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ABSTRACT
Buyer coalitions are bene�cial in e-marketplaces because
they allow buyers to take advantage of volume discounts.
However, existing buyer coalition formation schemes do not
provide buyers with any means to declare and match their
preferences or to calculate the division of the surplus in a
stable manner. Concepts and algorithms for coalition forma-
tion have been investigated in game theory and multi-agent
systems research, but because of the computational com-
plexity, they cannot deal with thousands of buyers which
could join a coalition in practice. In this paper, we propose
a new buyer coalition formation scheme GroupBuyAuction.
At GroupBuyAuction, buyers form a group based on a cat-
egory of items. A buyer can post an OR-asking for multiple
items within a category. An OR-asking is a list of items indi-
cating that the buyer would buy any one of the items in the
list with some particular reservation price. Sellers bid vol-
ume discount prices. The group leader agent splits the group
into sub groups (coalitions), selects a winning seller for each
coalition, and calculates surplus division among buyers. We
prove that this scheme guarantees the stability in surplus
division within each coalition in terms of the core in game
theory. Simulation results show that, under most conditions,
our scheme increases buyers' utility, and allows more buy-
ers to obtain items compared to traditional group buying
schemes, such as those used at existing commercial WWW
sites.

1. INTRODUCTION
There are several opportunities for buyers to form coali-

tions on the Internet. By forming a coalition, buyers can
advantageously negotiate with sellers and purchase items at
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Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

volume discount prices. In [12], we showed that both buy-
ers and sellers could bene�t from buyer coalitions, analyzed
coalition formation models and protocols, and proposed a
framework for buyer agents to form coalitions and negotiate
with seller agents.
However, existing commercial WWW sites 1 and even our

protocols proposed in [12] do not provide buyers with any
means to declare and match their preferences or to calculate
the division of the surplus in a stable manner. This may
prevent buyers from forming a large coalition. Concepts of
coalition formation and its stability have been investigated
in game theory [4, 5]. Some research on multi-agent systems
[7, 8, 10, 9] has applied the concepts from game theory to
multi-agent cooperation, and developed algorithms to form
stable and bene�cial agent coalitions. Some of those algo-
rithms are theoretically applicable to buyer coalition forma-
tion, but they cannot be used in practice. Because of their
computational complexity, they cannot deal with thousands
of buyers which could be expected to join a coalition.
In this paper, we propose a new buyer coalition formation

scheme, GroupBuyAuction, which enables a large number
of buyers to form coalitions. A buyer sometimes may have
several choices of items and wants to purchase any one of
them. To answer this kind of buyer's request, a buyer group
at GroupBuyAuction is formed for a category of items, not
for a particular item. For instance, a `camera' group in-
vites buyers who want to buy a camera. A buyer within
a group can post an asking which contains a speci�c item
name and a reservation price, the maximum price which the
buyer is willing to pay for the item. A buyer can also post
an OR-asking, a list of single askings, indicating that the
buyer would buy any one of the items in the list. For exam-
ple, a buyer can say \I want to buy either a camera A for
$300 or lower, or B for $400 or lower." A seller can make
a bid for each item with volume discount prices. A seller's
bid is something like \I can sell camera A for $250 each if
more than 5 items are sold, for $300 otherwise." A leader
agent in a group manages this reverse auction on behalf of
buyers. When the auction closes, the leader agent splits
the group into sub groups (which we call coalitions) each
of which consists of buyers preferring the same item. The
leader also selects the winning seller for each coalition, and

1For example, Mercata (http://www.mercata.com/),
MobShop (http://www.mobshop.com/), BazaarE
(http://www.bazaare.com/) and Volumebuy
(http://www.volumebuy.com/).
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calculates surplus division among buyers. Buyers in a coali-
tion may pay di�erent prices for the identical item according
to their reservation prices.
Desired goals for our coalition formation scheme include:

(1) increase the number of buyers who can purchase items,
(2) increase group's total utility and individual buyer's util-
ity, and (3) divide the total utility among buyers in a fair
and stable way. The �rst feature meets the primary inten-
tion for buyers to join a group, but other two features are
also important to invite buyers. Self-interested buyers wish
to purchase items at as low price as possible. If a coalition
might force a buyer to pay more to support other buyers,
a buyer would hesitate to join. We also expect the second
feature could motivate a group leader to manage a group
because, for example, a leader in practice may get some
commission out of the group's total utility.
As these desired features are, in general, computation-

ally too complex as mentioned above, we take the following
approach. When forming a coalition con�guration, we try
to maximize the utility of the most valuable coalition, then
maximize the utility of the second valuable one, and con-
tinue recursively. Then we divide each coalition's surplus
within the coalition. We prove that our coalition formation
scheme based on this approach guarantees the stability of
surplus division within each coalition in terms of the core
in game theory. In addition, our scheme encourages truth
telling in buyer reservation price. Simulation results show
that, under most conditions, our scheme increases group's
total utility and the number of buyers obtaining items com-
pared to a traditional group buying scheme similar to those
used at existing commercial WWW sites.
This paper is organized as follows. Section 2 describes

prior work. Section 3 outlines GroupBuyAuction and a
prototype system developed based on the RETSINA multi-
agent framework [11]. In section 4 we describe the coalition
formation scheme in detail. Section 5 analyzes the stability
of the coalition formation scheme. Section 6 describes the
experimental results. Finally, we conclude our discussion in
section 7.

2. PRIOR WORK
Works in game theory and microeconomics such as [4, 5]

have provided concepts of coalition and its stability. A coali-
tion is a set of agents which cooperate to achive a common
goal, and the stability requirement is that the outcome of
a coalition be immune to deviations by individual agents or
subsets of agents. Those concepts are important as criteria
of coalition formation schemes, and we justify our scheme
based on the core, one of stability concepts in game theory.
However, game theory does not provide eÆcient algorithms
for coalition formation.
Finding the maximal group utility can be translated into

the weighted set packing problem [1]: Given a set B and
collection of its subsets Col = fC0; :::;Cng such that each
Cihas its value v(Ci), �nd a sub collection SubCol � Col

of pairwise disjoint sets such that
P

Ci2SubCol
v(Ci) is the

maximum among all sub collections. We can interpret B as
a buyer group, SubCol as a collection of coalitions, and v

as coalition's utility gained by group buying. The weighted
set packing problem is NP-complete, and several optimiza-
tion algorithms have been proposed [1, 2]. However, these
algorithms rely on the assumption that the maximum size of
subsets in SubCol is bounded by a relatively small number

k. In the context of group buying, bounding the coalition
size by a small number is impractical.
Research on multi-agent systems also has investigated coali-

tion formation of agents. [7] proved that, for a given set B,
searching the best coalition con�guration among ffBgg [
ffB1;B2g j B1 [B2 = B;B1 \B2 = ;g guarantees that the
largest coalition value found is within a bound from optimal
one by jBj, and that no other search algorithm can establish

any bound while searching only 2jBj�1 coalition con�gura-
tions or fewer. This result means, without some kind of
heuristics or assumptions, bounding the group's total util-
ity is virtually impossible because jBj could be large.
[8, 10] have provided distributed coalition formation schemes

for multi-agent systems mainly focusing on increasing the
group's total utility. They also limit the highest coalition
size by an integer k, which means the algorithms proposed
cannot be applied to large coalitions. [9] aims both to in-
crease the total utility and to reach the stable payo� division
among agents. Yet, the algorithms restrict the size of each
coalition to guarantee the practical computation time.
[3] has proposed a new model of coalition formation, and

applied it to coalition formation among buyer agents in an
e-marketplace. Their model treats agents as locally inter-
acting entities; an agent may create a coalition when it en-
counters another agent, join an existing coalition, or leave
a coalition. The model describes global behavior of a set
of agents from the macroscopic view point by di�erential
equations, and simulates well how buyer coalitions evolve
and reach the steady state. However, the model does not
assist individual agents to form a coalition nor to negotiate
surplus distribution.

3. OVERVIEW OF GROUPBUYAUCTION
GroupBuyAuction is a kind of reverse auction system where

buyers (agents and/or humans) pool their demand to max-
imize their power, and sellers (agents and/or humans) bid
discount prices to sell large volumes of products at once.
Figure 1 shows the architecture of the GroupBuyAuction
system build on the RETSINA multi-agent framework [11].
The GroupBuyAuction agent communicates with buyer agents,
seller agents and PriceWatcher agents. The GroupBuyAuc-
tion system also has its WWW site so that human buyers
and sellers can directly access the system.

Buyer

PriceWatcherPriceWatcher

Seller

BuyerSeller

Agent

Human

Web site
Auction
GroupBuy

Web Site

A group buying siteA group buying site

Auction
GroupBuy

Human BuyersHuman Sellers

Figure 1: The GroupBuyAuction system architec-
ture
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A buyer can ask GroupBuyAuction to create a buyer group.
A buyer group is formed based on a product category (see
Figure 2). A group does not specify a particular item. In-
stead, a group has a list of items which some buyers request.
A buyer can post an OR-asking, a list of single askings each
of which contains a speci�c item and its reservation price.
A buyer would purchase any one of items listed in the OR-
asking at her reservation price or lower.

Asked Item List
Camera A
Camera B
Camera C

I want A for $300 or lower,
     OR B for $400 or lower

I want B for $350 or lower,
     OR C for $300 or lower Buyer 2

Buyer 1

Camera Group

Seller 2

     for camera B
Price Schedule

     for camera A
Price Schedule

Seller 1

Figure 2: A buyer group

A seller can make bids on items listed at buyer groups.
Each bid contains a speci�c item and the seller's volume
discount price schedule. A price schedule is a decreasing
function of the number of items sold and its unit price.
Each buyer group has its leader agent which is, under

the current implementation, automatically created by the
GroupBuyAuction system. The leader opens and closes her
group's auction. The leader also asks PriceWatcher agents
to retrieve discount prices at other group buying sites on
the Internet. When the auction closes, the leader splits the
group into sub groups (coalitions) each of which includes
buyers preferring the same item, selects the best seller for
each coalition, and calculates prices which buyers have to
pay. The best seller for a coalition is one of sellers which
made bids or one of other group buying sites. In the former
case, the best seller can exclusively sell the items to buyers
in the coalition. If one of other group buying sites o�ers the
best price, the leader tells buyers to join the site.

4. COALITION FORMATION SCHEME
We begin with a simple example. Assume there are three

items in a category which have the same price schedule
shown in Figure 3. The horizontal axis shows the number
of items, and the vertical axis indicates the unit price when
multiple items are sold together. For instance, if three items
are sold, the unit price goes down to 90. Table 1 shows �ve
buyers in the group for the category. Each row shows the
buyer's OR-asking. For instance, b4 agrees to buy any one of
item1 or item2 if the price does not exceed her reservation
prices (85 and 95 respectively).

Table 1: Sample buyers' Preferences

buyer item0 item1 item2

b0 100 70
b1 80 95 95
b2 95
b3 65
b4 85 95

0

80

90

100

Unit Price

21 43 5
The Number

of Items Sold

Figure 3: A sample price schedule

The main issues we study are how to split the buyer group
into coalitions, and how to distribute the surplus of the
group among buyers. In this example, there are one pos-
sible coalitions for item0 (fb0g), three for item1 (fb1; b2g,
fb1; b2; b4g, fb1; b2; b3; b4g), and one for item2(fb1; b4g). Our
scheme derives the coalition con�guration shown in Table 2;
fb1; b2; b4g as an `item1' coalition has the largest surplus
among all possible coalitions, and fb0g as an `item0' coali-
tion is the only coalition which the rest of buyers can form.
Each cell in the table contains the buyer's price to pay and
reservation price between parentheses. The prices to pay
in a coalition di�er depending on buyers' reservation prices.
For example, b1 pays 92.5 (b1' reservation price is 95), while
b4 pays only 85 (b4's reservation price is 85). If b4 did not
join the coalition, b1 and b2 would have to pay 95 for item1.
On the other hand, the coalition does not include b3 because
b3 would bring no bene�t to others.

Table 2: A sample coalition con�guration

buyer item0 item1 item2

b0 100(100)
b1 92.5 (95)
b2 92.5 (95)
b3
b4 85.0 (85)

The rest of this section formally explains this coalition
formation scheme.

4.1 Approach
We take the following approach to design the coalition

formation scheme.

Principle 1: Maximize the utility of the most valuable coali-
tion, and then maximize the utility of the second valu-
able one, and continue recursively.

Principle 2: Distribute the surplus of each coalition within
the coalition in a stable way.

The �rst principle does not necessarily maximize the group's
total utility. But forming a large coalition is the original in-
tention of group buying, and we expect this principle could
implicitly lead buyers to getting together in a large coalition
in practice. The second principle assures the stability within
each coalition. We do not consider the stability over all the
coalitions. If we did so, the coalition with the highest utility
might have to give a part of its surplus to smaller coalitions,
which would be against the �rst principle.
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4.2 Definition of Terms
Terms and notations are de�ned as follows.

Items and Price Schedules: G = fg1; g2; :::; gmg denotes
a set of items in a category. (We deal with only one cat-
egory throughout this paper, and do not explicitly denote
the category to avoid the complexity in notation.) Let N
and R be the set of natural number and real number respec-
tively. A price schedule of giis represented as a descending
function pi : N ! R; pi(n) is a unit price when n of giare
sold together. piis determined by sellers' bids as explained
next.

Sellers: S = fs1; s2; :::; slg denotes a set of sellers. A seller
sh's bid for giis in the form of price schedule pih : N ! R.
When shdoes not make a bid for gi, pih(n) =1 for 8n 2 N .

pi is de�ned as pi(n)
def
= minfpih(n) j sh 2 Sg

Buyers: B = fb1; b2; :::; bng denotes a group of buyers for a
category. (Again, we do not explicitly denote the category
to avoid the complexity in notation.) rki � 0 represents
bk 's reservation price for giand a list (rk0; :::; rkm) does bk 's
OR-asking. We consider a reservation price as the buyer's
bene�t from owning the item, and de�ne bk 's utility gained
from buying giat the price p as rki � p.

Coalitions: Let Ci � B denote a coalition to purchase gi.
A coalition con�guration is Conf = fC1; :::;Cmg such that
Ci \ Cj = ; for i 6= j. Cican be empty. Conf does not
necessarily satisfy [i=1;:::;mCi = B; some buyers in B may
not belong to any coalitions.
We de�ne vi(C), utility of C � B as a gicoalition, as

surplus derived by serving the coalition;

vi(C)
def
=
X
bk2C

rki � costi(C)

where costi(C) is the cost to purchase jCj items of gi; i.e.,
costi(C) = jCj � pi(jCj). (jCj denotes the cardinality of C.)
C can a�ord to buy jCj items of giif and only if vi(C) � 0.

4.3 Coalition Configuration Algorithm
A coalition con�guration Conf = fC1; :::;Cmg is formed

so that the utility of the most valuable coalition is maxi-
mized �rst, and then the utility of the second most one is
maximized, etc. This algorithm is formalized as follows.

Algorithm 1: Coalition Con�guration

1. Set Conf = ;, RestOfItemIDs = f1; 2; :::;mg and
RestOfBuyers = B.

2. For every i 2 RestOfItemIDs, calculate a candidate
coalition C�

i � RestOfBuyers, one of the largest sets
with the largest utility as a gicoalition, as follows.

ACi
def
= fC � RestOfBuyers j vi(C) � 0g

V Ci
def
= fC 2 ACi j vi(C) � vi(C

0) for 8C 0 2 ACig

LV Ci
def
= fC 2 V Ci j jCj � jC 0j for 8C 0 2 V Cig

(ACi is the set of admissible coalitions, V Ci the set
of the most valuable coalitions, LV Ci the set of the
largest coalitions among the most valuable ones.)

Select any one of C�
i 2 LV Ci if LV Ci 6= ;, C�

i =

; otherwise. Cand
def
= fC�

i j i 2 RestOfItemIDsg
denotes the set of all candidates.

3. If every C�
i 2 Cand is empty, stop this procedure.

4. If there exist non empty candidates in Cand, select
one of them with the largest utility within Cand; that
is, select C�

i such that vk(C
�
k ) � vi(C

�
i ) for 8C�

i 2
Cand. Let Conf = Conf [fC�

kg, RestOfItemIDs =
RestOfItemIDsnfkg, and
RestOfBuyers = RestOfBuyersnC�

k .
5. Go back to Step 2 if RestOfItemIDs 6= ; and

RestOfBuyers 6= ;. Otherwise, stop this procedure.

This algorithm can be considered as a variation of the
greedy algorithm for the weighted set packing problem [2].
In general, �nding a subset of B which has the largest util-
ity among all subsets could require O(2n) computations at
worst.
However, we have an eÆcient algorithm to calculate our

coalition con�guration with order O(n � log n), where n is
the number of buyers in B, and we assume the number of
items in a category can be bounded from above by a pos-
itive number K independently from n. This assumption
makes sense even for very large coalitions. The complexity
of searching C�

i at each recursion is O(n � log n) computa-
tions as explained below, each recursion includes at most K
times of the search, and all coalitions are con�gured within
K recursions. Thus, the entire complexity of the coalition
con�guration is O(n � log n) computations.
To search C�

i at each recursion, �rst arrange all buyers in
RestOfBuyers in the descending order in terms of reserva-
tion price for gi(O(n � log n) computations). Then calculate
the utility of subsets Cij � RestOfBuyers for j = 1; :::; t
(t is at most n) which includes the top j buyers in terms
of reservation price for gi, and select C�

i out of fCi1; :::;Citg.
This requires O(n) computations. (This algorithm is sup-
ported by Proposition 2 in the next section.)

4.4 Surplus Sharing in a Coalition
Buyers in a coalition share their surplus within the coali-

tion. When a coalition Cihas surplus vi(Ci) > 0 and the
share of bk 2 Ci is xk � 0, bkactually pays rki � xk, where
rkiis bk's reservation price. The surplus sharing rule is de-
�ned as follows.

De�nition 1: Surplus Sharing Rule When a coalition
Cihas surplus vi(Ci) > 0, the share xk of bk 2 Ci is

xk
def
=

�
rki � hCi (bk 2 Ci)
0 (bk 62 Ci)

where hCiand Cisatis�es the following conditions:

costi(Ci) = jCij � hCi +
P

bk2CinCi
rki;

Ci
def
= fbk 2 Ci j hCi � rkig:

Figure 4 illustrates this de�nition. The graph shows each
buyer's reservation price, her share of surplus, and her actual
price to pay. Buyers in Cipay hCiwhich is equal to or lower
than their reservation prices. Others in CinCi pay just their
reservation prices.
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Share of
Surplus

to Pay
Price Price

Reservation

b0 b1 b2 b3 b4

.....

..... bm

ci

Ci

h

Ci

Price
Market
Price

Figure 4: The surplus sharing rule

5. STABILITY OF COALITION CONFIGU-
RATION

As buyers in a coalition pay di�erent prices under our
scheme, a fair share of surplus is essential to invite buyers
to the coalition. If buyers do not trust the fairness, they
may not join a buyer group, nor provide their reservation
prices truthfully, which could prevent successful coalition
formation.
In this section, we discuss our scheme's stability in terms

of the core in game theory[6, 4]. (Note that, following Prin-
ciple 2 in 4.1, we only consider the stability of each coalition,
not the stability over all the coalitions.) The core is de�ned
as follows.

De�nition 2: The Core [6]
A coalitional game with transferable payo� consists of (1)
a �nite set C of players, and (2) a utility function v which
associates with every nonempty subset S � C a real number
v(S). The core of the coalitional game with transferable
payo� < C; v > is

Core = f(xb)b2C j v(C) =
X
b2C

xb; v(S) �
X
b2S

xb for 8S � Cg

In general, the core can contain multiple elements, and
also can be empty. In our case each coalition Cihas the
nonempty core; the surplus distribution calculated by our
surplus sharing rule is within the core as the next proposi-
tion states.

Proposition 1 (Stability of a coalition)
For 8Ci 2 Conf , the surplus distribution (xk)bk2Ci cal-
culated using the surplus sharing rule (De�nition 1) is in
the core of the coalitional game with transferable payo�
< Ci; vi >. That is, vi(S) �

P
bk2S

xk holds for 8S � Ci.

The stability condition de�ned by the core is that no sub-
set of buyers in a coalition can obtain utility that exceeds
the sum of the current utility of the members in the subset.
Thus, even self-interested buyers in a coalition would not be
motivated to deviate from the coalition.
There can be multiple surplus distributions within the

core. Proposition 2 and 3 below characterize our surplus
distribution, and we expect these propositions will encour-
age a buyer to tell her reservation price truthfully. (Note
that Proposition 1 above is proved via Proposition 2 and 3.
The proof is provided in Appendix.)

Proposition 2 (Members in a coalition)
At each recursion of coalition con�guration in Algorithm
1, for 8bk 2 RestOfBuyers and 8i 2 RestOfItemIDs, if
9bh 2 C�

i such that rki > rhi, then bk 2 C�
i .

Proposition 2 means that C�
i consists of the top jC

�
i j buy-

ers in terms of reservation price. The higher a buyer's reser-
vation price is, the more likely it is she will be able to join
a coalition.

Proposition 3 (Price sharing)
At each recursion of coalition con�guration in Algorithm 1,
for 8i 2 RestOfItemIDs and 8C 2 ACi, hC�

i
� hC .

The last proposition assures that, at each recursion, the
highest price anybody in C�

i pays, hC�

i
, is the lowest among

all the prices a�orded by any sets of buyers.

6. EVALUATION
We have conducted a series of simulations to evaluate the

e�ectiveness of our coalition formation scheme in increas-
ing buyers' bene�ts. We simulated buyers' behaviors un-
der three group buying schemes (our scheme, a traditional
scheme and an optimal scheme) under particular conditions,
and compared them using following evaluation criteria: (1)
group's total utility, and (2)the number of buyers who can
obtain items.

6.1 Assumptions
We make the following assumptions.

Items and Price Schedules: Items are common com-
modities (e.g., consumer electronic devices, stationaries, etc.).
There exists a market price for each item. There is no limit
to how many items one seller can provide. Each item is ac-
companied by a price schedule whose value ranges from its
market price to the best discount price.

Buyers: A buyer has several choices of items. We model
the distribution of preferences for multiple items by RBMI
(the Ratio of Buyers who prefer Multiple Items). RBMI is
an array (rb1; :::; rbm), where m is the number of items and
rb1+ :::+rbm = 1 holds. rbi denotes the ratio of buyers who
prefer i items out of m items. For instance, in the example
shown by Table 1 in Section 4, RBMI is (0.4, 0.4, 0.2); out
of �ve buyers, two buyers prefer only one item, two buyers
prefer two items, and one buyer prefers three items. RBMI
does not specify which particular items each buyer prefers.
A buyer randomly selects preferred items.
Every buyer knows every item's market price. Some of

reservation prices for a given item are equal to its market
price. We call this ratio as RRMP (the Ratio of Reservation
prices which are the Market Price). Other reservation prices
for the item are randomly distributed between its market
price and a certain lower price. We denote the lowest reser-
vation price as LRP. The environment (other buyers' behav-
iors, price schedules, etc.) does not a�ect buyers' preferences
or reservation prices.

An Optimal Scheme: At every simulation, we calculate
an optimal coalition con�guration for comparison. The op-
timal group buying scheme searches all possible coalition
con�gurations and selects one of the con�gurations which
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has the largest utility. When there are multiple con�gura-
tions with the largest utility, the optimal scheme selects one
in which the largest number of buyers can purchase items.
Buyers in a coalition share their surplus within the coalition,
but the optimal scheme does not care about how to share.

A Traditional Scheme Under a traditional group buying
scheme, there is no notion of a group or an OR-asking. In-
stead, buyer selects one item out of her preferred items by
herself, and posts a single asking to a coalition formed to
purchase the item. All buyers in a coalition who can pur-
chase the item pay the same discount price which is as low
as possible for the coalition.
A buyer can know the price schedule, current discount

price and the number of buyers at every coalition at any
time. A buyer bkselects one item out of her preferred items
by following one of the selection rules listed below.

Random Rule: Randomly Select an item.
Lowest Price Rule: Select an item whose current price is

the lowest in proportion to the market price.
Highest Reservation Price Rule: Select an item with the

highest reservation price in proportion to the market
price.

Highest Value Rule: Select an item which currently brings
her the highest utility (reservation price - current price).

6.2 Simulation and Parameters
For every set of parameters, we simulate buyers' behavior

under our scheme, the optimal scheme and the traditional
scheme 1000 times, and calculate the average data for the
evaluation criteria. For the traditional scheme, we simulate
four experimental conditions. At every condition, all buyers
follow the same selection rule out of four rules listed above.
Table 3 summarizes the simulation parameters in the eval-

uation. The range of the number of items is 1,3 and 5. We
assign the identical price schedule to all items such that the
market price is 100, the lowest discount price is 80, and the
price decreases by 5 in proportion to the number of buyers.
We only vary a price decreasing ratio (PDR), the ratio of
`the least number of buyers which assures the lowest discount
price' to `the number of buyers in a group.' PDR character-
izes how steeply the price decreases. Figure 5 shows sample
price schedules with PDR of 0.4 and 1.0, and 100 buyers in
a group. In the simulation, PDR varies among 0.2, 0.4, 0.6,
0.8 and 1.0.
Note that too small PDR is not realistic from the seller's

point of view. A small PDR means that the seller sells
items cheap even if a large volume of items are not sold.
This is against the basic idea of volume discount; sellers sell
things cheap in exchange for buyers purchasing many. The
market with too small PDR is also trivial for group buying
schemes because buyers need little assistance; buyers could
easily get the lowest discount price even if they are randomly
distributed over the items.
The range of the number of buyers is 50, 100, 200 and 400.

We also vary RBMI, RRMP and LRP as shown in Table 3
so that the e�ect of the buyer's preference distribution can
be observed. Note that the optimal scheme can handle only
the cases with 50 buyers and RBMI of (1), (1,0,0) or (0.7,
0.2, 0.1) because of its computational complexity.

85

80

90

95

100

0 4020 60 80 100
The Number

of Items Sold

Unit Price

PDR = 1.0PDR = 0.4
The number of buyers = 100

Figure 5: Sample price schedules

Table 3: Simulation Parameters

Parameter Range
Items The number of items 1, 3, 5
Price
Schedule

PDR (price decreas-
ing ratio)

0.2, 0.4, 0.6, 0.8, 1.0

Buyers The number of buyers 100, 200, 400, 800
RBMI
(the ratio of buy-
ers preferring multi-
ple items)

(1), (1, 0, 0), (.7, .2, .1),
(.5, .3, .2), (1/3, 1/3, 1/3),
(1, 0, 0, 0, 0),
(.7, .2, .05, .03, .02),
(.5, .3, .1, .05, .05),
(.2, .2, .2, .2, .2)

RRMP
(the ratio of reserva-
tion prices which are
the market price)

0, 0.25

LRP (the lowest
reservation price)

70,
80 (the best discount price)

6.3 Results
For a given number of buyers and items, the three schemes

showed common relations between buyers' bene�ts and the
simulation parameters. The factors which a�ected buyers
favorably included smaller PDR, larger RRMP and LRP,
and more distributed RBMI (for instance, (1/3, 1/3, 1/3)
brought larger utility to buyers than (1, 0, 0) did). Among
them, PDR brought a clear contrast between the three schemes.
Here, we analyze the simulation results focusing on PDR.
(Lack of space prohibits showing results with other param-
eters.)
Out of the four experimental conditions for the traditional

scheme, the one where all buyers followed the highest value
rule produced the highest utility in almost all simulations.
Thus, in this section we refer only to this condition as the
traditional scheme's output.

6.3.1 Optimality
First, we compare our scheme to the optimal one by exam-

ining the case that the number of items is 3, the number of
buyers is 50 and RBMI=(0.7, 0.2, 0.1). In summary, (1) our
scheme came out more than 80 percent of the optimal util-
ity under all conditions on average, and (2) as PDR became
larger, the di�erence between our scheme and the optimal
one became smaller; when PDR = 1.0, our scheme's outputs
were nearly the same as the optimal ones.
Figure 6 shows the simulation output under the condi-

tions where LRP = 70 and RRMP = 0.25. 2 The graph

2We got similar results for other combinations of LRP (70
or 80) and RRMP (0 or 0.25).
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Figure 6: Comparison between our scheme, the op-
timal one and the traditional one

on the left shows the average group's total utility, and the
right graph shows the average number of buyers who got
items. The horizontal axis of each graph is PDR, and the
vertical axis is the value for each criterion. When PDR is
0.2, the group's utility gained by our scheme was slightly
worse than the one by the optimal scheme and even the
one by the traditional scheme. But, the average utility un-
der our scheme was still above 91 percent of the optimal
one. As PDR became larger (the market condition became
worse for buyers), our scheme performed better in the sense
that the buyers' bene�ts became close to the optimal ones.
When PDR � 0.6, both the group's utility and the number
of buyers that got items they wanted are within 96 percent
from the optimal ones. On the other hand, the traditional
scheme became much worse when PDR was 0.4 or larger.
When PDR = 1.0, the traditional scheme scarcely brought
utility to buyers.

6.3.2 Cases with a large number of buyers
Next, we examine the cases that 400 buyers are involved in

a group. (We compare only ours and the traditional scheme.
Our implementation of optimal scheme could not handle
such large number of buyers.) Regardless of the number
of buyers in a group, the comparison results showed the
same tendency as the previous case of 50 buyers: (1) when
PDR=0.2, ours and the traditional one brought the best
bene�ts to buyers, and the traditional scheme slightly over-
came ours under some conditions, and (2) as PDR became
larger, our scheme performed better than the traditional
one.
Figure 7 supports the above statements. The two graphs

show the performance ratio of the traditional scheme to ours.
The left graph shows the ratio of the group's utility by the
traditional scheme to the one by our scheme. The right
graph shows the ratio of the number of buyers who ob-
tained items by the traditional scheme to the one by our
scheme. The horizontal axis of each graph is PDR. The ver-
tical axis is the ratio for each criterion; the value 1.0 means
two schemes have the same performance, the value under
1.0 indicates our scheme is better, and the value above 1.0
does the opposite. Each graph includes the data under eight
conditions; RBMI = (1,0,0), (0.7, 0.2, 0.1), (0.5, 0.3, 0.2) or

The ratio

to one by our scheme
by trad. scheme

0

0.2

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8 1.0

of the number of buyers who got items

PDR

of group’s utility by trad. scheme
to one by our scheme

0

0.2

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8 1.0

The ratio

PDR

with high value rule

Our Scheme

Trad. Scheme

The number of items = 3

RBMI = (1, 0, 0), (0.7, 0.2, 0.1), (0.5, 0.3, 0.2), (1/3, 1/3, 1/3)
RRMP = 0,  0.25

LPR = 80The number of buyers = 400,

Figure 7: Comparison between our scheme and the
traditional scheme

(1/3, 1/3, 1/3), and RRMP = 0 or 0.25. Other parameters
are �xed (three items in a category, 400 buyers in a group,
and LRP = 80). In terms of group's utility, the traditional
scheme overcame ours only when PDR = 0.2. When PDR �
0.4, our scheme was better under all conditions. Similarly,
when PDR = 0.2, ours and the traditional scheme showed
almost the same performance regarding the number of buy-
ers who could purchase items. As PDR became larger, our
scheme supported more buyers than the traditional one.

7. CONCLUSIONS AND FUTURE WORK
In this paper, a buyer coalition formation scheme Group-

BuyAuction was proposed. At GroupBuyAuction, buyers
with di�erent preferences and values form a group to pur-
chase possibly di�erent items. The group leader agent splits
the group into coalitions each of which consists of buyers pre-
ferring the same item, and calculates surplus division among
buyers. We showed that our scheme has enough scalability
to handle a large number of buyers, guarantees the stability
in surplus division within each coalition, and performs bet-
ter in increasing buyers' utility and allowing more buyers to
obtain items compared to a traditional group buying scheme
similar to those used at existing commercial WWW sites.
Future work includes to investigate strategies of buyers/sellers

and group buying auction designs. In the evaluation re-
ported in this paper, we simply assumed buyers' preferences
and reservation prices were not a�ected by others. Buyers
and/or sellers, however, can a�ect each other if an auctioneer
(a group leader in our context) publishes some information
about buyers' askings and/or sellers' bids. We need to exam-
ine the relations between auction designs and buyer/seller
strategies to e�ectively run a group buying auction.
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APPENDIX

A. PROOF OF PROPOSITIONS
Proof of Proposition 2. Suppose 9bk 62C�

i ;9bh 2 C�
i such

that rki > rhi. From the de�nition of vi, vi(C�
i [ fbkgnfbhg) >

vi(C�
i ) holds, which contradicts the de�nition of C�

i (vi(C�
i ) be

the largest). 2

Proposition 3 is proved via the following Lemma 1 and 2.

Lemma 1. For 8C � B and 8bk 62C, if hC � rki then (1)

hC[fbkg � hC , and (2) bk 2 C [ fbkg, where hX and X for any
X are calculated as a gicoalition.

Proof of Lemma 1 (1). Suppose hC[fbkg > hC , and we will

show it leads to a contradiction, costi(hC[fbkg) < costi(hC[fbkg).

Let D
def
= C [ fbkg. Then we have

costi(D)
def
= sum

bh2CinCi
rhi + jDj � hD

=
P
frhi j bh 2 D; rhi < hDg+ jDj � hD

>
P
frhi j bh 2 D; rhi < hDg+ jDj � hC ( since hC < hD)

=
P
frhi j bh 2 D; rhi < hDg

+
P
frhi j bh 2 D; hC � rhi < hDg+ jDj � hC

=
P
frhi j bh 2 C; rhi < hCg

+
P
frhi j bh 2 D; hC � rhi < hDg

+ jfbh 2 D j fhD � rhigj � hC
(by hC � rki and the de�ntion of D)

�
P
frhi j bh 2 C; rhi < hCg+ jfbh 2 D j hC � rhigj � hC

�
P
frhi < hC j bh 2 Cg+ (jCj+ 1)hC

= costi(C) + hC (from the de�nition of C)
� jCj � pi(jCj) + pi(jCj)

(from the de�nition of costi and pi(jCj) � hC)
� jCj � pi(jDj) + pi(jDj) = jDj � pi(jDj) (since jDj = jCj+ 1)
= costi(D) .2

Proof of Lemma 1 (2). From hC � rki and (1)hD � hC , we

have hD � rki, which means bk 2 D = C [ fbkg. 2

Lemma 2 (A general form of Lemma 1). For 8C � B and

8D � fbk 2 B j hC � rkig, (1)hC[D � hC , and (2)D � C [D,
where hX and X for any X are calculated as a gicoalition.

Proof of Lemma 2. The proof of Lemma 2 (1) is by induc-
tion on the cardinality of D. Begin with the �rst step. When
jDj = fbkg and bk 2 C, (1) is trivial. If bk 62C, (1) is supported
directly by Lemma 1. For the inductive step, suppose (1) holds
for all D such that jDj � n, and we will show that (1) holds for
D [ fbkg wherebk 62D and hC � rki. By the induction hypoth-
esis, we have hC[D � hC � rki. In the case bk 62C, the above
inequation and bk 6 2C [ D lead hC[D[fbkg

� hC[D by using

Lemma 1 (1). In the case bk 2 C, hC[D[fbkg
� hC[D also

holds since C [D [ fbkg = C [D. Using the induction hypoth-
esis again, we have hC[D[fbkg

� hC . (2) follows trivial by (1). 2

Proof of Proposition 3. Suppose 9C 2 ACi s.t. hC < hC�

i

... (1). By applying C�
i to D in Lemma 2, we have h

C[C�

i

� hC

... (2), and C�
i � C [ C�

i ... (3). Using (1), (2) and (3), we

see vi(C [C�
i ) > C�

i as follows, which contradicts that C�
i be the

largest by its de�nition.
vi(C [ C�

i ) =
P

bk2C[C
�

i

(rki � h
C[C�

i

)

>
P

bk2C[C
�

i

(rki � hC�

i
) (by combining (1) and (2))

�
P

bk2C
�

i

(rki � hC�

i
) = vi(C

�
i ) (from (3)).2

Proposition 1 is proved via the following Lemma 3.

Lemma 3. For any coalitionCi and any subsetS � Ci, costi(S) �

jS \Cij � hCi +
P

bk2SnCi
rki.

Proof of Lemma 3. By Proposition 3, hCi � hS ...(1) holds.
Then, the following two equations are straightforwardly proved
using (1): S = S \ Ci, and (SnS)nCi = SnCi. Therefore,

costi(S) = jSj � hS +
P

bk2SnS
rki

= jSj � hS +
P

bk2(SnS)\Ci
rki +

P
bk2(SnS)nCi

rki

� jSj � hCi +
P

bk2(SnS)\Ci
hCi +

P
bk2(SnS)nCi

rki

= jS \ Cij � hCi + j(SnS)\ Cij � hCi +
P

bk2(SnS)nCi
rki

= jS \ Cij � hCi +
P

bk2(SnS)nCi
rki

= jS \ Cij � hCi +
P

bk2S\(CinCi)
rki .2

Proof of Proposition 1. By Lemma 3 and the de�nition of

group utility vi(S)
def
=
P

bk2S
rki � costi(S), we have

P
bk2S

rki � vi(S) � jS \ Cij � hCi +
P

bk2SnCi
rki .

Using De�nition 2, this inequation yields
vi(S) �

P
bk2S

rki �
P

bk2SnCi
rki � jS \ Cij � hCi

=
P

bk2S\Ci
rki � jS \ Cij � hCi

=
P

bk2S\Ci
(rki � hCi ) =

P
bk2S

xk. 2
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