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Abstract 

Negotiation among multiple agents remains an impor- 
tant topic of research in Distributed Artificial Intel- 
ligence (DAI). Most previous work on this subject, 
however, has focused on bilateral negotiation, deals 
that are reached between two agents. There has also 
been research on n-agent agreement which has consid- 
ered “consensus mechanisms” (such as voting), that 
allow the full group to coordinate itself. These group 
decision-making techniques, however, assume that the 
entire group will (or has to) coordinate its actions. 
Sub-groups cannot make sub-agreements that exclude 
other members of the group. 
In some domains, however, it may be possible for ben- 
eficial agreements to be reached among sub-groups of 
agents, who might be individually motivated to work 
together to the exclusion of others outside the group. 
This paper considers this more general case of n-agent 
coalition formation. We present a simple coalition for- 
mation mechanism that uses cryptographic techniques 
for subadditive Task Oriented Domains. The mecha- 
nism is efficient, symmetric, and individual rational. 
When the domain is also concave, the mechanism also 
satisfies coalition rationality. 

Introduction 
In multi-agent domains, agents can often benefit by 
coordinating their actions with one another; in some 
domains, this coordination is actually required. In two- 
agent encounters, the situation is relatively simple: ei- 
ther the agents reach an agreement (i.e., coordinate 
their actions), or they do not. With more than two 
agents, however, the situation becomes more compli- 
cated, since agreement may be reached by sub-groups. 

The process of agent coordination, and of reach- 
ing agreement, has been the focus of much research 
in Distributed Artificial Intelligence @AI). The gen- 
eral term used for this process is “negotiation” (usu- 
ally in the 2-agent case) (Conry, Meyer, & Lesser 1988; 
Kraus & Wilkenfeld 1991; Kreifelts & von Martial 
1990; Kuwabara & Lesser 1989; Sycara 1988; Zlotkin & 
Rosenschein 1993a; Rosenschein & Zlotkin 1994), and 
“reaching consensus” (in the n-agent case) (Ephrati 
& Rosenschein 1991; 1993). Both approaches, though 
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dealing with different numbers of agents, share one un- 
derlying assumption: the agreement, if it is reached, 
will include all relevant members of the encounter. 
Thus, even in the n-agent case where a voting pro- 
cedure might enable consensus to be reached, the 
entire group will be bound by the group decision. 
Sub-groups cannot make sub-agreements that exclude 
other members of the group. Interesting variations on 
these approaches, which nonetheless remain bilateral in 
essence, are the Contract Net (Smith 1978), which al- 
lows bilateral agreement in n-agent environments, and 
bilateral negotiation among two sub-groups discussed 
in (Kraus, Wilkenfeld, & Zlotkin 1995). 

In some domains, however, it may be possible for 
beneficial agreements to be reached among sub-groups 
of agents, who might be individually motivated to 
work together to the exclusion of others outside the 
group. Voting procedures are not applicable here, be- 
cause the full coalition may not be able to satisfy 
all its members, who are free to create more satis- 
fying sub-coalitions. This paper considers this more 
general case of n-agent coalition formation (recent 
pieces of work on similar topics are (Ketchpel 1993; 
Shechory & Kraus 1993)). Building on our previous 
work (Zlotkin & Rosenschein 1993a), which dealt only 
with bilateral negotiation mechanisms, we here analyze 
the kinds of n-agent coordination mechanisms that can 
be used in specific classes of domains. 

Coalitions 
An Example---The Tileworld 
Consider the following simple example in a multi-agent 
version of the Tileworld (Pollack & Ringuette 1990) 
(see Figure 1). A single hole in the grid is represented 
by a framed letter (such as a . Each agent’s position 

P is marked by its name (sue as Al). Tiles are repre- 
sented by black squares (H) inside the grid squares. 

Agents can move from one grid square to another 
horizontally or vertically (unless the square is occupied 
by a hole-multiple agents can be in the same grid 
square at the same time). When a tile is pushed into 
any grid square that is part of a hole, the square is 
filled and becomes navigable as if it were a regular 
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Figure 1: ‘I ‘hree-Agent Encounter in the Tileworld 

grid square. The domain is static except for changes 
brought about by the agents. 

Agent l’s goal is to fill hole q  , while agents 2 and 

hole each agent negs to &? 7 steps. 
3 need to fill holes b and c respectively To fill its 

Agents can 
cooperate and help each other to reduce the cost of 
achieving their goals. There are several kinds of joint 
plans that the agents can execute that will reduce the 
cost of achieving their goals. Some of those joint plans 
are listed in the table on the right side of Figure 1. 

The coalition structure { 1,3},{2} means that there 
are two coalitions, one consisting of the agents 1 and 
3, and the other consisting only of agent 2. When two 
agents form a coalition it means that they are coor- 
dinating their actions. The utility of an agent from a 
joint plan that achieves his goal is the difference be- 
tween the cost of achieving his goal alone and the cost 
of his part of the joint plan (Zlotkin & Rosenschein 
1991). 

The coalition that gives the maximal total utility is 
the full coalition that involves all 3 agents, where they 
all coordinate their actions to mutual benefit (total 
utility is 17). ’ Although this full coalition is globally 
optimal, Agent l’s utility is only 4, and he would prefer 
to reach agreement with either agent 2 or agent 3 (with 
utility of 6), but not with both. 

The agents in the above scenario are able to trans- 
fer utility to each other, but in a non-continuous way. 
Agent 1, for example, can “transfer” to agent 2 seven 
points of utility by achieving his goal. He cannot, how- 
ever, transfer an arbitrary amount. Without this ar- 
bitrary, continuous utility transfer capability, agent 1 
will prefer to form a coalition with either one of the 
other two agents, rather than with both. 

Coalition Games 
The definitions below are standard ones from coalition 
theory (Kahan & Rapoport 1984). 

Definition 1 A coalition game with transferable util- 
ity in normal characteristic form is (N, v) where: N = 

‘The joint plan where agent 1 achieves both 2 and 3’s 
goals (with cost of 3), while either agent 2 or 3 achieves l’s 
goal (each with expected cost of i). 
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Table 1: Possible Coalitions in the Tileworld Example 

w,..., n) set of agents, and v: 2N + lR. For each 
coalition which is a subset of agents S E N, v(S) is 
the value of the coalition S, which is the total utility 
that the members of S can achieve by coordinating and 
acting together. 

The Tileworld example from Figure 1 can be de- 
7~;;; as a coalition game (N, v) such that: v( { 1)) = 

= ~((3)) = v({2,3}) = 0, v({1,2)) = 
v({L3)) = 12, and v({1,2,3}) = 17. 

Note that the value derived by a coalition is inde- 
pendent of the coalition structure. A given coalition is 
guaranteed to get a certain utility, regardless of what 
coalitions are formed by the other agents. In the Tile- 
world domain this assumption is not necessarily true- 
though it is true in the example we gave above. We 
will see below that in Task Oriented Domains (Zlotkin 
& Rosenschein 1993a) this definition of the coalition 
value is directly applicable. 

Task Oriented Domains 
Definition IE A Task Oriented Domain (TOD) is a 
tuple < T,d,c > where: 7 is the set of all possible 
tasks; A = {Al,. . .A,) is an ordered list of agents; c 
is a monotonic function c: [27] + lR+. [27] stands for 
all the finite subsets of 7. For each finite set of tusks 
X C 7, c(X) is the cost of executing all the tusks in 
X by a single agent. c is monotonic, i.e., for any two 
finite subsets X E Y C 7, c(X) < c(Y); c(0) = 0. 

An encounter within a TOD < 7,d, c > is an or- 
dered list (Tl , . . . , T,) such that for all k E { 1 . . . n), Tk 
is a finite set of tusks from 7 that Ak needs to achieve. 
Tk will also be called Ak ‘s goal. 

The Postmen Domain (Zlotkin & Rosenschein 1989) 
is one classic example of a TOD. In this domain, each 
agent is given a set of letters to deliver to various nodes 
on a graph; starting and ending at the Post Office, 
the agents are to traverse the graph and make their 
deliveries. Agents can reach agreements to carry one 
another’s letters, and save on their travel. 

In multi-agent Task Oriented Domains, agents can 
reach agreements about the re-distribution of tasks 
among themselves. When there are more than two 
agents, the agents can also form coalitions such that 
tasks are re-distributed only among the members of 
the same coalition. When mixed deals are being used 
by agents (those are agreements where agents settle on 
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a probabilistic distribution of tasks), it can be useful 
to conceive of the interaction as a coalition game with 
transferable utility. The use of probability smooths 
the discontinuous distribution of tasks, and therefore 
of utility. However, utility is still not money in a 
classic TOD; utility is the difference between the cost 
of achieving your goal alone, and the cost of your part 
of the deal. Therefore, there is an upper bound on the 
amount of utility that each agent can get-no agent 
can get more utility than his stand-alone cost. As we 
shall see below, however, our model never attempts to 
violate this upper bound on utility. 

Subadditive Task Oriented 

In some domains, by combining sets of tasks we may 
reduce (and can never increase) the total cost, as com- 
pared with the sum of the costs of achieving the sets 
separately. The Postmen Domain, for example, has 
this property, which is called subadditivity. If X and 
Y are two sets of addresses, and we need to visit all of 
them (XUY), th en in the worst case we will be able to 
do the minimal cycle visiting the X addresses, then do 
the minimal cycle visiting the Y addresses. This might 
be our best plan if the addresses are disjoint and de- 
coupled (the topology of the graph is against us). In 
that case, the cost of visiting all the addresses is equal 
to visiting one set plus the cost of visiting the other set. 
However, in some cases we may be able to do better, 
and visit some addresses on the way to others. 

Definition 3 TOD < 7, d, c > will be called subad- 
ditive if for all finite sets of tusks X, Y E 7, we have 
c(X u Y) 5 c(X) + c(Y). 

Coalitions in Subadditive Task Oriented 
Domains 

In a TOD, a group of agents (a coalition) can coordi- 
nate by redistributing their tasks among themselves. 
In a subadditive TOD, the way to minimize total cost 
is to aggregate as many tasks as possible into one ex- 
ecution batch (since the cost of the union of tasks is 
always less than the sum of the costs). Therefore, the 
maximum utility that a group can derive in a subaddi- 
tive TOD is the difference between the sum of stand- 
alone costs and the cost of the overall union of tasks. 
This difference will be defined to be the value of the 
coalition. 

Definition 4 Given an encounter (Tl, . . . , Tn) in u 
subadditive TOD < 7,A, c >, we will define the coali- 
tion game induced by this encounter to be (N,v), 
such that N = (1,2,... 
CicS ‘(El - ‘(UieS z)* 

,n), and QS C N, v(S) = 

Superadditive Coalition Games 

It seems intuitively reasonable that agents in a coali- 
tion game should not suffer by coordinating their ac- 
tions with a larger group. In other words, if you take 

two disjoint coalitions, the utility they can derive to- 
gether should not be less than the sum of their separate 
utilities (at the worst, they could “coordinate” by ig- 
noring each other). This property (which, however, is 
not always present) is called superadditivity. 

efinition 5 A coalition game with transferable util- 
ity in normal characteristic form (N, v) is superaddi- 
tive if for any disjoint coalitions S, V c N, S n V = 8, 
then v(S) + v(V) < v(S U V). 
TPaeorern 1 Any encounter (Tl, . . . , Tn) in a subad- 
ditive TOD induces a superadditive coalition game 
(N, v). 
Proof. Proofs can be found in (Zlotkin & Rosenschein 
1993b). •I 

Mechanisms for Subadditive TO 
We would like to set up rules of interaction such that 
communities of self-interested agents will form benefi- 
cial coalitions. There are several attributes of the rules 
of interaction that might be important to the design- 
ers of these self-interested agents (as discussed further 

ents should not squander re- 
sources when they come to an agreement; there should 
not be wasted utility when an agreement is reached. 
Since the coalition game is superadditive it means that 
the sum of utilities of the agents should be equal to 
VW). 
2. Stability: Since the coalition game is superaddi- 
tive, the full coalition can always satisfy the efficiency 
condition, and therefore we will aSsume that the full 
coalition will be formed. The stability condition then 
relates to the payoff vector (ui, . . . , un) that assigns to 
each agent i a utility of ui. There are three levels of sta- 
bility (rationality) conditions: individual, group, and 
coalition rationality. Individual Rationality means that 
that no individualagent would like to opt out of the 
full coalition; i.e., ui 2 v( {i}) = 0. Group Rationality 
(Pareto Optimulity) means that the group as a whole 
would not prefer any other payoff vector over this vec- 
tor; i.e., Cy=, Ui = v(n). This condition is equivalent 
to the efficiency condition above. Coalition Rutionul- 
ity means that no group of agents should have an in- 
centive to deviate from the full coalition and create a 
sub-coalition; i.e., for each subset of agents S E N, 
c* 
3. ‘P 

Ui > V(S). 
ln-&&ty: It will be desirable for the overall in- 

teraction environment to make low computational de- 
mands on the agents, and to require little communica- 
tion overhead. 
4. Distribution: Preferably, the interaction rules will 
not require a central decision maker, for all the obvious 
reasons. We do not want our distributed system to 
have a performance bottleneck, nor collapse due to the 
single failure of a special node. 
5. Symmetry: Two symmetric agents should be as- 
signed the same utility by the mechanism (two agents 
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;iAd 
Figure 2: Example of an Unstable Encounter 

are symmetric when they contribute exactly the same 
value to all possible coalitions). 

We will develop a mechanism for subadditive TQDs 
such that agents agree on the all-or-nothing deal, in 
which each agent has some probability of executing all 
the tasks. The question that we will try to answer now 
is “What should be the division of utilities among all 
agents in the full coalition?” 

Coalition rationality is the strongest stability con- 
dition, and implies individual rationality and group 
rationality.’ However, this condition is very strong, 
and cannot always be satisfied. 

Consider the encounter from a three-agent Postmen 
Domain that can be seen in Figure 2. 

The Post Office is in the center. The length of 
each arch is 1. The encounter is (7’1 = {a, d}, T2 = 
{b, e}, Ts = {c, f}).3 Each agent can deliver his letters 
with a cost of 4. The cost of delivering the union of 
the letters of any two agents is 5. Therefore, the value 
of any two agents’ coalition is (2 * 4) - 5 = 3. The cost 
of delivering all the letters is 8. Therefore, the value of 
the full coalition is (3 * 4) - 8 = 4. We would like to find 
a payoff vector (~1, ~2, ’11s) that satisfies the following 
conditions: 
(1) v’i E {1,2,3) ui 2 u({i}) = 0; 
(2) Vi # j E {1,2,3) Ud + Uj > ?J({i,j)) = 3; 
(3) ‘111 + U2 + u3 2 w({l, 2,3})= 4. 

Since the full coalition is also the maximal valued 
configuration, condition (3) is satisfied by equality (i.e., 
Ul -I- U2 i- U3 = 4). If we add up all the inequalities, we 
will have ur +UZ+U~ >= 4$, which cannot be satisfied. 
This means that in any division of the value of the full 
coalition among the agents there will be at least two 
agents that will prefer to opt out of the coalition and 
form a sub-coalition! For example, assume that the full 
coalition is formed with payoff vector (1, 1,2). Agents 
1 and 2 can get more by forming a coalition (i.e., by 
excluding agent 3 from the coalition). The new payoff 

2All payoffs that satisfy the coalition rationality condi- 
tions are called the core of the game in the game theory 
literature. See, for example, (Kahan & Rapoport 1984). 

3Agent 1 has to deliver letters to addresses a and d, 
agent 2 has to deliver letters to addresses b and e, and 
agent 3 has to deliver letters to addresses c and f. 

vector can then be (11, li, 0). This coalition and payoff 
vector is also not sta % le, since now agent 3 can tempt 
agent 2 (for example) to form a coalition with 3 by 
promising 2 more utility. The new payoff vector can 
then be (0,2,1). H owever, now agent 1 can convince 
the two agents that they all can do better by forming 
the full coalition again. The new payoff vector can then 
be (i, 2i, 14). This coalition is also not stable. . . 

S hapley Value 
The Shapley Value (Shapley 1988; Young 1988) for 
agent i is a weighted average of all the utilities that 
i contributes to all possible coalitions. The weight of 
each coalition is the probability that this coalition will 
be formed in a random process that starts with the 
one-agent coalition, and in which this coalition grows 
by one agent at a time such that each agent that joins 
the coalition is credited with his contribution to the 
coalition. The Shapley Value is actually the expected 
utility that each agent will have from such a random 
process (assuming any coalition and permutation is 
equally likely). 

efinition 6 Given a superadditive coalition game 
with transferable utility in normal characteristic form 
(Iv, v), the Shapley Value is defined to be: ui = 

c (n-IsI-l)!pI! 
SCN,ieS tl! v(S u {i}) - v(S). 

The Shapley Value satisfies the efficiency, symmetry, 
and individual rationality conditions (Shapley 1988; 
Kahan & Rapoport 1984). However, it does not nec- 
essarily satisfy the coalition rationality condition. 
Theorem 2 The Shapley Value is also: ui = c(Ti) - 

c SCIV,i@S c(S), i.e., 
(n-‘s;;l)!‘s’!At(S). Ai, - c(S u {i}) - 
the additional cost that agent i adds to a 

coalition S. 

Agent i’s Shapley Value is the difference between the 
cost of its goal and its weighted average cost contri- 
bution to all possible coalitions. The cost that agent 
i can contribute to a coalition is bounded by c(T;). 
Therefore, the average contribution is also bounded by 
c(Ti), which also means that the Shapley Value is pos- 
itive (i.e., satisfies the individual rationality contribu- 
tion) and bounded by c(T;) (which is also the maximal 
utility that an agent can get according to our model). 
Thus (as we promised above in Section ), our model 
never attempts to transfer to an agent more utility 
than he can get by simply having his tasks performed 
by others. 

echanisms for Subadditive TODs 

We can define a Shapley Value-based mechanism for 
subadditive TODs that forms the full coalition and di- 
vides the value of the full coalition using the Shap- 
ley Value. The mechanism simply chooses the follow- 
ing (all-or-nothing) mixed deal, (pi, . . . , pn), such that 

Pi = 

c (n-p+-l)!pI!A~(S> 
.SCN,ieS 

c(N) 
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Theorem 3 The above all-or-nothing deal is well- 
defined, (i-e., Vi E N: 0 5 pi 5 1; Cy=, pi = 1) and 
gives each agent i an expected utility that is exactly the 
Shapley Value ui. 

Evaluation of the Mechanism 

The above mechanism gives each agent its Shapley 
Value. The mechanism is thus symmetric and effi- 
cient (i.e., satisfying group rationality), and also sat- 
isfies the criterion of individual rationality. However, 
as was seen in Example 2, no mechanism can guar- 
antee coalition rationality. Besides failing to guaran- 
tee coalition rationality, the mechanism also does not 
satisfy the simplicity condition. It requires agents to 
calculate the Shapley Value, a computation that has 
exponential computational complexity. 

The computational complexity of a mechanism 
should be measured relative to the complexity of the 
agent’s standalone planning problem. This relative 
measurement would then signify the computational 
overhead of the mechanism. Each agent in a Task Ori- 
ented Domain needs to calculate the cost of his set 
of tasks, i.e., to find the best plan to achieve them. 
Calculation of the value of a coalition is linear in the 
number of agents in the coalition.4 The calculation of 
the Shapley Value requires an evaluation of the value 
of all (2”) p ossible coalitions. In Section below we will 
show that there exists another Shapley-based mecha- 
nism that has linear computational complexity. 

Concave TODs 

Definition 7 [Concavity]:5 TOD < I,d, c > will 
be called concave if for all finite sets of tasks X 5 
Y, 2 C 7, we have c(Y U 2) -c(Y) 5 c(X U 2) -c(X). 

All concave TODs are also subadditive. It turns out 
that general subadditive Task Oriented Domains can 
be restricted, becoming concave Task Oriented Do- 
mains. For example, the Postmen Domain is subad- 
ditive, when the graphs over which agents travel can 
assume any topology. By restricting legal topologies 
to trees, the Postmen Domain becomes concave. 

Definition 8 A coalition game with transferable util- 
ity in normal characteristic form (N, v) is convex if for 
any coalitions S, V, v(S)+v(V) 5 v(SUV)+v(SnV). 

to 
In convex coalition games, the incentive for an 
join a coalition grows as the coalition grows. 

agent 

Theorem 4 Any encounter (Tl, . . . , T,) in a concuve 
TOD induces a convex coalition game (N, v). 

Theorem 5 [Shapley (1971)] (Shapley 1971): In 
convex coalition games, the Shapley Value always sat- 
isfies the criterion of coalition rationality. 

4The cost of a set of tasks needs to be calculated only a 
linear number of times. 

5The definition is from (Zlotkin & Rosenschein 1993a). 
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In concave TODs, the Shapley-based mechanism in- 
troduced above is fully stable, i.e., satisfies individual, 
group, and coalition rationality. 

The Random Permutation Mechanism 
The Shapley Value is equal to the expected contribu- 
tion of an agent to the full coalition, assuming that 
all possible orders of agents joining and forming the 
full coalition are equally likely. This leads us to a 
much simpler mechanism called the Random Permuta- 
tion Mechanism: agents choose a random permutation 
and form the full coalition, one agent after another, 
according to the chosen permutation. Each agent (i) 
gets utility (2oi) that is equal to its contribution to the 
coalition, at the time he joined it. This is done by 
agreeing on the all-or-nothing deal, (~1, . . . , p,,), such 
that pi = %F 
Theorem 6 If each permutation has an equal chance 
of being chosen, then the Random Permutation Mech- 
anism gives each agent an expected utility that is equal 
to its Shapley Value. 

The Shapley-based Random Permutation Mecha- 
nism does not explicitly calculate the Shapley Value, 
but instead calculates the cost of only n sets of tasks. 
Therefore, it has linear computational complexity. The 
problem of coalition formation is reduced to the prob- 
lem of reaching consensus on a random permutation. 

Consensus on Permutation 
No agent would like to be the first one that starts the 
formation of the full coalition (since this agent by defi- 
nition gets zero utility). If the domain is concave (and 
therefore the coalition game is convex), each agent has 
an incentive to join the coalition as late as possible. 
To ensure stability, we need to find a consensus mech- 
anism that is resistant to any coalition manipulation. 
No coalition should be able, by coordination, to influ- 
ence the resulting permutation such that the members 
of the coalition will be the last ones to join the full 
coalition. For example, this means that no coalition of 
n - 1 agents could force the single agent that is out of 
the coalition to go first. 

We will use the simple cryptographic mechanism 
that allows an agent to encrypt a message using a 
private key, to send the encrypted message, and then 
to send the key such that the message can be unen- 
crypted. Using these tools, each agent chooses a ran- 
dom permutation and a key, encrypts the permutation 
using the key, and broadcasts the encrypted message 
to all other agents. After he has received all encrypted 
messages, the agent broadcasts the key. Each agent un- 
encrypts all messages using the associated keys. The 
consensus permutation is the combination of all per- 
mutations. 

Each agent can make sure that each permutation 
has an equal chance of being chosen even if he assumes 
that the rest of the agents are all coordinating their 



permutations against him (i.e., trying to make him be 
the first). All he needs to do is to choose a random per- 
mutation. Since his permutation will also be combined 
into the final permutation, everything will be shuffled 
in a way that no one can predict. 

Conclusions 
We have considered the kinds of n-agent coordination 
mechanisms that can be used in Task Oriented Do- 
mains (TODs), when any sub-group of agents may en- 
gage in task exchange to the exclusion of others. 

We presented a simple, efficient, symmetric, and in- 
dividual rational Shapley Value-based coalition forma- 
tion mechanism that uses cryptographic techniques for 
subadditive TODs. When the domain is also concave, 
the mechanism also satisfies coalition rationality. 

Future research will consider non-subadditive TODs. 
It will also consider issues of incentive compatibility in 
multi-agent coalition formation, investigating mecha- 
nisms that can be employed when agents have partial 
information about the goals of other group members 
and can deceive one another about this private infor- 
mation. 
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