
Agent-Mediated Electronic Commerce VII, 2005.

Algorithms for Distributed Winner
Determination In Combinatorial Auctions

Muralidhar V. Narumanchi and José M. Vidal

Computer Science and Engineering
University of South Carolina

Columbia, SC. 29208
narumanc@cse.sc.edu, vidal@sc.edu

Abstract. The problem of optimal winner determination in combinato-
rial auctions consists of finding the set of bids that maximize the revenue
for the sellers. Various solutions exist for solving this problem but they
are all centralized. That is, they assume that all bids are sent to a cen-
tralized auctioneer who then determines the winning set of bids. In this
paper we introduce the problem of distributed winner determination in
combinatorial auctions which eliminates the centralized auctioneer. We
present a set of distributed search-based algorithms for solving this prob-
lem and study their relative tradeoffs.

1 Introduction

In a combinatorial auction the buyers bid on bundles of items. After clearing,
each buyer receives either the entire bundle he bid on or nothing. Combinato-
rial auctions are often preferred over sequential auctions because bidders can
express complementarity and substitutability of their choices within the bids.
The optimal winner determination problem in a combinatorial auction involves
finding the set of bids that maximizes the revenue generated. This problem is
known to be an NP-Hard problem [13]. Various centralized approaches using
A∗ [14], dynamic programming [13], integer programming [1], linear program-
ming [8], and approximation techniques [18] have been proposed for determining
the optimal and approximately-optimal solution. All these algorithms assume
the existence of a centralized auctioneer who collects all the bids and computes
the set of winning bids. All these algorithms also fail to address the question of
revenue division amongst the winning goods. In this paper we investigate the
problem of distributed winner determination, that is, the determination of the
set of winning bids in the absence of a centralized auctioneer. We provide some
distributed search-based solutions as well as a negotiation-based approach which
also performs revenue division.

Our research is motivated by a vision of a future Internet-based distributed
electronic marketplace. The system would be a peer-to-peer system, without the
need for a centralized auctioneer, and would have to provide the proper incen-
tives for selfish agents to participate and perform their duties as required. For

1

2

such a system to exist we will need, among other technologies, protocols that
distribute the computational task of winner determination. But, since the agents
performing the computation have an interest in the outcome of the computation
and might try to manipulate it, we need protocols that provide the correct incen-
tives to agents and prevent them from manipulating the outcome. As such, our
problem is an instance of a distributed algorithmic mechanism design problem
[9,3]. Hence it is also essential that we address the issue of revenue distribution
among the sellers in each winning combinatorial bid, an issue that has not been
addressed by any of the centralized winner determination algorithms we have
found.

Specifically, we assume that each agent has a good for sale and receives
combinatorial bids from prospective buyers. The agents must then implement
some protocol which will lead to the distributed calculation of the set of winning
bids. We consider both the case where the agents are cooperative and when they
are selfish. A system with cooperative agents could arise if all the agents are
owned by the same entity or if the participants have previously arrived at an
off-line agreement. Selfish agents more closely simulate the selfish interests of
their human counterparts who want to maximize their profit.

We start by covering some of the past work on combinatorial auctions in sec-
tion 2. Section 3 formally defines the distributed combinatorial auctions problem.
Sections 4, 5 and 6 give a complete algorithm, a simple hill-climbing algorithm
and a partitioning-based algorithm, respectively. Section 7 provides a negotiation
based approach. Finally, section 8 shows our test results and section 9 discusses
the future work.

2 Related work

Sandholm [14] has given an algorithm for calculating the optimal set of bids in a
combinatorial auction using an implementation of A∗. Hoos and Boutilier have
provided a solution using stochastic local search [5]. Rothkopf et al. provides a
solution using dynamic programming [13]. Fujishima et al. proposes one method
to speed up the search by structuring the search space and a heuristic method
that lacks optimality guarantees but performs well on average [4]. All these
algorithms are centralized.

In the area of multiple agents operating simultaneously in a market setting,
Preist provides an algorithm for agents that participate in multiple English auc-
tions [10,11]. Wellman et. al. use a market mechanism to solve a decentralized
scheduling problem. Both solve different problems from ours. The reader new to
combinatorial auctions can read the survey provided by [2].

3 Problem Description

A distributed combinatorial auction is defined as a set goods G where gi ∈ G
and |G| = n, a set of consumers C where ci ∈ C and |C| = k, and a set of bids B
where bi ∈ B. Each bid bi is a tuple {c, g, p} where c is the consumer who placed

3

the bid, g ⊆ G is the set of goods being bid on, and p is the bid price. There is
no centralized auctioneer who collects these bids. We will use bg

i to refer to the
set of goods for bid bi, bp

i to refer to the price of bid bi and gb
i to refer to the list

of bids in which good gi is present.
Each consumer can place any number of bids1n our paper, we assume that

each consumer places a single bid.. The bid can be for either a single good or
a combination of goods. For example, consumer ci can place a bid bk on the
bundle {g1, g4, g7} for a value of v1 and another bid bj on bundle {g2} for value
v2.

Definition 1 (Feasible Allocation). An allocation A of goods is a feasible
allocation if and only if no two bids in the allocation share a good.

The set of all feasible allocations, given B, is given by F which is

F ≡ {b ⊆ B | ∀bi,bk∈A,i 6=kbg
i ∩ bg

k = ∅}. (1)

The value of an allocation A is given by

V (A) =
∑
b∈A

bp. (2)

The revenue maximizing solution A∗ is the feasible allocation that maximizes
the total price paid for all the goods, that is A∗ = arg maxA⊆F V (A).

In distributed combinatorial auctions there is no centralized auctioneer who
collects all the bids. Instead, we assume that each good for sale is represented
by an agent. When a consumer places a bid bi, the bid is passed on to bg

i which
are the agents representing the goods present in the bids2. Any agent gi can
communicate with any other agent. Thus each agent has the list of bids in which
it is present.

We further assume that a bid can be cleared if and only if all the agents in
the bid agree to clear it. The final agreement reached by the agents is final and
binding. We also assume that the agents don’t have a reservation price for their
goods and that goods can be sold only once. Finally, some of the algorithms we
will introduce make use of w(b) which is the average price per good for bid b.
That is, w(b) = bp

|bg| .
The question we try to answer is: How can the agents determine the set of

winning bids in the absence of the centralized controller?

4 Complete Search Algorithm

In a complete search the agents search over the space of all the possible alloca-
tions to determine the optimal allocation. Since there is no centralized auctioneer

1 i
2 In this paper we use the terms “agent” and “good” interchangeably.

4

Complete-Search(allocation-from-parent)

1 global-utility ← 0
2 final -allocation ← ∅
3 cleared-goods ←

S
b∈allocation-from-parent bg

4 valid-bid-pool ← {b ∈ bid-pool | ∀g∈bg b /∈ cleared-goods}
5 if child = ∅ � I am leaf.
6 then final -allocation ← allocation-from-parent ∪ arg maxb∈valid-bid-pool w(b)
7 return final -allocation
8 if valid-bid-pool = ∅
9 then final -allocation ← child .Complete-Search(allocation-from-parent)

10 else
11 for bid ∈ valid-bid-pool
12 do new -allocation ← allocation-from-parent ∪ bid
13 allocation-from-successor ← child .successor(new -allocation)
14 if V (allocation-from-successor) > V (global-utility)
15 then global-utility ← V (allocation-from-successor)
16 final -allocation ← new -allocation
17 return final -allocation

Fig. 1. Complete search algorithm. It is started by calling the root agent with
Complete-Search(∅).

that has global information, the agents must pass messages to each other and
perform the search in a distributed manner.

In this algorithm we assume that the agents possess a linear ordering such
that every agent has a child variable which points to its child, except for the
leaf node who sets this variable to ∅. Each agent also maintains the following
variables:

– bid -pool is the list of bids in which it is present,
– final -allocation is the best allocation encountered thus far in the execution,
– global -utility is the utility of the final-allocation,

Each agent adds zero-valued singleton bid for itself, even if a singleton bid is
present in the list of bids. This bid enables the agent to search for the allocations
where the agent is not cleared in any bid. The head agent (whose execution is
initiated by the controller) does not have any parent. Similarly the last agent in
the ordering does not have a child agent so it does not send a message to child
or wait for a reply. The agents search all the possible allocations to determine
the optimal winner, see Figure 1.

We can prove the correctness of this algorithm by observing that the algo-
rithm is performing a linear search of all the feasible allocations3. The agents
simply implement a depth first search over all possible bid sets except that they

3 Proofs omitted due to lack of space

5

Cleared(sender)

1 list-of -bids ← {b ∈ list-of -bids | sender /∈ bg}
2 if list-of -bids = ∅
3 then Exit � We are done. I did not sell my good.
4 Send-Accept()

Accept(sender , bid)

1 accepted [bid]← accepted [bid] ∪ sender
2 if accepted [best-bid] = best-bidg � Everyone has accepted it.
3 then for agent ∈ neighbors
4 do agent .Cleared(gi)
5 Exit � We are done. I sold my good.

Send-Accept()

1 if best-bid /∈ list-of -bids
2 then best-bid ← arg maxb∈list-of -bids w(b)
3 accepted [best-bid] = accepted [best-bid] ∪ gi

4 for agent ∈ best-bidg

5 do agent .Accept(gi, best-bid)

Hill-Climbing()

1 list-of -bids ← gb
i

2 neighbors ←
S

b∈gb
i
bg

3 best-bid ← ∅
4 Send-Accept()

Fig. 2. Hill-Climbing algorithm. It is started by having all agents execute Hill-
Climbing.

only check feasible bid sets. As such, this algorithm sequentializes the agents’
execution so it has a long running time.

5 Individual Hill-Climbing Algorithm

We now present an algorithm that creates a feasible allocation using a simple
hill-climbing approach. In this approach, the agents simply clear bids in a greedy
fashion ordered by w(b), the average value per good until there are no more bids
that can be cleared. In fact, this algorithm is but a variation of the algorithm
given in [15] for coalition formation.

The algorithm proceeds as follows: Each agent finds the bid in its list-of -bids
which has the highest average value. The agent then sends an Accept message
to the goods that are present in this bid. The agent clears this bid only when
it receives an Accept message from all the goods in this bid. This ensures

6

that a bid is cleared if and only if all the goods in the bid agree to clear it.
When an agent clears a bid, it sends a Cleared to all its neighbors—the set
of agents with which it shares some bid—telling them that it has cleared and
all bids including the agent should be dropped from consideration. The agents
that receive a Cleared message from agent sender delete the bids sender b.
The agents stop execution when they clear a bid or the list-of -bids is empty. See
Figure 2 for the complete algorithm.

It is easy to show that this algorithm always finds a feasible allocation and
never enters a deadlock as it only considers feasible solutions. However, the
algorithm is not guaranteed to converge to the global optimal allocation as it
can get stuck at a local maxima by clearing a bid that has high w(b) but is not
to be found in the optimal allocation.

6 Partitioning based search

The greedy algorithm produces a non-optimal solution in polynomial time and
the complete search provides the optimal solution in exponential time. Although
the complete algorithm determines the optimal winner in a distributed manner,
there is no parallelism as only one agent is active at any instant. The agents in
the hill-climbing algorithm execute in parallel but they can get stuck at local
maxima. Hence we now present a partitioning based approach. Our main moti-
vation for proposing this approach is to obtain solutions whose quality is better
than solutions produced by greedy approach but where the execution is compa-
rable to the time taken by the greedy algorithm. In this approach, we partition
the goods and the agents perform a complete search within the group (while
ignoring the bids outside the partition). The algorithm proceeds as follows:

1. The controller partitions the agents into different groups. The controller also
selects the headAgent of every group.

2. Each agent is provided with its partition information (the linear ordering in
its partition).

3. Each agent deletes the bids that contain any good not present in its partition.
4. The controller initiates the Complete-Search algorithm in every partition.

In order to explain how the controller partitions the agents, we first define
the following:

Definition 2 (Graphical representation of Combinatorial Auction). A
combinatorial auction can be represented as a graph G = (N,E), where N is the
set of nodes and E is the set of edges. Each node corresponds to a good on sale.
An edge exists between any two nodes if they are present in the same bid.

It is not always possible to divide the goods into disjoint partitions (where
there is no edge between partitions). There could be bids on goods in different
partitions. Currently, we use a greedy approach to address this issue. The agents
do not consider the bids that have a good that is not present in its partition.
This approach will result in an optimal solution only if the ignored bids are not
part of the optimal allocation.

7

Cleared(j)

1 list-of -bids ← {b ∈ list-of -bids | j /∈ b}
2 Update-Best-Bid

Ready(j, bid)

1 ready [j]← bid
2 if ∀g∈bidg ready [g] = bid
3 then for g ∈ neighbors
4 do g.Cleared(i)
5 Exit � Cleared my good with bid .

Tell-Ask-Value(j, val)

1 ask -value[j]← val
2 Update-Best-Bid()

Fig. 3. Modified MCP message receiving procedures.

7 Negotiation Based Approaches

The search-based approaches provided in the earlier sections ignored the issue of
splitting revenue among multiple sellers. That is unrealistic in cases where, for
example, one agent has a good that is in much more demand than all the other
goods in the combinatorial bids that it is in. This problem has been identified
for a long time by sociologists studying social networks [17], and by economics
studying social networks [6] (note that their networks are different, even if they
refer to them by the same name). We use two approaches for addressing the
issue of revenue division. The first technique is inspired from the well-studied
monotonic-concession protocol [12] and in the second approach we borrow results
from sociological network exchange theory [17].

7.1 Modified Monotonic Concession Protocol

In this section we propose a modified version of the Monotonic Concession
Protocol (MCP). In MCP the two negotiating nodes alternately propose a deal
that allocates the revenue between the agents. A deal d consists of the tuple
(p1, p2) such that p1 + p2 = bp, where p1 is the amount agent 1 gets and p2 is
what agent 2 gets. If the receiving node gets an offer where it gets more than
or equal to what it had asked for in the last round the protocol terminates. If
the receiving node does not agree to the offer, in next round it should propose a
new deal, subject to the condition that its payment for the other agent must be
strictly higher than in the previous deal. This protocol will either converge to a
solution or terminate without agreements if time runs out. Unfortunately, MCP
can only be used for bi-party negotiation.

We propose a modified-MCP (mMCP) that can be used for simultaneous
multi-party negotiation for the division of the revenue. In it, each agent maintains

8

Update-Best-Bid()

1 for b ∈ list-of -bids
2 do demand [b]←

P
g∈bg ask -value[g]

3 ready-to-clear ← {b ∈ list-of -bids | demand [b] ≤ bp}
4 if ready-to-clear 6= ∅
5 then
6 Sort ready-to-clear first by demand and second by bid id.
7 best-bid ← first(ready-to-clear)
8 for agent ∈ best-bidg

9 do agent .Ready(i, best-bid)
10

mMCP()

1 for j ∈ G
2 do ask -value[j]←∞
3 neighbors ←

S
b∈gb

i
bg

4 list-of -bids ← gb
i

5 for ask -value[i]← maxb∈gb
i
bp to 0 step 1

6 do for agent ∈ neighbors
7 do agent .Tell-Ask-Value(i, ask -value[i])
8 Wait for all neighbors to tell me their ask -value
9 Exit � Unable to clear my good.

Fig. 4. Modified MCP main procedures.The algorithm starts by having all agents
execute mMCP.

an ask -value which is initialized to the maximum the agent can expect to get
given the bids it is involved in. The algorithm then proceeds as follows:

1. At each time-step, the agents send their ask -value to other agents with which
it is involved in negotiation. As in MCP, the agents have to reduce their
ask -value from what they demanded in the previous round.

2. Upon receiving the ask -value of its neighbors the agent checks if it can still
get its ask -value for the bids in which it is present, that is,

∑
i∈bg ask -valuei ≤

bp.
3. If the agent can get its ask -value on any bid, it clears the bid and it informs

the other agents with which it is negotiating that it is out of negotiations.

Just like in MCP, since every node has to lower its ask -value in successive
iterations, the nodes converge to a solution. However, a problem with the mMCP
is that it can cause some revenue to be left unallocated, which happens when
the revenue is not evenly divisible by the number of participants given the decre-
ment step (which is 1 in the algorithm as shown but can be set to any positive
constant). See Figures 3 and 4 for the detailed algorithm.

9

7.2 Sociological network exchange theory

Sociological Network Exchange Theory (NET) studies the effects of power on the
outcomes of exchanges between people in power relation-networks. In a network,
the nodes are the participants and any two nodes can negotiate (for dividing a
resource or exchanging goods) if they have an edge between them. The edges
represent the amount the agents are trying to divide. Based on extensive studies
with human subjects, Sociologists have been able to identify equations that can
predict the outcome of human negotiations in particular networks.

Specifically, in [17, Chapter 2] Willer presents an equation which predicts
that an exchange occurs on any relation between two nodes at equi-resistance.
For example, if nodes A and B want to divide some resource between them
then the amounts that A and B will agree on (PA and PB respectively) can be
obtained by solving equations (3) and (4) for PA and PB . In these equations,
P con

A is the amount that A makes if it has a confrontation with B (i.e., it doesn’t
exchange with B) and Pmax

A is the maximum that A can make from exchange
with B.

Pmax
A − PA

PA − P con
A

=
Pmax

B − PB

PB − P con
B

(3)

PA + PB = TotalRevenue (4)

Equation (3) tells us that the resistance of A must be equal to the resistance of
B. Equation (4) tells us that the sum of the payments must be equal to the total
revenue. We can easily generalize these equations to n agents by simply adding
another resistance equation for each agent and insisting that all resistances must
be the same4. In all cases we end up with n + 1 equations of n variables, so we
can solve for the payments.

The iterated equi-resistance method [17] tells us to start out with initial
payments for the agents equal to an even distribution of the total revenue and
then iteratively solve the resistance equations for each agent in order to find
its payment given those of the other agents. We are to continue doing this for
several rounds or until the system stabilizes. At some point, the agents decide
to take the deal (bid) for which they are to receive the highest payment.

This method is easy to implement in a simulator. All we need to do is at
each time step calculate the agents’ payments by solving the equi-resistance
equations. We can then continue to do this until either the payments stabilize
or we detect that they have entered a cycle. This type of implementation is the
one we have used for the test results in section 8.

We do not yet have a distributed algorithm that can implement this method.
One problem is the fact that the calculation of an agent’s payments requires

4 However, we must stress that studies with human subjects only consider binary
negotiations. As such, there is no empirical evidence to suggest that human behavior
can be predicted using the equi-resistance equation for negotiations among three or
more agents.

10

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 10 20 30 40 50 60

V
al

ue

Number of Goods

complete
greedy
part. 4
part. 8

part. 16
part. 32
part. 64

Fig. 5. Value of the winning set of bids.

6e+01
3e+02
1e+03
4e+03
2e+04
7e+04
3e+05
1e+06
4e+06

 10 20 30 40 50 60

M
es

sa
ge

s P
as

se
d

Number of Goods

complete
greedy
part. 4
part. 8

part. 16
part. 32
part. 64

Fig. 6. Total number of messages sent.

knowledge of the P con values for all the agent’s neighbors. It is unclear to us
how an agent might come to acquire this knowledge if we assume that all agents
are selfish. Still, since this method is predicts the behavior of humans, who do
not know their opponents’ P con values, we are confident that we will come up
with an appropriate distributed algorithm in the near future.

8 Preliminary Results

The input data for our algorithms was generated using CATS [7] using random
distribution. Figure 5, compares the value of allocation for the three search
algorithms. The first point on x-axis consists of 10 goods and 50 bids (thereafter
the goods and bids increment by 5 and 50 respectively). The values shown in the
figure are the average of 25 runs. As expected, the complete algorithm computes

11

3e+01

1e+03

3e+04

1e+06

 10 20 30 40 50 60

Ti
m

e

Number of Goods

complete
greedy
part. 4
part. 8

part. 16
part. 32
part. 64

Fig. 7. Total time spent by algorithm.

the solution with best revenue. Similarly, figures 6 and 7 compare the messages
passed and the execution time (in clock ticks5) respectively for the three search
algorithms. The complete search algorithm takes exponential time O(n|b|) to
provide the optimal allocation. The greedy algorithm takes linear time O(|b|),
where n is the number of goods and |b| is the number of bids.

Figure 8 shows the value of the allocations produced by mMCP and iterated-
resistance equations. The simulations were run on randomly generated data on
NetLogo [16]. In each run, the protocol and the iterations were run for 10 cy-
cles. Even though our solution using resistance equations is not guaranteed to
converge, the results are very promising because the algorithm seems to produce
high-valued allocations (even though suboptimal) for many cases and always in
a short period of time.

9 Discussion and Future Work

We have presented the new problem of distributed winner determination in com-
binatorial auctions which is an instance of a distributed search problem and,
when selfish agents are assumed, is an instance of a distributed algorithmic
mechanism design problem. We presented and compared several algorithms for
solving the problem under various circumstances. Our results are summarized
in Table 1.

The complete algorithm performs a linear search to determine the optimal
winner. This algorithm works in the absence of a centralized auctioneer. However,
the running time will be of the order of total number of feasible allocations. This
is because, even though it is distributed, the agents do not execute in parallel. At
any given time only one agent is performing the computation. The hill climbing

5 The clock tick was chosen to be long enough for the agents to process and execute
a single iteration of the search algorithm.

12

0

20

40

60

80

100

120

140

 1 2 3 4 5 6 7 8 9 10

V
al

ue

Run #

optimal
Iterated-Resistance

Modified MCP

Fig. 8. Value of the solution found by mMCP, iterated-resistance equations, and
the global optimum.

Table 1. Algorithm Comparison

Algorithm Opti-
mal?

Agents Time Revenue
Split?

Always
Converges?

Complete
Search

Yes Coopera-
tive

Exponential No Yes

Hill Climbing No Coopera-
tive

Linear: O(|b|) No Yes

Partitioning No Coopera-
tive

Dependent on
partition size

No Yes

mMCP No Selfish Linear: O(|b|) Yes Yes

Equiresis-
tance

No Selfish Not defined Yes No

algorithm on the other hand does not guarantee an optimal solution but performs
much faster. More tests need to be done in order to determine the expected
quality of the solution found by the hill climbing algorithm.

The partitioning based approach ignores the bids outside partitions. This re-
sults in sub-optimal solution if the ignored bids are part of the optimal solution.
One of the reasons our partitioning approach performed worse than hill-climbing
(fig. 5) is that the goods were randomly partitioned. One way to improve the
quality of solution in the general case would be to partition the strongly con-
nected goods together, i.e., try to put goods that have lot of common bids in one
partition. We intend to extend our work to create dynamic distributed partition-
ing algorithms that can tailor their partitioning strategy to the characteristics
of the set of bids under consideration.

The mMCP that we proposed is again similar to a greedy approach. It can
converge to a local maximum and is always guaranteed to converge. We are
currently testing it to see if we can predict what are the characteristics of the

13

solution that it converges to. We are also studying modifications of the algorithm
that force convergence to optimal as well as the tradeoffs associated with using
different step sizes and other shortcuts for faster convergence.

Our study of the applicability of the NET equations is preliminary. We note
that these equations can be applied only if agents’ know their neighbors’ Pcon

values—an unrealistic assumption in most cases. Another problem we face is the
fact that the algorithm does not always converge. We are studying possible ways
of either forcing convergence or determining a priori if the problem is one that
will converge. Still, we are attracted to the fact that the equi-resistance equa-
tions have been shown to model the behavior of humans. We believe that the
widespread adoption of a peer-to-peer agent-based marketplace requires agents
that behave as humans. That is, if a user notices his agent either gives up negoti-
ation too soon or is too aggressive in its negotiations then the user will likely not
use that system. We see the possibility of a whole research program dedicated to
building agents that negotiate, not necessarily optimally, but as humans would.

In summary, the problem of distributed winner determination in combinato-
rial auctions is an important problem whose solution will enable the construction
of sophisticated peer-to-peer marketplaces. It is also an interesting combination
of distributed computation and distributed algorithmic mechanism design. Our
algorithms and analysis are a first step towards the understanding of this prob-
lem and its ramifications.

References

1. Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer programming for
combinatorial auction winner determination. In Proceedings of the Fourth Inter-
national Conference on MultiAgent Systems, pages 39–46. IEEE, 2000.

2. Sven de Vries and Rakesh V. Vohra. Combinatorial auctions: A survey. INFORMS
Journal on Computing, 15(3):284–309, Summer 2003.

3. Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechanism design:
Recent results and future directions. In Proceedings of the 6th International Work-
shop on Discrete Algorithms and Methods for Mobile Computing and Communica-
tions, pages 1–13. ACM Press, New York, 2002.

4. Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. Taming the computa-
tional complexity of combinatorial auctions: Optimal and approximate approaches.
In Proceedings of the Sixteenth International Joint Conference on Artificial Intel-
ligence, pages 548–553. Morgan Kaufmann Publishers Inc., 1999.

5. Holger H. Hoos and Craig Boutilier. Solving combinatorial auctions using stochas-
tic local search. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial Intel-
ligence, pages 22–29. AAAI Press / The MIT Press, 2000.

6. Sham M. Kakade, Michael Kearns, Luis E. Ortiz, Robin Pemantle, and Siddharth
Suri. Economic properties of social networks. In Lawrence K. Saul, Yair Weiss,
and Léon Bottou, editors, Advances in Neural Information Processing Systems 17.
MIT Press, Cambridge, MA, 2005.

7. Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a univer-
sal test suite for combinatorial auction algorithms. In Proceedings of the 2nd

http://jmvidal.cse.sc.edu/lib/andersson00a.html
http://jmvidal.cse.sc.edu/lib/andersson00a.html
http://jmvidal.cse.sc.edu/lib/vries03a.html
http://jmvidal.cse.sc.edu/lib/feigenbaum02a.html
http://jmvidal.cse.sc.edu/lib/feigenbaum02a.html
http://jmvidal.cse.sc.edu/lib/fujishima99a.html
http://jmvidal.cse.sc.edu/lib/fujishima99a.html
http://jmvidal.cse.sc.edu/lib/hoos00a.html
http://jmvidal.cse.sc.edu/lib/hoos00a.html
http://jmvidal.cse.sc.edu/lib/kakade05a.html
http://jmvidal.cse.sc.edu/lib/leyton-brown00a.html
http://jmvidal.cse.sc.edu/lib/leyton-brown00a.html

14

ACM conference on Electronic commerce, pages 66–76. ACM Press, 2000. http:

//cats.stanford.edu.
8. Noam Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of

the ACM Conference on Electronic Commerce, pages 1–12, 2000.
9. Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Eco-

nomic Behavior, 35:166–196, 2001.
10. Chris Preist, Claudio Bartolini, and Ivan Phillips. Algorithm design for agents

which participate in multiple simultaneous auctions. In Agent-Mediated Elec-
tronic Commerce III, Current Issues in Agent-Based Electronic Commerce Systems
(includes revised papers from AMEC 2000 Workshop), pages 139–154. Springer-
Verlag, 2001.

11. Chris Preist, Andrew Byde, and Claudio Bartolini. Economic dynamics of agents
in multiple auctions. In Proceedings of the fifth international conference on Au-
tonomous agents, pages 545–551. ACM Press, 2001.

12. Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter. The MIT Press,
Cambridge, MA, 1994.

13. Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad. Computationally
manageable combinational auctions. Management Science, 44(8):1131–1147, 1998.

14. Tuomas Sandholm. An algorithm for winner determination in combinatorial auc-
tions. Artificial Intelligence, 135(1-2):1–54, February 2002.

15. Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition
formation. Artificial Intelligence, 101(1-2):165–200, May 1998.

16. Uri Wilensky. NetLogo: Center for connected learning and computer-based mod-
eling, Northwestern University. Evanston, IL, 1999. http://ccl.northwestern.

edu/netlogo/.
17. David Willer, editor. Network Exchange Theory. Praeger Publishers, Westport

CT, 1999.
18. Edo Zurel and Noam Nisan. An efficient approximate allocation algorithm for

combinatorial auctions. In Proceedings of the ACM Conference on Electronic Com-
merce, 2001.

http://cats.stanford.edu
http://cats.stanford.edu
http://jmvidal.cse.sc.edu/lib/nisan00a.html
http://jmvidal.cse.sc.edu/lib/nisan01a.html
http://jmvidal.cse.sc.edu/lib/preist01a.html
http://jmvidal.cse.sc.edu/lib/preist01a.html
http://jmvidal.cse.sc.edu/lib/preist01b.html
http://jmvidal.cse.sc.edu/lib/preist01b.html
http://jmvidal.cse.sc.edu/lib/rules:of:encounter.html
http://jmvidal.cse.sc.edu/lib/rothkopf98a.html
http://jmvidal.cse.sc.edu/lib/rothkopf98a.html
http://jmvidal.cse.sc.edu/lib/sandholm02b.html
http://jmvidal.cse.sc.edu/lib/sandholm02b.html
http://jmvidal.cse.sc.edu/lib/shehory98a.html
http://jmvidal.cse.sc.edu/lib/shehory98a.html
http://jmvidal.cse.sc.edu/lib/netlogo.html
http://jmvidal.cse.sc.edu/lib/netlogo.html
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://jmvidal.cse.sc.edu/lib/willer99b.html
http://jmvidal.cse.sc.edu/lib/zurel01a.html
http://jmvidal.cse.sc.edu/lib/zurel01a.html

