runs within a Tomcat servlet container. To develop a

gateway agent the developer must first write a Java interface, which defines the

parameters required by the target agent service. The code generation tools use the Java

interface definition to generate the gateway agent. The developer is only responsible for

56

writing the Java code that moves data to/from the content area of the ACL messages used

to communicate with the target agent. Once the gateway agent is created, the

management functions of the WSAG software are used to deploy the gateway agent and

associate it with the target agent.

3.3.3 JADE

JADE is a popular FIPA compliant, Java-based agent development platform. FIPA

(Foundation for Intelligent Physical Agents) is a consortium that produces standards to

enhance the interoperability of heterogeneous agents [50]. The WSAG uses JADE for the

implementation of the gateway agents. The target agents in the demonstration system

were also constructed with JADE; however, any FIPA compliant agent toolkit would

work.

Figure 3.4 Jade’s Remote Agent Management utility

JADE implements the FIPA reference model for agent platforms. Figure 3.4 depicts

JADE’s Remote Agent Management utility which provides facilities for interacting with

agents and managing the agent platform. Figure 3.4 shows that one agent platform with

57

two containers is executing. The main container supplies basic services to the agent

platform. The Directory Facilitator (DF) provides yellow page services to the agents

running on the platform. The DF also provides the mechanism for agents to advertise

their services in the agent directory. The Agent Management System (AMS) provides

services to the agent platform that allow the creation, deletion and migration of agents.

3.4 End-To-End Demonstration
An end-to-end demonstration was performed utilizing the software detailed in the

previous section. This demonstration shows the feasibility of injecting an agent into a

workflow executed by the BPWS4J Engine. The concept is to use the WSAG to slide an

agent between the enactment mechanism and a destination Web service. The example

workflow introduced in Section 2, was used for the demonstration. In the demonstration,

the BPWS4J engine passes control to the target agent, which in turn calls the Stock Quote

Web service. The target agent can be seen running in the target container in Figure 3.4.

Since the workflow calls the target agent instead of the Web service directly, an

opportunity is created to do something intelligent. One can imagine many ways in which

this could be useful. Perhaps the Stock Quote Web service guarantees the quote it

provides is current within the past 15 minutes and it charges a micropayment for service

access. The agent might check a local cache of interaction histories with the Web service

to see if the requested symbol has been quoted within the past few minutes. If so, the

agent may choose to return the cached quote value instead of calling the service, thus

saving the cost associated with the invocation. If the agent were made aware of the stock

exchange schedule, it could use its cache for quote requests that occur after the closing

58

bell, and on weekends and holidays. Of course many other possibilities exist when

semantic service matching is considered.

3.4.1 The Software Development Process

It should be clear the demonstration system was assembled with a development process

that was primarily compositional, as opposed to creational. Compositional software

development methodologies are by necessity different than those used for bespoke

software development. The act of composition requires an iterative process that contains

the following ordered steps: identification, selection, installation, integration and

evaluation.

In the identification stage, the marketplace is scanned for relevant components. The

most promising candidates are selected based upon criteria that not only include a

measure of requirements fit, but also cost, support, and supplier stability. The selected

components are then installed and reconciled with the system dependencies of the other

components within the solution space. After the components are installed, they must be

integrated via configuration and customization. Finally, once the system is assembled, it

can be evaluated.

It is important to realize that the only part of the system owned by the project is its

architecture [67]. The architecture needs to account for the future evolution of the system.

This evolutionary dynamic cannot be ignored as new products continuously enter and

leave the solution space. Functionally, the architecture of the demonstration systems

relies upon workflow design and enactment tools, Web service/agent integration

technology, agent construction tools, and miscellaneous supporting infrastructure.

Although the overall system is integrated, each of these architectural components can be

evolved separately given that their integration points remain consistent.

59

Open standards play an important role in the stability of a composed software

system. The demonstration system depends upon components that adhere to workflow

specification standards, Web service standards, and agent standards. BPEL4WS provides

the de facto standard for workflow specification, when each of the activities in the

workflow can be accessed as a Web service. The core Web service standards of WSDL,

SOAP, and HTTP ensure Web service interoperability. In the agent space, the FIPA

standards define the basic services that need to be supplied by compliant agent platforms.

Adherence to the FIPA standards enables agents from heterogeneous sources to assemble

in open systems.

3.4.2 Putting the Pieces Together

For demonstration purposes, it is important to establish that the existing workflow is

executing successfully, before altering the system to incorporate an agent service. When

the BPWS4J engine has deployed the workflow, it can be tested by invoking the

workflow’s Web service and verifying the response. The webMethods Glue toolkit

provides a convenient command-line Web service invocation utility that eliminates the

need to code a Web service client. Figure 3.5 shows how this utility can be used to

invoke the workflow executing in the BPWS4J engine.

Figure 3.5 Invoking the workflow from the command-line

Once the workflow has been verified, select a Web service from the workflow to

replace with an agent service. In the demonstration system, the delayed stock quote Web

60

service was selected for this purpose. At this point, a gateway agent for the WSAG needs

to be constructed with the same interface as the replaced Web service. The WSAG

automates much of this task after a Java interface has been written by the developer. The

following code sample defines a Java interface for a target agent service that mimics the

stock quote service that is being replaced.

package stockQuoteAgent;

public interface StockQuote {

Float getQuote(String symbol);
}

As indicated in Section 3.2, the WSAG gateway agent development tools use this

interface definition to construct both the gateway agent and its Web service interface.

Although the defined StockQuote interface is consistent with the service being replaced,

the WSAG tools are unable to generate a WSDL file that is compatible with the

BPEL4WS workflow definition. When incompatible WSDL definitions are found by the

BPWS4J engine, the deployment of the workflow fails. To illustrate this point, a snippet

of the tool generated WSDL file follows:

 <wsdl:message name="getQuoteResponse">
 <wsdl:part name="getQuoteReturn" type="xsd:float"/>
 </wsdl:message>
 <wsdl:message name="getQuoteRequest">
 <wsdl:part name="in0" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote"
 parameterOrder="in0">
 <wsdl:input message="impl:getQuoteRequest"
 name="getQuoteRequest"/>
 <wsdl:output message="impl:getQuoteResponse"
 name="getQuoteResponse"/>
 </wsdl:operation>
 </wsdl:portType>

This portion of the WSDL file defines the abstract interface to the Web service. It

states that the Web service provides an operation named getQuote that receives a

61

getQuoteRequest message that contains one variable named in0 whose type is xsd:string.

The ouput of the getQuote operation is a getQuoteResponse message that contains one

variable named getQuoteReturn whose type is xsd:float. Although semantically the same

as the getQuote service being replaced, the names of the messages and their parameters

do not align with the syntax of the replaced service.

Although the BPEL4WS description is decoupled from the services, the underlying

services associated with the workflow must have the exact interface definition as the

abstract Web services the BPEL4WS was written against. To resolve the deployment

issue the incompatibility causes, the WSDL file generated by the WSAG had to be

manually edited to reconcile the differences. For comparative purposes, the pertinent

section of the new WSDL description follows:

 <wsdl:message name="getQuoteResponse1">
 <wsdl:part name="Result" type="xsd:float"/>
 </wsdl:message>
 <wsdl:message name="getQuoteRequest1">
 <wsdl:part name="symbol" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote"
 parameterOrder="symbol">
 <wsdl:input message="impl:getQuoteRequest1"
 name="getQuoteRequest1"/>
 <wsdl:output message="impl:getQuoteResponse1"
 name="getQuoteResponse1"/>
 </wsdl:operation>
 </wsdl:portType>

Once the WSDL for the gateway agent is conformant with the WSDL of the service

being replaced, the gateway agent can be installed in the WSAG. During the installation

process, the address for the target agent is supplied. Figure 3.6, shows a partial screen

capture of a WSAG user interface. An examination of Figure 3.6 shows how the gateway

agent is configured to communicate with the target agent. The Remote Agent

Management utility, shown in Figure 3.4, can be used to obtain the address of the target

62

agent. Whenever the Web service interface to the gateway agent is invoked, the SOAP

message is effectively translated to an ACL message and sent to the target agent.

Figure 3.6 WSAG Deployed Web services screen

 After the gateway agent’s Web service interface has been deployed, the workflow

needs to be updated to invoke it. This is accomplished by redeploying the workflow

through an administrative interface of the BPWS4J Engine. During the deployment

process, the path to the WSDL files for each service partner is supplied. Figure 3.7,

shows a screen capture of the BPWS4J user interface that is used in this step. Instead of

supplying the WSDL to the original stock quote service, the WSDL file for the gateway

agent’s Web service interface is entered. After this change is made, whenever the

workflow needs to call the stock quote service, control will be passed to the gateway

agent which in turn communicates with the target agent.

Figure 3.7 BPWS4J Partner Identification Screen

Currently the demonstration system is only designed to illustrate the incorporation of

an agent service into a BPEL4WS workflow. The target agent possesses no intelligence

and simply calls the underlying delayed stock quote service that was previously invoked

63

by BPWS4J. The target agent is a JADE agent and is therefore written in Java. The

following Java snippet is self documenting and shows the relevant processing:

private void stockQuoteRequestBehavior(ACLMessage requestMsg)
{
 final String wsdlName = "urn:xmethods-delayed-quotes.wsdl";
 final String operation = "getQuote";
 String args[] = new String[1];

 // copy the stock symbol from the ACL msg to args[0]
 args[0] = requestMsg.getContent();

 // invoke the stock quote Web service
 String wsResponse = invokeWebService(wsdlName,
 operation, args);

 // create an ACL message to return the response
 ACLMessage responseMsg = new ACLMessage(ACLMessage.INFORM);

 // set this agent’s ID in the sender portion of the msg
 responseMsg.setSender(getAID());

 // set the receiver to be the address of the sender
 responseMsg.addReceiver(requestMsg.getSender());

 // place the returned stock quote into the content area
 responseMsg.setContent(wsResponse);

 // send the message back to the requestor
 send(responseMsg);

}

The message sent from the target agent, returns to the gateway agent. The gateway

agent extracts the stock quote from the ACL content area, and returns it back to the

BPWS4J Engine. From the Engine’s perspective, the changeover from a Web service to

an agent service is transparent.

3.5 Conclusion
Many lessons were learned during the construction of the demonstration system and

much work lay ahead. Specifically, a next generation WSAG is being planned. Greater

adaptability can be achieved in the next generation WSAG if the coupling between the

gateway and target agents were loosened. One approach to looser coupling would require

64

target agents to register with the agent platform’s directory facilitator their ability to

handle certain Web service requests. When the gateway agent receives a request it could

use the directory facilitator to locate target agents capable of providing the desired

service. Additionally, it seems logical to design a content language for Web service/agent

interaction. Simply placing the invocation parameters into the ACL content area is

insufficient for operation in open agent environments. Perhaps something as

straightforward as using SOAP as a content language would fulfill this requirement. An

added benefit to using SOAP directly is that namespace information would be preserved.

As Web services transition from rpc/literal to doc/literal invocation styles, the

namespaces will likely be useful in associating semantic meaning to the message content.

Recently, one other application of the developed platform has been recognized. The

Semantic Discovery Service (SDS) described in [68] would benefit from deployment as

an agent service rather than as a Web service. As an agent service, the SDS could register

itself with the agent platform’s directory facilitator enabling its use by other agents. Use

of the WSAG also allows the SDS to be the target agent for many gateway agents, each

with its own WSDL definition. The gateway agents would be responsible for providing

an OWL-S description of the desired service. This semantic description could be passed

in the content area of the ACL message along with the invocation parameters. This

arrangement allows the use of the SDS to be decoupled from the BPEL4WS process

definition, which would no longer have to be modified to support the SDS. Integrating

the SDS in this way allows it to be truly agnostic for it would no longer require that it be

packaged in a Web service wrapper for each use.

65

The work presented in this chapter is but a first step toward fully integrated agent-

based workflow management systems. Although this step may appear small, it represents

a great stride forward since it establishes a research platform upon which further Web

service/agent integration activities can be performed. The development of the

demonstration system illustrates the power of compositional approaches to system

creation. It also serves to reinforce the importance of open standards, since the integration

of the separate pieces is dependent upon the interoperability that standards provide.

66

Chapter 4

Enacting BPEL4WS Specified Workflows with
Multiagent Systems

4.1 Introduction
Distributed computing is undergoing revolutionary change as the worlds of Service-

Oriented Computing (SOC), Multiagent Systems (MAS), and Business Process

Management (BPM) converge. Web services will be the foundational technology that

will underpin future distributed, internet-based computing systems. As the Semantic Web

matures, Web services will routinely advertise a semantically rich description of their

capabilities. These descriptions will likely be encoded in OWL-S, a semantic markup

language designed for Web services [69]. Exploitation of these trends will require agile

software structures that support the loosely coupled interaction of services that are found

and bound at run-time. Much theoretical and practical work remains to transform this

vision into reality, as change needs to occur at both the infrastructure and application

levels.

This chapter details the design and development of an open, distributed, agent-based

workflow enactment mechanism utilizing BPEL4WS [33] as the specification of the

Multiagent System (MAS). The impact of this work is broad, as it cuts a swath across

many existing and emerging technologies; for example, Business Process Management

Systems, Web services, Internet Agents, application integration, and XML-based

coordination mediums.

67

This chapter will first detail a sample BPEL4WS workflow that will serve as a

running example throughout the remainder of the chapter. Next, a discussion of the

architecture and design of the distributed enactment mechanism is presented. This is

followed by an examination of the hybrid coordination model used. The discussion

proceeds with detail about the implementation of the workflow agents. The chapter

provides information on how the enactment mechanism is configured, including an

examination of the configuration data that is consumed by the workflow agents.

4.2 A Sample BPEL4WS Workflow
BPEL4WS is an XML-based defacto standard that allows the specification of a workflow

where the activities are defined by Web service invocations. BPEL4WS has been

submitted to OASIS for standardization and in the future will be known as WS-BPEL. A

complete description of BPEL4WS is beyond the scope of this chapter; however, the

following discussion should provide enough background to enable understanding of the

sample workflow.

BPEL4WS files specify the coordination of control and data between service

partners that represent underlying Web services. Control constructs such as sequence and

split-join are represented by XML tags that delineate control blocks. For example, the

actions found between a <flow>, </flow> tags are to be executed concurrently.

BPEL4WS defers to the underlying WSDL for the specification of the data that is

exchanged by the service partners. The messages exchanged with a Web service are

designated by variables within the BPEL4WS file. Assignment and copy operations

between variables allows data to be manipulated and passed between Web services.

68

Often initial research efforts are directed toward solving “toy” problems. The

example workflow described below serves this purpose. Abstractly, the workflow

consumes two parameters, a stock symbol and a country name. The result of the

workflow is a quote for the stock localized into the currency of the given country. For

example, providing ‘CSC’ and ‘Switzerland’ will return the price for a single share of

Computer Sciences Corporation stock in Swiss Francs.

The example workflow encoded in BPEL4WS follows. A few items to note, bold-

face text is used to designate the control constructs and workflow activities, the

remaining text describes the data-centric coordination of messages exchanged between

the partners and their Web services. The BPEL4WS has been simplified by removing

attributes that do not help clarify the example.

<process>
 <partners>
 <partner name="requestor"/>
 <partner name="stockQuoteProvider"/>
 <partner name="currencyExchangeProvider"/>
 <partner name="simpleFloatMultProvider"/>
 </partners>
 <variables>
 <variable name="request"/>
 <variable name="response"/>
 <variable name="stockQuoteProviderRequest"/>
 <variable name="stockQuoteProviderResponse"/>
 <variable name="currencyExchangeProviderRequest"/>
 <variable name="currencyExchangeProvidrResponse"/>
 <variable name="simpleFloatMultProviderRequest"/>
 <variable name="simpleFloatMultProviderResponse"/>
 </variables>
 <sequence>
 <receive name="request"
 partner="requestor"
 operation="requestLookup"
 variable="request"
 createInstance="yes">
 </receive>
 <assign>
 <copy>
 <from variable="request" part="symbol"/>
 <to variable="stockQuoteProviderRequest" part="symbol"/>
 </copy>

69

 <copy>
 <from expression="'usa'"/>
 <to variable="currencyExchangeProviderRequest" part="country1"/>
 </copy>
 <copy>
 <from variable="request" part="country"/>
 <to variable="currencyExchangeProviderRequest" part="country2"/>
 </copy>
 </assign>
 <flow>
 <invoke name="getStockQuote"
 partner="stockQuoteProvider"
 operation="getQuote"
 inputVariable="stockQuoteProviderRequest"
 outputVariable="stockQuoteProviderResponse">
 </invoke>
 <invoke name="getExchangeRate"
 partner="currencyExchangeProvider"
 operation="getRate"
 inputVariable="currencyExchangeProviderRequest"
 outputVariable="currencyExchangeProviderResponse">
 </invoke>
 </flow>
 <assign>
 <copy>
 <from variable="stockQuoteProviderResponse" part="Result"/>
 <to variable="simpleFloatMultProviderRequest" part="f1"/>
 </copy>
 <copy>
 <from variable="currencyExchangeProviderResponse" part="Result"/>
 <to variable="simpleFloatMultProviderRequest" part="f2"/>
 </copy>
 </assign>
 <invoke name="multiplyFloat"
 partner="simpleFloatMultProvider"
 operation="multiply"
 inputVariable=
 "simpleFloatMultProviderRequest"
 outputVariable=
 "simpleFloatMultProviderResponse">
 </invoke>
 <assign>
 <copy>
 <from variable="simpleFloatMultProviderResponse" part="multiplyReturn"/>
 <to variable="response" part="Result"/>
 </copy>
 </assign>
 <reply name="response"
 partner="requestor"
 operation="requestLookup"
 variable="response">
 </reply>
 </sequence>
</process>

Internally, the workflow definition coordinates the interaction of the four workflow

partners named: requestor, stockQuoteProvider, currencyExchangeProvider, and

simpleFloatMultProvider. Figure 4.1, provides a graphical view of the structure of the

70

workflow in Use Case Maps (UCM) notation [62]. UCM is intuitive; the line represents

the thread of control, which passes through the partners of the workflow. The workflow

process starts at the end of the line designated with a ball. Tracing this line from start to

finish provides an accurate account of the temporal ordering of the workflow’s activities.

Notably, the line splits and joins in the middle of the process, this corresponds to the

<flow>, </flow> tags respectively.

Figure 4.1 A UCM diagram for the example workflow.

4.3 Architecture and Design
Web services and the BPEL4WS have created a resurgence of interest in workflow

technologies and process-oriented views of software systems. Traditionally, workflow

engines have been based upon the static enactment of workflows under centralized

control. This classic approach is at odds with current trends towards real-time enterprises,

which closely monitor changing marketplace conditions and events. The ultimate goal is

to have this data feedback into the business processes, increasing process responsiveness

by allowing adaptive changes to occur. To achieve this type of workflow agility, new

enactment mechanisms are required.

71

Distributed systems possess three dimensions of distribution: computation, control,

and data. With BPEL4WS, the Web services are the computational activities, and the

control and data dimensions specify the coordination required to manage the process. The

BPWS4J Engine is a BPEL4WS enactment engine available from IBM’s AlphaWorks

site [54]. BPWS4J provides central coordination of the workflow, while the computation

is potentially distributed across the Internet. In BPWS4J, each workflow instance has its

own thread of control with simulated parallelism, thus the engine enacts the workflow as

a distributed application [70]. Distributed applications typically posses a single thread of

control and use synchronous communications to transfer control from one component to

the next.

My perspective is that the application integration paradigm provides a more

appropriate model of Internet based workflow enactment, particularly when inter-

organizational workflows are considered. Application integration considers the

components to be independently executing applications that are integrated via the

asynchronous exchange of data and control. Since Web services are passive entities that

don’t execute until called, I wrap them in proactive agents that possess their own thread

of control. The agents are then integrated to enact the workflow. The agents are

coordinated with a shared data space and the asynchronous exchange of messages. This

architecture is flexible and loosely coupled.

My goal is to create an open architecture, built atop open standards, for increased

interoperability. Just as the primary Web service standards of SOAP, WSDL and UDDI

allow for language and platform neutral invocation, I chose to use agent technology based

upon the FIPA standards [50], which provide for the interoperability of agents and agent

72

platforms. Additionally, I chose to use open source or freely available software whenever

possible.

Another design goal worth mentioning was the desire to preserve the compositional

completeness property inherent to BPEL4WS. In this context, compositional

completeness means that the composition of Web services is itself published and

accessed as a Web service that can participate in other compositions [11]. Since complex

workflows are often viewed as a hierarchy of workflows, the compositional completeness

property allows agent-based workflows to be incorporated via BPEL4WS into other

workflow definitions.

Based upon my architectural desires and design constraints, the following software

components were used in the creation of the distributed enactment mechanism: BPWS4J

Editor for the graphical creation of BPEL4WS specified workflows, webMethod’s Glue

[71] as a high level Web service invocation toolkit, JADE [64] as a FIPA compliant agent

development environment, the Web Service Agent Gateway (WSAG) [63] as a bridge

between synchronous Web service calls and asynchronous agent messaging, and Xindice

[72] as an XML-based coordination medium.

4.4 Coordination of the Workflow Agents
As previously discussed, the domain of coordination encompasses issues of both data and

control. The distributed workflow enactment mechanism utilizes a hybrid coordination

model, which means that it combines data-centered and control-centered coordination

mechanisms [73]. The data is managed via a shared, network addressable XML

repository, while the control of the workflow activities is driven by asynchronous

73

message exchange between the agents. The message exchange pattern for the control

messages is derived from a Colored Petri Net (CPN) model of the workflow.

4.4.1 Xindice as a Coordination Medium

Xindice facilitates the storage, retrieval, and sharing of XML data. Xindice is a network

addressable native XML database that complies with the XML:DB initiative. Xindice

stores XML documents in logical groupings called collections. Data is retrieved from a

collection via the evaluation of an XPath [74] query that is evaluated against the

documents in a collection. Xindice’s features make it an ideal choice as a coordination

medium.

Tuple spaces are often the coordination medium of choice for agent-based systems.

Tuple spaces allow processes to communicate across space and time, e.g. a process

running on one machine can write information to a shared tuple space which is to be read

by another process, running on a different machine the day after tomorrow. Tuple spaces

provide a form of associative memory. Associative memory is accessed by content, not

by address. By way of analogy, SQL is used to retrieve records from a RDBMS that

match criteria specified in the ‘where’ clause of the query. In the same way, a query

against a tuple space retrieves records that match criteria specified in a template. With

Xindice, XPath can be viewed as a template mechanism that can retrieve specific

elements, attributes, or even collections of nodes from an XML document.

An example will provide some insight into how Xindice and XPath are used as a

coordination medium for the sharing of data across the distributed workflow agents. In

the workflow example, the stockQuoteProvider partner interacts with a stock quote Web

service. This interaction occurs with XML-based SOAP messages, which are intercepted

and stored in Xindice. A sample of a captured SOAP Response message appears below.

74

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap…
 xmlns:xsi="http://www.w3.org/2001/…
 xmlns:xsd="http://www.w3.org/2001/…
 xmlns:soapenc="http://schemas.xmls…
 soap:encodingStyle="http://schema… >
 <soap:Body>
 <n:getQuoteResponse
 xmlns:n="urn:xmethods-delayed-quotes">
 <Result xsi:type="xsd:float">
 40.35
 </Result>
 </n:getQuoteResponse>
 </soap:Body>
</soap:Envelope>

Downstream in the workflow, the returned stock quote needs to be multiplied against

the currency exchange rate to localize the price. For this to occur, the quoted price needs

to be extracted from the XML document presented above. The XPath query

string(//n:getQuoteResponse/Result) retrieves the quote as a string, which can

then be converted into its numeric equivalent.

Requests for the execution of the workflow generate unique collections within the

Xindice repository. This allows for the clean separation of data between individual

workflow cases. Additionally, it assures efficient XPath queries since the number of

documents in a given collection remains small. Figure 4.2 depicts two XML documents

stored in Xindice and viewed through Xindice’s browser-based. The collection named

1081186215373 contains the transaction history between the agents of the distributed

enactment mechanism and their underlying Web services for one execution instance

(case) of the workflow. In Figure 4.2, the top image shows the data written by the Target

Agent into Xindice, the bottom image shows the SOAP message exchange between the

agent playing the stockQuoteProvider role and the delayed stock quote Web service.

75

Figure 4.2 Example documents stored in Xindice

4.4.2 CPNs as a Flow Control Mechanism

Petri Nets (PNs) have been used for workflow control since the mid 1990’s [75]. PNs,

also known as place-transition nets, provide a deceptively simple, yet rigorous, way to

model finite state machines. PNs are represented as directed graphs with two types of

nodes, places and transitions, which are graphically represented as circles and squares

respectively. The state of execution is maintained by tokens that reside in the place nodes

76

of a PN. A transition is enabled if each of its input places is marked by a token. When a

transition is enabled it fires, removing a token from each of the input places and

depositing a token in each of the output places. From a workflow perspective, the

activities of the process occur at the transition nodes in the net. Figure 4.3 presents the

example workflow in PN form, where the transitions correspond with the following

activites: A – receive request, B – invoke getStockQuote, C – invoke getExchangeRate,

D – invoke multiplyFloat and E – reply response.

Figure 4.3 A PN Model for the example workflow.

A comparison of the UCM diagram in Figure 4.1 with the PN model in Figure 4.3

reveals that they are equivalent.

CPNs are an extension of basic PNs and include the notion that the tokens carry data.

The different colored tokens equate to different data types. The demonstration system

utilizes two different colored tokens. The first is used for messaging between the WSAG

and the agent-based enactment mechanism. The second is used to communicate control

information between the agents as they process a workflow instance. The following is a

sample message sent by the WSAG:

WSAG:stockLookupProcess:requestor|request:csc:Switzerland

The message has a signature indicating that it is being sent by the WSAG. Next, the

message identifies the name of the workflow, followed by the partner name the message

77

is intended for. The vertical bar separates the message header from the payload. The

payload of the message indicates that a request is being made for a quote for CSC stock

localized into Swiss currency.

An example of a control message exchanged between two agents during workflow

enactment follows:

DWfA:stockLookupProcess:simpleFloatMultProvider:1080665330511:

 ...currencyExchangeProvider

This message carries the Distributed Workflow Agent (DWfA) signature, identifies

the workflow name, and the partner name the message is intended for. The numeric value

is a unique ID that is assigned to each workflow instance. This ID is also used to identify

the appropriate collection in the Xindice database. The final piece of information is the

name of the partner role that sent the message, in this case this message is from the

currencyExchangeProvider. Given the PN shown in Figure 4.3, it should be apparent that

before the simpleFloatMultProvider can invoke the multiplication Web service, it would

need to receive messages for the same workflow instance from both the

currencyExchangeProvider and the stockQuoteProvider.

It is easy to imagine using a PN within a centralized workflow enactment mechanism

to control the execution order of the workflow activities. However, an interesting

question arises regarding the use of a PN for distributed workflow enactment. This

question is how is it possible to separate the net into pieces that can be distributed while

retaining equivalent behavior. The answer is illustrated in Figure 4.4, which depicts the

refinement of a place between two transitions with a simple PN consisting of two places

and one transition. Transition T1 sends a token to place P2.1, which serves to enable the

78

subsequent transition that in turn sends its output token to P2.2 that may reside across a

network. P2.2 enables transition T2.

Figure 4.4 Refinement of P2 with a subnet.

More concretely, the transitions in the PN model are agents and the transition

containing DF/MTS represents FIPA compliant Directory Facilitator (DF) and Message

Transport Service (MTS) components. When an agent in the workflow completes its task,

it utilizes the DF to locate the address of the agent that has registered itself as playing the

next partner role that needs to receive control. The agent generates an ACL Request

message, loads the content area with DWfA signed data, and sends the message. to the

address returned by the DF. The MTS in turn facilitates the message delivery. Thus the

distribution of the CPN is effectively managed by the DF acting as a middle-agent [76].

Figure 4.5 depicts a UML sequence diagram for the message exchange pattern used

by the agents during the distributed workflow enactment. Below the sequence diagram is

a collection of sample messages. These messages represent actual data collected from the

execution of a case through the workflow. The message numbers correspond to the

numbers found in the sequence diagram. Note that the gateway agent runs within the

79

Web Service Agent Gateway. The agent playing the role of the ‘requestor’ is the target

agent.

Figure 4.5 UML Sequence diagram with sample messages

4.5 Implementation Details
There are two types of agents that enact the workflow: target agents and distributed

workflow agents. A target agent interfaces the distributed workflow agents to the WSAG.

The distributed workflow agents are the proactive proxies for the passive Web services

they represent. Both types of agents are implemented with JADE and are thus FIPA

compliant.

4.5.1 Target Agents

Figure 4.6 illustrates the structure of a target agent in UCM notation. The agent is

represented with a parallelogram, which indicates it is an active component in the system.

80

Target agents receive messages from both the WSAG and other distributed workflow

agents; the two distinct execution paths in Figure 4.6 denote this. The boxes found on the

execution path simply designate that some processing is occurring, while the two

squiggly lines note a “layer fold” in UCM notation. A layer fold is an abstraction that

indicates that some complexity is hidden or collapsed along the path. In this case, the

layer fold is used to indicate the interaction of the target agent with the middle-agents.

Figure 4.6 UCM diagram of a Target Agent

4.5.2 Distributed Workflow Agents

Figure 4.7 reflects the implementation of the distributed workflow agents. The only new

UCM notation is the dashed rounded rectangle, which is a placeholder symbol for a

passive component. The distributed workflow agents share the same code base; they are

simply instantiated with different workflow partner information. This is consistent with

the fact that the primary distinction between these agents is the Web service they

represent. In order to achieve the run-time assignment and dynamic invocation of Web

services, the capability for robust stubless Web service invocation is required.

81

Figure 4.7 UCM diagram of a Distributed Workflow Agent.

4.5.2.1 Stubless Web service Invocation

Web service invocation follows the traditional Remote Procedure Invocation (RPI)

integration pattern as described in [65]. When viewed generically, RPI is an integration

style that achieves Application to Application (A2A) integration by allowing one

application to invoke a function published by a second application. The function in the

remote application, appears as a local function to other. The underlying mechanism

which generates this transparency is based upon providing a function stub to application

one, that when called accesses a middleware layer which transports the call and its

associated data to application two. The generation of stub functions is typically

automated, with tools consuming an interface description of the target function and

creating the stub veneer. From a Java Web service perspective, the interface description

is the WSDL file and the generation of stubs occurs with a tool such as WSDL2JAVA.

The stubs are typically generated during the coding stage of application development.

The reason for this is intuitive; the stubs are called directly from the application code and

need to be resolved at compile time.

Service-Oriented Architectures provides the mechanisms for Web service partners to

be located and invoked at run-time. This obviously requires that more flexible integration

styles be developed to support the dynamic publish-find-bind pathways. Functionally,

82

most Web service toolkits provide some capability for late, run-time binding to Web

services. For example, the Glue toolkit from WebMethods [71] provides an IProxy class

that can bind to a WSDL description and invoke operations. Similarly, the Web Services

Invocation Framework from the Apache project [77] allows for dynamic invocation, as

does the JAX-RPC package which is part of the J2EE Web services Developer Package

[78].

Unfortunately, seamless dynamic invocation is beyond the capability provided by

these toolkits for the simple reason that they are incapable of handling complex types

returned from the invoked service. This limitation is due to the fact that the returned data

must be unmarshalled from the SOAP message, which in Java is not possible without

having a compatible class that implements the serializable interface. In the absence of

appropriate classes, the Java run-time environment generates an unmarshall exception.

Ironically, the stub generation tools that are not required for dynamic invocation provide

these missing classes.

Ideally, there would be a uniform mechanism for handling this problem; however,

each toolkit has its own workaround. A singular solution will not be developed until there

is broad realization of this problem. Statements such as, “The benefits of using dynamic

proxies instead of generated stubs are not clear – it’s probably best to stick with

generated stubs”[79, pg 339] only exacerbate the situation. The following Java code

snippet illustrates how the Distributed Workflow Agents perform stubless Web service

invocation utilizing the webMethods Glue toolkit.

83

public class dynamicInvocationExample {
 public Document dynamicInvocationWithGlue()
 throws Throwable {
 String wsdlName =
 "http://www.ejse.com/WeatherService/Service.asmx?WSDL";
 String operation = "GetWeatherInfo";
 String args[] = { "29424" };

 // create a SOAP interceptor
 SOAPInterceptor responseHandler = new SOAPInterceptor();

 // register the interceptor to catch incoming responses
 ApplicationContext.addInboundSoapResponseInterceptor(
 (ISOAPInterceptor)responseHandler);

 try {
 // obtain a proxy to the Web service via its WSDL
 IProxy proxy = Registry.bind(wsdlName);

 // stubless invoke of the operation
 proxy.invoke(operation, args);
 }
 catch(java.rmi.UnmarshalException e) {
 // do nothing, the UnmarshalException is expected
 }

 // generate an XML document containing the SOAP body
 return new Document(responseHandler.getResponse());
 }
}

public class SOAPInterceptor implements ISOAPInterceptor {
 private Element soapBody;

 public void intercept(SOAPMessage message,
 Context messageContext) {
 try {
 soapBody = message.getBody();
 }
 catch(Exception e){
 System.err.println(e.toString());
 }
 }

 public Element getResponse() {
 return soapBody;
 }
}

In the above code sample, it can be seen that the code negates the effect of the

unmarshall exception by catching it and effectively ignoring it. The SOAP interceptor

captures the result of the Web service invocation. The dynamicInvocationWithGlue()

84

method, returns a standalone XML document which contains the body of the SOAP

response message. The application can access the returned data via standard XML

processing functions by loading the document into a DOM tree, or as in the case of the

Distributed Workflow Agents, the XML document is written to the shared XML

repository.

4.6 System Configuration
The architecture for the distributed enactment mechanism relies upon many different

components that must be properly configured. Figure 4.8 is a high-level diagram that

shows the interaction between the major components. Note that the solid lines tipped with

arrows indicate synchronous message exchange, while the dashed variation designates

asynchronous messaging. The following sections will describe the configuration of the

components shown in Figure 4.8.

Figure 4.8 The components of the distributed enactment mechanism

4.6.1 Configuring the WSAG

The WSAG provides a Web service interface for services provided by a target agent. In

my example, the target agent plays the requestor partner role. As defined in the

BPEL4WS, the requestor receives requests from end users and responds with a reply after

the workflow runs.

Use of the WSAG requires that a gateway agent is generated and deployed. It is

critical that the interface for the gateway agent aligns with the workflow’s SOAP request

85

and response message structure. The gateway agent’s interface is specified with a Java

interface. The WSAG provides tools that facilitate the generation of gateway agents.

These tools consume the Java interface and produce a skeletal gateway agent. The

skeletal code is then edited to comply with the messaging interface of the target agent.

The gateway agent is then compiled and packaged for deployment. For the example

workflow, the following Java interface was used to generate the gateway agent.

package stockLookupProcess;

public interface StockLookupProcess
{
 Float request(String symbol,
 String country);
}

Once the gateway agent is built and installed, it needs to be deployed. The

deployment step publishes a WSDL interface for the gateway agent, and associates the

gateway agent with the target agent. The WSAG management console provides the

means to accomplish this task. Figure 4.9 shows the configuration of the

stockLookupProcess gateway agent. When the WSAG receives a SOAP request for the

stockLookupProcess, the gateway sends an ACL request to the specified target agent.

When the workflow is complete the target agent sends an ACL Inform back to the

gateway agent, which in turn sends a SOAP response to the workflow consumer.

Figure 4.9 Configuration of the Gateway Agent

86

4.6.2 Configuring the Workflow Agents

The workflow agents in the system share a single configuration file, expressed in XML,

that is stored in Xindice. The configuration data is derived from the BPEL4WS file and

the underlying WSDL files for the individual Web services. Currently, the configuration

data is manually generated; however, I believe that much of this process can be

automated. A sample of the configuration data is provided and discussed below.

<configData workflow="stockLookupProcess">

<messages>
 <message name="request">
 <part name="symbol" type="xsd:string"/>
 <part name="country" type="xsd:string"/>
 </message>
 <message name="response">
 <part name="Result" type="xsd:float">
 q:string(//agent[@role='simpleFloatMultProvider']
 /response//ns1:multiplyReturn)
 </part>
 </message>

 <message name="simpleFloatMultProviderRequest">
 <part name="f1" type="xsd:float">
 q:string(//agent[@role='currencyExchangeProvider']
 /response//Result)
 </part>
 <part name="f2" type="xsd:float">
 q:string(//agent[@role='stockQuoteProvider']/
 response//Result)
 </part>
 </message>
 <message name="simpleFloatMultProviderResponse">
 <part name="multiplyReturn" type="xsd:float"/>
 </message>
</messages>

<partners>
 <partner name="requestor">
 <inputPlaces/>
 <service>
 <wsdl> </wsdl>
 <operation> </operation>
 <messageName>response</messageName>
 </service>
 <outputPlaces>
 <place>stockQuoteProvider</place>
 <place>currencyExchangeProvider</place>
 </outputPlaces>
 </partner>

87

 <partner name="simpleFloatMultProvider">
 <inputPlaces>
 <place>stockQuoteProvider</place>
 <place>currencyExchangeProvider</place>
 </inputPlaces>
 <service>
 <wsdl>
 http://…/axis/SimpleFloatMult.jws?wsdl
 </wsdl>
 <operation>multiply</operation>
 <messageName>
 simpleFloatMultProviderRequest
 </messageName>
 </service>
 <outputPlaces>
 <place>requestor</place>
 </outputPlaces>
 </partner>
</partners>

</configData>

The configuration file contains both data-centric and control-centric coordination

information relevant to the enactment of the workflow. The data-centric portion is

identified with the <messages> tag, while the control-centric section is identified with the

<partners> tag.

The <messages> section defines the messages that the individual partners use when

interacting with their associated Web service. The message names come directly from the

BPEL4WS file, while the message parts are specified in the underlying WSDL files for

each Web service. Each message part has an optional value that is either a constant,

designated by “c:”, or an XPath query designated by a "q:". The associated XPath queries

inform the agent how to obtain the data from Xindice. For example, the target agent

sends an ACL Inform message to the gateway agent whose contents are the response

message defined in the configuration file. The response message contains one part named

Result, whose type is xsd:float. The XPath query specifies how to obtain the data for the

Result part from the repository.

88

The <partners> section contains the control-centric coordination information

relevant to each of the partners in the workflow. The partner names are specified in the

BPEL4WS file. Each partner is bound to a specific Web service, specified by a wsdl,

operation, messageName triplet. The messageName corresponds with a message found in

the <messages> section of the configuration file.

The agents track each DWfA signed message they receive against the individual

workflow cases. When an agent receives a message for a workflow instance from each of

the partners specified in the <inputPlaces> section, the agent invokes the Web service.

Next, the intercepted SOAP request/response pair from the Web service interaction is

stored in Xindice. The agent then sends a DWfA message to each of the workflow

partners found in the <outputPlaces> section. For example, the

simpleFloatMultProvider will not call the multiplication Web service until it has received

messages from both the stockQuoteProvider and the currencyExchangeProvider. Once

these messages are received, the Web service is called, the SOAP interaction stored, and

the requestor is sent a DWfA message.

4.6.2.1 Command Line Parameters

The workflow agents are provided the name of the workflow in which they are

participating and the name of the partner role they are performing at run time via

command line parameters. As previously mentioned, the distributed workflow agents are

each instances of the same Java class. It is the command line parameters that distinguish

them. The following shows the command line used to establish the stockQuoteProvider

agent:

java jade.Boot –container stockQuoter:DistributedWfAgent

 (stockLookupProcess stockQuoteProvider)

89

The target agent utilizes a different class file; however, it is established in a similar

fashion. The command line t establish the target agent is:

java jade.Boot -gui -container-name Target-Container

 requestor:TargetAgent(stockLookupProcess requestor)

Figure 4.10 shows a screen shot of the JADE Remote Agent Management console

with the entire complement of workflow agents running.

Figure 4.10 The collection of workflow agents in the system

4.7 Conclusion
One of the most important points to make about the distributed workflow enactment

mechanism is that it is functional and provides a research platform upon which further

refinement and experimentation can be performed. Through its development, many issues

have been faced and reasonable and scaleable solutions found. The next chapter provides

further context for this work and concludes with a discussion of possible future research

directions.

90

Chapter 5

Conclusion and Future Work

5.1 Major Research Contribution
As described in the research methodology discussion found in Chapter 1, a systems

building approach was used to convey and validate the research results. The research

described in this dissertation is grounded with two end-to-end demonstration systems.

The first of these systems, described in Chapter 3, shows how to integrate agent

technologies into contemporary workflow enactment mechanism that exhibit strong,

centralized coordination. The second system, described in Chapter 4, is the culmination

of this dissertation work and is the implementation of a software architecture for a

distributed, functionally equivalent workflow enactment mechanism. The term

functionally equivalent means that the workflow uses the same service partners and

produces the same result as if it were executed by BPWS4J. This system serves to

establish the underlying hypothesis of this work, that software architectures exist that

combine agent-based and service-oriented computing concepts for the purpose of

workflow enactment. The architecture provides a bridge from current, static workflow

enactment technologies to future dynamic workflow engines.

Enabling the transition from static workflow enactment mechanisms toward dynamic

ones, requires a software architecture that embodies the properties of weak coordination

and loosely coupled interaction. Systems that employ weak coordination exhibit

91

decentralized control mechanisms, which in turn enable the individual components of the

system to exert local control in response to changes sensed in the environment. Loosely

coupled interaction, based upon asynchronous messaging, minimizes the integration

friction between components allowing possible run-time substitution. These architectural

characteristics are necessary to the vision of run-time software adaptation and service-

oriented.

Figure 5.1 Various multiagent workflow adaptation strategies

The article titled Multiagent Systems with Workflows by Vidal, Buhler and Stahl [61]

provides the context for the current work, as well as a roadmap for future research

directions. The software architecture and its instantiation, as described in Chapter 4,

provides a research platform upon which further refinement and experimentation can be

performed. Figure 5.1 [61] depicts the landscape of strategies through which workflow

adaptation may be achieved via multiagent enactment mechanisms. In its current state,

the functionally equivalent enactment mechanism, described in this dissertation, is

positioned at the intersection of static and multiagent workflow enactment mechanisms.

92

This location is marked with an asterisk in Figure 5.1. It is a first but important step on

the path from static workflow enactment to dynamic on-the-fly composition of

workflows.

5.2 Future Research Directions
The work described in this dissertation is but a starting point from which to explore many

interesting and challenging problems. This dissertation concludes with a list of potential

future research directions.

5.2.1 Externalization of Business Rules

The demonstration system does not support <switch> and <pick> BPEL4WS

constructs. These constructs support selective routing, which can be thought of as the

business rules of the workflow process. For example, based upon the response from a

Web service invocation, pass control to partner A, otherwise use partner B. It should be

possible to preserve the genericity of the distributed workflow agent code-base by

augmenting the <outputPlaces> section of the configuration file with RuleML. The

rules will then be processed as conditional logic scripts in a manner inspired by [80].

5.2.2 Dynamic Business Partner Selection

The hybrid coordination model has proven its relevance with the demonstration system.

If a Linda-like tuple space were used to convey control messages, the first agent to

consume the message does the work. The use of the DF and asynchronous messaging

opens up interesting research opportunities regarding task allocation. For example,

consider what might happen when a workflow agent utilizes the DF to locate an agent(s)

playing the role identified by an outgoing place and it is discovered that multiple agents

are returned. The agent might use a reputation mechanism to select one of the partners, or

engage in a bidding scenario managed with a contract net protocol, et al. The point is that

93

the individual agents maintain the opportunity to do something intelligent and potentially

optimize the execution of the workflow at run-time.

5.2.3 Automated Petri Net Creation

The conversion of BPEL4WS into PN form is another area that requires further study.

Currently, PNs are generated based upon the replacement property that exists with

workflow nets [30]; however, while excellent at modeling positive flow control, it is

difficult to capture fault and exception handling. Additionally, the fact that BPEL4WS

inherits the calculus-based approach of XLANG presents difficulty when being expressed

with PN’s graph-based constructs. Ongoing work for developing a PN semantic for

BPEL4WS is occurring at Humboldt University. An initial description of this approach

can be found in [61].

In the event that the conversion of BPEL4WS into PN form does not mature, it could

prove fruitful to switch to YAWL (Yet Another Workflow Language) [81]. YAWL is a

developing process description language that supports all the known process patterns

[34]. The major benefit of YAWL is that it has been designed with a pure PN semantic.

5.2.4 Semantic Service Replacement

Other opportunities exist to demonstrate the advantages of agent-based workflow

enactment. As more semantic Web services become available, I would like to integrate

with the Semantic Discovery Service (SDS) [68] as an basic agent service available to the

workflow agents. To accomplish this integration, the <partner> description in the

configuration file would need to be augmented with a semantic description of the Web

service the partner represents. At run-time, the workflow agent can use its autonomy to

locate other potential Web service partners with the aid of the SDS. This integration

would allow the agents to heal the workflow in the event that their primary Web service

94

becomes unresponsive. Likewise, various Web services would likely provide different

QOS levels, which would provide opportunities to explore self-optimizing algorithms.

5.2.5 Multiagent System Design Methodology

Finally, the work described in this dissertation opens up a new avenue of research

regarding Agent-Oriented Software Engineering (AOSE). It demonstrates that it is

possible to take a BPEL4WS file that was created in graphical workflow design tool, and

use it to instantiate a MAS. It should be explored whether a more general MAS design

methodology and toolset can be formalized from the Gaia Agent-Oriented Analysis and

Design methodology [82], graphical workflow design tools which emit BPEL4WS, and

the distributed workflow enactment mechanism described in Chapter 4. These pieces

should natural fit together because a workflow essentially represents the sociality of the

business process; that is, the relationships between the workflow participants, the

necessary conversations they have while processing the work, and the work product

itself.

As demonstrated, many challenging and interesting research paths can be chosen

from the groundwork laid in this dissertation. Looking forward, it will be exciting to see

how the combination of agent-based and service-oriented computing revolutionizes

software construction practice over the next decade.

95

References

[1] M. Sawhney and J. Zabin, The Seven Steps to Nirvana : Strategic Insights into
eBusiness Transformation. New York: McGraw-Hill, 2001.

[2] Sun Microsystems, The Net Effect,
http://www.sun.com/neteffect/whitepaper.html

[3] B. Boehm and V. Basili, "Gaining Intellectual Control of Software Development,"
in IEEE Computer, vol. 33, 2000, pp. 27-33.

[4] R. Malveau and T. J. Mowbray, Software Architect Bootcamp, 2nd ed: Prentice
Hall PTR, 2004.

[5] Business Integration Journal Online, Universal Business Integration: An Idea
Whose Time Has Come, http://www.bijonline.com/PDF/matz%20march.pdf

[6] S. Redwine and W. Riddle, "Software Technology Maturation," presented at the
8th International Conference on Software Engineering, 1985.

[7] M. Shaw, "The coming-of-age of software architecture research," presented at
Proceedings of the 23rd International Conference on Software Engineering,
Toronto, Ontario, 2001.

[8] M. N. Huhns, "Interaction-Oriented Software Development," International
Journal of Software Engineering and Knowledge Engineering, vol. 11, pp. 259-
279, 2001.

[9] M. Shaw, "What makes good research in software engineering?," International
Journal of Software Tools for Technology Transfer, vol. 4, pp. 1-7, 2002.

[10] D. Garland, "Software Architecture: a Roadmap," presented at The Future of
Software Engineering, Limerick, Ireland, 2000.

[11] J.-G. Schneider, M. Lumpe, and O. Nierstrasz, "Agent Coordination via Scripting
Languages," in Coordination of Internet Agents : Models, Technologies, and
Applications, A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, Eds. New
York, NY: Springer-Verlag, 2001, pp. 153-175.

[12] D. Gelernter and N. Carriero, "Coordination Languages and their Significance," in
Communications of the ACM, vol. 35, 1992, pp. 97-107.

[13] F. DeRemer and H. Kron, "Programming in the Large versus Programming in the
Small," IEEE Transactions on Software Engineering, vol. 2, pp. 80-87, 1976.

[14] F. Leymann and D. Roller, Production Workflow: Concepts and Techniques.
Upper Saddle River, New Jersey: Prentice Hall PTR, 2000.

[15] O. E. Williamson, S. G. Winter, and R. H. Coase, The Nature of the firm : origins,
evolution, and development. New York: Oxford University Press, 1991.

[16] H. V. D. Paranak, ""Go to the Ant": Engineering Principles from Natural Multi-
Agent Systems," Annals of Operations Research, 1997.

[17] S. L. Pfleeger, Software engineering : theory and practice, 2nd ed. Upper Saddle
River, NJ: Prentice Hall, 2001.

[18] eAI Journal, Business Process Logic: Half-Empty or Half-Full?,
http://www.eaijournal.com/Article.asp?ArticleID=629&DepartmentID=7

[19] Sun Microsystems, Inc., Java 2 Platform, Enterprise Edition,
http://java.sun.com/j2ee/

[20] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd
ed. New York: Addison-Wesley, 2002.

96

[21] G. T. Heineman and W. T. Councill, "Definition of a Software Component and Its
Elements," in Component-Based Software Engineering : Putting the Pieces
Together, G. T. Heineman and W. T. Councill, Eds. Boston: Addison-Wesley,
2001, pp. 5-19.

[22] P. Herzum and O. Sims, Business Component Factory : A Comprehensive
Overview of Component-Based Development for the Enterprise. New York: John
Wiley, 2000.

[23] J. Sametinger, Software Engineering with Reusable Components. New York:
Springer-Verlag, 1997.

[24] B. C. Meyers and P. Oberndorf, Managing software acquisition : open systems
and COTS products. Boston: Addison-Wesley, 2001.

[25] R. Weinreich and J. Sametinger, "Component Models and Component Services:
Concepts and Principles," in Component-Based Software Engineering: Putting the
Pieces Together, G. T. Heineman and W. T. Councill, Eds. New York: Addison-
Wesley, 2001, pp. 33-48.

[26] G. Glass, Web Services, Building Blocks for Distributed Systems. Upper Saddle
River, NJ: Prentice Hall PTR, 2002.

[27] P. Wegner, "Interoperability," ACM Computing Surveys, vol. 28, pp. 285-287,
1996.

[28] The Workflow Management Coalition, Terminology & Glossary, Document
Number WFMC-TC-1011, http://www.wfmc.org/standards/docs/TC-
1011_term_glossary_v3.pdf

[29] WebServices.Org, The 'big boys' unite forces - What does it mean for you?,
http://www.webservices.org/index.php/article/articleview/633/1/24/

[30] W. v. d. Aalst and K. M. v. Hee, Workflow management : models, methods, and
systems. Cambridge, Mass.: MIT Press, 2002.

[31] The Workflow Management Coalition, The Workflow Reference Model,
Document Number TC00-1003,
http://www.wfmc.org/standards/docs/tc003v11.pdf

[32] M. P. Singh and M. N. Huhns, "Multiagent Systems for Workflow," International
Journal of Intelligent Systems in Accounting, Finance and Management, vol. 8,
pp. 105-117, 1999.

[33] XML Cover Pages, Business Process Execution Language for Web Services
(BPEL4WS), http://xml.coverpages.org/bpel4ws.html

[34] W. v. d. Aalst, "Don't go with the flow: Web services composition standards
exposed," in IEEE Intelliegent Systems, vol. 18, 2003.

[35] The DAML Services Coalition, "DAML-S: Web Service Description for the
Semantic Web," presented at The First International Semantic Web Conference
(ISWC), 2002.

[36] S. A. McIlraith, T. C. Son, and H. Zeng, "Mobilizing the Semantic Web with
DAML-Enabled Web Services," presented at Semantic Web Workshop,
Hongkong, China, 2001.

[37] The DAML Services Coalition, DAML-S and Related Technologies,
http://www.daml.org/services/daml-s/0.7/survey.pdf

[38] C. Shirky, "Web Services and Context Horizons," in IEEE Computer, vol. 35,
2002, pp. 98-100.

97

[39] P. A. Buhler and J. M. Vidal, "Towards the Synthesis of Web Services and Agent
Behaviors," presented at Proceedings of the Agentcities: Challenges in Open
Agent Environments Workshop, Bologna, 2002.

[40] M. N. Huhns, "Agents as Web Services," in Internet Computing, vol. 6, 2002, pp.
93-95.

[41] M. Griss, "Software Agents as Next Generation Software Components," in
Component-based software engineering: putting the pieces together, G. T.
Heineman and W. T. Councill, Eds. Boston: Addison-Wesley, 2001, pp. 641-657.

[42] Z. Maamar and J. Sutherland, "Toward Intelligent Business Objects," in
Communications of the ACM, vol. 43, 2000, pp. 99-101.

[43] D. C. Marinescu, Internet-based workflow management : toward a semantic web.
New York: Wiley-Interscience, 2002.

[44] M. Wooldridge, "Agents and Software Engineering," AI*IA Notizie, vol. XI, pp.
31-37, 1998.

[45] N. R. Jennings, "An Agent-Based Approach for Building Complex Software
Systems," in Communications of the ACM, vol. 44, 2001, pp. 35-41.

[46] N. R. Jennings, "On agent-based software engineering," Artifical Intelligence, vol.
177, pp. 277-296, 2000.

[47] M. J. Wooldridge, Reasoning about rational agents. Cambridge, Mass.: MIT
Press, 2000.

[48] M. N. Huhns and L. M. Stephens, "Multiagent Systems and Societies of Agents,"
in Multiagent Systems: A Modern Approach to Distributed Artifical Intelligence,
G. Weiss, Ed. Cambridge, MA: MIT Press, 1999, pp. 79-120.

[49] Petri Nets World, http://www.daimi.au.dk/PetriNets/
[50] The Foundation for Intelligent Physical Agents, www.fipa.org
[51] IBM, Autonomic Computing: IBM's Perspective on the State of Information

Technology, http://www.research.ibm.com/autonomic/manifesto/
[52] J. O. Kephart and D. M. Chess, "The Vision of Autonomic Computing," in IEEE

Computer, vol. 36, 2003, pp. 41-50.
[53] S. Cowley, "BPM market primed for growth," in InfoWorld, September 23 ed,

September 23, 2002.
[54] IBM, BPWS4J, http://www.alphaworks.ibm.com/tech/bpws4j
[55] WfMC, "Press Release," September 12, 2002.
[56] BPMI.org, "BPML|BPEL4WS: A Convergence Path toward a Standard BPM

Stack," August 15, 2002.
[57] J. Korhonen, L. Pajunen, and J. Puustijarvi, "Using Web Services and Workflow

Ontology in Multi-Agent Systems," presented at Workshop on Ontologies for
Multi-Agent Systems, Siguenza, Spain, 2002.

[58] G. Anthes, "Agents of Change," in Computerworld, January 27, 2003, pp. 26-27.
[59] P. Buhler, J. M. Vidal, and H. Verhagen, "Adaptive workflow = web services +

agents," presented at Proceedings of the First International Conference on Web
Services, Las Vegas, Nevada, 2003.

[60] P. Buhler and J. M. Vidal, "Towards adaptive workflow enactment using
multiagent systems," Information Technology and Management Journal: Special
Issue on Universal Enterprise Integration, vol. 6, pp. 61-87, 2005.

98

[61] J. M. Vidal, P. Buhler, and C. Stahl, "Multiagent Systems with Workflows," in
Internet Computing, vol. 8, 2004, pp. 76-82.

[62] R. J. A. Buhr and R. S. Casselman, Use case maps for object-oriented systems:
Prentice Hall, 1996.

[63] Whitestein Information Technology Group AG, Web services Agent Integration
Project, http://wsai.sourceforge.net/index.html

[64] Telecom Italia Lab, JADE (Java Agent DEvelopment Framework),
http://sharon.cselt.it/projects/jade/

[65] G. Hohpe and B. Woolf, Enterprise integration patterns : designing, building,
and deploying messaging solutions. Boston: Addison-Wesley, 2003.

[66] Agentcities Web Services Working Group, Integrating Web Services into
Agentcities Technical Recommendation, http://www.agentcities.org/rec/00006/

[67] L. Brownsword, T. Oberndorf, and C. A. Sledge, "Developing New Processes for
COTS-Based Systems," in IEEE Software, vol. 17, 2000, pp. 48-55.

[68] D. J. Mandell and S. A. McIlraith, "Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation," presented at
Proceedings of the Second International Semantic Web Conference, 2003.

[69] The OWL Services Coalition, OWL-S: Semantic Markup for Web Services,
http://www.daml.org/services/owl-s/1.0/owl-s.pdf

[70] F. Curbera and R. Khalaf, "Implementing BPEL4WS: The Architecture of a
BPEL4WS Implementation," presented at Proceedings of the Grid Workflow
Workshop at GGF-10, Berlin, Germany, 2004.

[71] webMethods, Inc., Glue Overview,
http://www.webmethods.com/solutions/wM_Glue/

[72] The Apache XML Project, Xindice Homepage, http://xml.apache.org/xindice
[73] S. A. DeLoach, "Analysis and Design of Multiagent Systems Using Hybrid

Coordination Media," presented at Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, Orlando, Florida, 2002.

[74] World Wide Web Consortium, XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/xpath

[75] W. v. d. Aalst, "The Application of Petri Nets to Workflow Managment," Journal
of Circuits, Systems, and Computers, vol. 8, pp. 21-66, 1998.

[76] M. Klusch and K. Sycara, "Brokering and Matchmaking for Coordination of
Agent Societies: A Survey," in Coordination of Internet agents : models,
technologies, and applications, A. Omicini, F. Zambonelli, M. Klusch, and R.
Tolksdorf, Eds. Berlin ; New York: Springer, 2001, pp. 197-224.

[77] Apache <Web Services /> Project, Introduction to WSIF,
http://ws.apache.org/wsif/

[78] Sun Microsystems, Inc., Java Web Services Developer Pack,
http://java.sun.com/webservices/webservicespack.html

[79] R. Monson-Haefel, J2EE Web services. Boston: Addison-Wesley, 2004.
[80] M. Nadelson, "Stay Flexible with Logic Scripts," in JavaPro, vol. 7, 2003.
[81] Queensland University of Technology, YAWL: Yet Another Workflow

Language, http://www.citi.qut.edu.au/yawl/index.jsp

99

[82] M. Wooldridge, N. R. Jennings, and D. Kinny, "The Gaia Methodology for
Agent-Oriented Analysis and Design," Autonomous Agents and Multi-Agent
Systems, vol. 3, pp. 285-312, 2000.

