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Abstract

Coalition formation is a key topic in multiagent systems. One may prefer a coalition structure
that maximizes the sum of the values of the coalitions, but often the number of coalition structures
is too large to allow exhaustive search for the optimal one. Furthermore, finding the optimal
coalition structure is NP-complete. But then, can the coalition structure found via a partial search
be guaranteed to be within a bound from optimum?

We show that none of the previous coalition structure generation algorithms can establish any
bound because they search fewer nodes than a threshold that we show necessary for establishing a
bound. We present an algorithm that establishes a tight bound within this minimal amount of search,
and show that any other algorithm would have to search strictly more. The fraction of nodes needed
to be searched approaches zero as the number of agents grows.

If additional time remains, our anytime algorithm searches further, and establishes a progressively
lower tight bound. Surprisingly, just searching one more node drops the bound in half. As desired,
our algorithm lowers the bound rapidly early on, and exhibits diminishing returns to computation. It
also significantly outperforms its obvious contenders. Finally, we show how to distribute the desired
search across self-interested manipulative agents. 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multiagent systems are becoming increasingly important. One reason for this is
the technology push of a growing standardized communication infrastructure—Internet,
WWW, NII, EDI, KQML, FIPA, Concordia, Voyager, Odyssey, Telescript, Java, etc.—
over which separately designed agents belonging to different organizations can interact in
an open environment in real-time and safely carry out transactions [34]. The second reason
is strong application pull for computer support for negotiation at the operative decision
making level. For example, we are witnessing the advent of small transaction commerce
on the Internet for purchasing goods, information, and communication bandwidth. There
is also an industrial trend toward virtual enterprises: dynamic alliances of small, agile
enterprises which together can take advantage of economies of scale when available
(e.g., respond to more diverse orders than individual agents can), but do not suffer from
diseconomies of scale.

Multiagent technology facilitates the automated formation of such dynamic coalitions.
This automation can save labor time of human negotiators, but in addition, other savings
are possible because computational agents can be more effective at finding beneficial short-
term coalitions than humans are in strategically and combinatorially complex settings.

This paper discusses coalition structure generation in settings where there are too many
coalition structures to enumerate and evaluate due to, for example, costly or bounded
computation and/or limited time. Instead, agents have to select a subset of coalition
structures on which to focus their search. We study which subset the agents should focus
on so that they are guaranteed to reach a coalition structure that has quality within a bound
from the quality of the optimal coalition structure.

Although our algorithm reduces the search space drastically and therefore increases the
number of agents for which a desirable coalition structure can be guaranteed, our algorithm
is still exponential in the number of agents (linear in the number of coalitions), thus it may
be inapplicable for very large numbers of agents. As we prove, only by searching this
exponential space can one guarantee a bound from optimum.

1.1. The three activities of coalition formation

In many domains, real world parties—e.g., companies or individual people—can save
costs by coordinating their activities with other parties. For example, when the planning
activities are automated, it can be useful to automate the coordination activities as well.
This can be done via a negotiating software agent representing each party. A key issue
in such automated negotiation is the formation of coalitions. Coalition formation includes
three activities:

(1) Coalition structure generation: formation of coalitions by the agents such that
agents within each coalition coordinate their activities, but agents do not coordinate
between coalitions. Precisely, this means partitioning the set of agents into
exhaustive and disjoint coalitions. This partition is called acoalition structure(CS).

(2) Solving the optimization problemof each coalition. This means pooling the tasks
and resources of the agents in the coalition, and solving their joint problem. The
coalition’s objective is to maximize monetary value: money received from outside
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the system for accomplishing tasks minus the cost of using resources. (In some
problems, not all tasks have to be handled. This can be incorporated by associating
costs with omitted tasks.)

(3) Dividing the valueof the generated solution among agents.
These activities interact. For example, the coalition that an agent wants to join depends on
the portion of the value that the agent would be allocated in each potential coalition. While
in the long run it would be desirable to construct an integrated theory that encompasses all
three activities, in this paper we focus on the coalition structure generation activity. Some
ways of tying this work together with methods for addressing the other two activities are
discussed in Section 9.

1.2. Outline of the paper

This paper focuses on settings were the coalition structure generation activity is
resource-bounded: it is too complex to find the optimal (social welfare maximizing)
coalition structure. The paper is organized as follows. Section 2 describes the model of
coalition structure generation, analyzes the complexity of finding the optimal coalition
structure, and explains why the problem has not received much prior attention. Section 3
formalizes the driving question of the paper: what coalition structures should the search
focus on so as to guarantee that the solution is within a bound from optimum? Section 4
shows that none of the previous coalition structure generation algorithms can establish
any bound because they search fewer nodes than a threshold that we show necessary
for establishing a bound. We present an algorithm that establishes a tight bound within
this minimal amount of search, and show that any other algorithm would have to search
strictly more. Section 5 describes how the bound can be decreased further using an
anytime algorithm if additional time remains. As desired, our algorithm lowers the bound
rapidly early on, and exhibits diminishing returns to computation. Section 6 shows how
it outperforms its obvious contenders. Section 7 discusses variants of the problem, their
complexity, and algorithms for solving them. Section 8 introduces a nonmanipulable
scheme for distributing the search across multiple agents. Finally, Section 9 discusses
related research, and Section 10 concludes and presents future research directions.

2. Coalition structure generation in characteristic function games

Let A be the set of agents, anda = |A|. As is common practice [20,22,29,41,44,46,49,
51], we study coalition formation incharacteristic function games(CFGs). In such games,
the value of each coalitionS is given by a characteristic functionvS . (These coalition
valuesvS may represent the quality of the optimal solution for each coalition’s optimization
problem, or they may represent the best bounded-rational value that a coalition can get
given limited or costly computational resources for solving the problem [41].)

Not all settings are CFGs. In CFGs, each coalitionS has some valuevS , i.e., each
coalition’s value is independent of nonmembers’ actions. However, in general the value of
a coalition may depend on nonmembers’ actions due to positive and negative externalities
(interactions of the agents’ solutions). Negative externalities between a coalition and
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Table 1
Important symbols used in the paper

A The set of agents.

a The number of agents, i.e.,|A|.
S A coalition.

vS Value of coalitionS.

CS A coalition structure, i.e., a partition of agents,A, into disjoint coalitions.

V (CS) Value of coalition structureCS, see Eq. (2).

CS∗ Social welfare maximizing coalition structure.

M The set of all possible coalition structures.

N Coalition structures seen so far in coalition structure generation search.

n Number of coalition structures seen so far, i.e.,|N |.
nmin Minimum n that guarantees a ratio bound from optimum.

CS∗N Coalition structure with highest welfare among the ones seen.

k Worst case ratio bound on value of the coalition structure, see Eq. (7).

nonmembers are often caused by shared resources. Once nonmembers are using a portion
of the resource, not enough of that resource is available to agents in the coalition to carry
out the planned solution at the minimum cost. Negative externalities can also be caused
by conflicting goals. In satisfying their own goals, nonmembers may actually move the
world further from the coalition’s goal state(s) [30]. Positive externalities are often caused
by partially overlapping goals. In satisfying their goals, nonmembers may actually move
the world closer to the coalition’s goal state(s). From there the coalition can reach its goals
at less expense than it could have without the actions of nonmembers. General settings
with possible externalities can be modeled asnormal form games(NFGs). CFGs are a
strict subset of NFGs. However, many (but clearly not all) real-world multiagent problems
happen to be CFGs, see, e.g. [41]. This is because in many real-world settings, a coalition’s
possible actions and payoff are unaffected by the actions of nonmembers.

We assume that each coalition’s value is nonnegative:

vS > 0. (1)

However, if some coalitions’ values are negative, but each coalition’s value is bounded
from below (i.e., not infinitely negative), one can normalize the coalition values by
subtracting (at least) minS⊆A vS from all coalition valuesvS . This rescales the coalition
values so that Eq. (1) holds for all coalitions. This rescaled game is strategically equivalent
to the original game [20]. Actually, all of the claims of the paper are valid as long as Eq. (1)
holds for the coalitions that the algorithmsees. Coalitions not seen during the search are
free to be arbitrarily bad.

A coalition structureCS is a partition of agents,A, into disjoint, exhaustive coalitions.
In other words, in a coalition structure each agent belongs to exactly one coalition,
and some agents may be alone in their coalitions. We will call the set of all coalition
structuresM. For example, in a game with three agents, there are seven possible
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coalitions:{1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3} and five possible coalition structures:
{{1}, {2}, {3}}, {{1}, {2,3}}, {{2}, {1,3}}, {{3}, {1,2}}, {{1,2,3}}. The value of a coalition
structure is

V (CS)=
∑
S∈CS

vS . (2)

Usually the goal is to maximize the social welfare of the agents by finding a coalition
structure

CS∗ = argmax
CS∈M

V (CS). (3)

2.1. Complexity of finding the optimal coalition structure

The problem is that finding a welfare maximizing coalition structure is computationally
complex. The following subsections detail the complexities involved.

2.1.1. Size of the input
The input is exponential in the number of agents. The input to a coalition structure

formation algorithm contains the values,vS , of the coalitions. One value is associated with
each coalition, and there are 2a − 1 coalitions. This is simply the number of subsets ofA

(not counting the empty set).
Conceptually one could exclude the values of some coalitions from the input, or decide

that the coalition structure generation algorithm ignores part of the input. However,
excluding even a single coalition from consideration may cause the value of the best
remaining coalition structure, sayV (CS), to be arbitrarily far from optimum, i.e., from
V (CS∗). This is because the value of the excluded coalition may have been arbitrarily
much greater than the values of the other coalitions.

2.1.2. Number of coalition structures
Another problem is that the number of coalition structures grows rapidly (considerably

faster than the number of coalitions grows) as the number of agents increases. The exact
number of coalition structures is

a∑
i=1

Z(a, i), (4)

whereZ(a, i) is the number of coalition structures withi coalitions. The quantityZ(a, i)—
also known as the Stirling number of the second kind—is captured by the following
recurrence:

Z(a, i)= iZ(a − 1, i)+Z(a − 1, i − 1), (5)

whereZ(a, a) = Z(a,1) = 1. This recurrence can be understood by considering the
addition of a new agent to a game witha − 1 agents. The first term,iZ(a − 1, i), counts
the number of coalition structures formed by adding the new agent to one of the existing
coalitions. There arei choices because the existing coalition structures havei coalitions.
The second term,Z(a − 1, i − 1), considers adding the new agent into a coalition of its
own, and therefore existing coalition structures with onlyi − 1 coalitions are counted.
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The following proposition characterizes the asymptotic complexity in closed form (the
proof is given in Appendix A):

Proposition 1. The number of coalition structures isO(aa) andω(aa/2).

The number of coalition structures is so large that not all coalition structures can be
enumerated—unless the number of agents is extremely small (below 15 or so in practice).
Therefore, exhaustive enumeration is not a viable method for searching for the optimal
coalition structure.

2.2. Lack of prior attention

Coalition structure generation has not received much attention previously. Research
has mostly focused [20,25,29,48,51] onsuperadditivegames, i.e., games wherevS∪T >
vS + vT for all disjoint coalitionsS,T ⊆ A. In such games, coalition structure generation
is trivial because the agents are best off by forming the grand coalition where all agents
operate together. In other words, in such games,{A} is a social welfare maximizing
coalition structure.

Superadditivity means that any pair of coalitions is best off by merging into one.
Classically it is argued that almost all games are superadditive because, at worst, the
agents in a composite coalition can use solutions that they had when they were in separate
coalitions.

However, many games are not superadditive because there is some cost to the
coalition formation process itself. For example, there might be coordination overhead like
communication costs, or possible anti-trust penalties. Similarly, solving the optimization
problem of a composite coalition may be more complex than solving the optimization
problems of component coalitions. Therefore, under costly computation, component
coalitions may be better off by not forming the composite coalition [41]. Also, if time is
limited, the agents may not have time to carry out the communications and computations
required to coordinate effectively within a composite coalition, so component coalitions
may be more advantageous.

Some non-superadditive games aresubadditive, i.e., vS∪T < vS + vT for all disjoint
coalitionsS,T ⊆ A. In subadditive games, the agents are best off by operating alone, i.e.,
{{a1}, {a2}, . . . , {a|A|}} is a social welfare maximizing coalition structure.

Some games are neither superadditive nor subadditive because the characteristic
function fulfills the condition of superadditivity for some coalitions and the condition
of subadditivity for others. In other words, some coalitions are best off merging while
others are not. In such cases, the social welfare maximizing coalition structure varies.
The grand coalition may be the optimal coalition structure even in games which are not
superadditive. Similarly, every agent operating alone may be optimal even in games which
are not subadditive.

This paper focuses on games that might be neither superadditive nor subadditive, and if
they are, this is not known in advance. In such settings, coalition structure generation is
computationally complex as discussed above.
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Fig. 1. Coalition structure graph. Coalition structure graph for a 4-agent game. The nodes represent coalition
structures. The arcs represent mergers of two coalition when followed downward, and splits of a coalition into
two coalitions when followed upward.

3. Approximate coalition structure generation

Taking an outsider’s view, the coalition structure generation process can be viewed as
search in acoalition structure graph, Fig. 1. As we discussed, finding the optimal coalition
structure in this graph is infeasible due to computational complexity.

Now, how should such a graph be searched if there are too many nodes to search it
completely? Also, how would one justify a particular search over another given that neither
is guaranteed to lead to the optimal solution?

We would like to search through a subsetN ⊆M of coalition structures, pick the best
coalition structure we have seen:

CS∗N = argmax
CS∈N

V (CS) (6)

and be guaranteed that this coalition structure is within a bound from optimal, i.e., that
there is a finite (and as small as possible)k,

k =min{κ} whereκ > V (CS∗)
V (CS∗N)

. (7)

We definenmin to be the smallest size ofN that allows us to establish such a boundk.
Intuition might suggest that a bound cannot be established without searching through all

coalition structures. After all, it seems that even leaving out one coalition structure may
exclude the coalition structure that is arbitrarily much better than the others. We show that,
quite surprisingly, Eqs. (1) and (2) provide enough structure that this cannot happen.
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4. Minimal search to establish a bound

This section discusses how a boundk can be established while searching as little of the
graph as possible.

Theorem 1. To boundk, it suffices to search the lowest two levels of the coalition structure
graph (Fig. 1). With this search, the boundk = a, and the number of nodes searched is
n= 2a−1.

Proof. To establish a bound,vS of each coalitionS has to be observed (in some coalition
structure). Thea-agent coalition can be observed by visiting the bottom node. The second
lowest level has coalition structures where exactly one subset of agents has split away from
the grand coalition. Therefore, we see all subsets at this level (except the grand coalition).
It follows that a search of the lowest two levels sees all coalitions.

In general,CS∗ can include at mosta coalitions. Therefore,

V (CS∗)6 amax
S
vS 6 a max

CS∈N
V (CS)= aV (CS∗N).

Now we can setk = a > V (CS∗)/V (CS∗N).
The number of coalition structures on the lowest level is 1. The number of coalitions

on the second lowest level is 2a − 2 (all subsets ofA, except the empty set and the
grand coalition). There are two coalitions per coalition structure on this level, so there are
1
2(2

a − 2) coalition structures at the second to lowest level. So, there are 1+ 1
2(2

a − 2)=
2a−1 coalition structures (nodes) on the lowest two levels.2
Theorem 2. For the algorithm that searches the lowest two levels of the graph, the bound
k = a is tight.

Proof. We construct a worst case via which the bound is shown to be tight. Choose
vS = 1 for all coalitionsS of size 1, andvS = 0 for the other coalitions. Now,CS∗ =
{{1}, {2}, . . ., {a}}, andV (CS∗) = a. ThenCS∗N = {{1}, {2, . . . , a}}. (This is not unique
because all coalition structures where one agent has split off from the grand coalition have
the same value.) Because

V (CS∗N)= 1,
V (CS∗)
V (CS∗N)

= a
1
= a. 2

Theorem 3. No other search algorithm(than the one that searches the bottom two levels)
can establish any boundk while searching onlyn= 2a−1 nodes or fewer.

Proof. In order to establish a boundk, vS of each coalitionS must be observed. The node
on the bottom level of the graph must be observed since it is the only node where the grand
coalition appears. Assume that the algorithm omitsr nodes on the second level. Each of
the omitted nodes hasCS= {P,Q}. Since coalitionsP andQ are never again in the same
coalition structure, two extra nodes in the graph have to be visited to observevP and
vQ. Assumer coalition structures{P1,Q1}, {P2,Q2}, . . . , {Pr,Qr } are omitted. Since for
i, j, i 6= j , at least one of the following is true,Pi ∩Pj 6= ∅, Pi ∩Qj 6= ∅, orQi ∩Qj 6= ∅,
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at leastr + 1 coalition structures must be visited to replace ther coalition structures
omitted. Therefore, for the algorithm to establishk, it must searchn > 2a−1 nodes. 2

So,nmin = 2a−1, and this is uniquely established via a search algorithm that visits the
lowest two levels of the graph (order of these visits does not matter).

4.1. Positive interpretation

Interpreted positively, our results (Theorem 1) show that—somewhat unintuitively—
a worst case bound from optimum can be guaranteed without seeing allCSs. Moreover,
as the number of agents grows, the fraction of coalition structures needed to be searched
approaches zero, i.e.,nmin/|M| → 0 asa→∞. This is because the algorithm needs to
see only 2a−1 coalition structures while the total number of coalition structures isω(aa/2).
See Fig. 2. For example, in a 10-agent game only 0.44% of the search space needs to be
searched to establish a bound, in a 15-agent game only 0.0012%, and in a 20-agent game
only 0.0000010%.

Furthermore, the bound can be established in linear time in the size of the input. This is
because the input has 2a − 1 coalition values while only 2a−1 coalition structures have to
be seen to establish a bound.

Fig. 2. Number of coalition structures, coalitions, and coalition structures needed to be searched. We use a
logarithmic scale on the value axis; otherwisenmin and the number of coalitions would be so small compared to
the number of coalition structures that their curves would be indistinguishable from the category axis.
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4.2. Interpretation as an impossibility result

Interpreted negatively, our results (Theorem 3) show that exponentially many (2a−1)
coalition structures have to be searched before a bound can be established. This may be
prohibitively complex if the number of agents is large—albeit significantly better than
attempting to enumerate all coalition structures.

Viewed as a general impossibility result, Theorem 3 states that no algorithm for coalition
structure generation can establish a bound in general characteristic function games without
trying at least 2a−1 coalition structures. This sheds light on earlier algorithms. Specifically,
all prior coalition structure generation algorithms for general characteristic function
games [22,44]—which we know of—fail to establish such a bound. In other words, the
coalition structure that they find may be arbitrarily far from optimal.

5. Lowering the bound with further search

If the lowest two levels have been searched, and additional time remains, it would be
desirable to lower the bound with further search. We have devised the following algorithm
that will establish a bound in the minimal amount of search, and then rapidly reduce
the bound further if there is time for more search. This further search is ananytime
algorithm [4,19,50]: it can be interrupted at any time, and it establishes a monotonically
improving bound,k. (If the domain happens to be superadditive, the algorithm finds
the optimal coalition structure (grand coalition) immediately as the first node that it
searches.)

Algorithm 1 (Coalition-structure-search-1).
1. Search thebottom two levels of the coalition structure graph.
2. Continue with a breadth-first search from thetop of the graph as long as there is time

left, or until the entire graph has been searched (this occurs when this breadth-first
search completes level 3 of the graph, i.e., deptha − 3).

3. Return the coalition structure that has the highest welfare among those seen so far.

In the rest of this section, we analyze how this algorithm reduces the worst case bound,
k, as more of the graph is searched. The analysis is tricky because the elusive worst case
(CS∗) moves around in the graph for different searches,N . We introduce the notation

h=
⌊a − l

2

⌋
+ 2 (8)

which is used throughout this section.

Lemma 1. Assume that Algorithm1 has just completed searching levell. Then
(1) If a ≡ l (mod 2) coalitions of sizeh will have been seen paired together with all

coalitions of sizeh− 2 and smaller.
(2) If a 6≡ l (mod 2) coalitions of sizeh will have been seen paired together with all

coalitions of sizeh− 1 and smaller.
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Proof.
(1) At level l the largest coalition in any coalition structure has sizea− l+1. Therefore,

one of the coalition structures at levell is of the formS1, S2, . . . , Sl where|Si | = 1
for i < l and|Sl | = a− l+ 1. Sincea ≡ l (mod 2), h= 1

2(a− l)+ 2. Take coalition
Sl and removeh agents from it. Call the new coalition formed by theh agentsS′l .
We will distribute the remaining12(a − l)− 1 agents among the coalitions of size
1. By doing this we can enumerate all possible coalitions that can appear pairwise
with coalition S′l on level l. For j = 1,2, . . . , 1

2(a − l) − 1, place 1
2(a − 1) − j

agents in coalitionS1 and call the new coalitionSj1 . Redistribute the remaining
j − 1 agents among coalitionsS2, . . . , Sl−1. For eachj we have listed a coalition
structure containing bothS′l andSj1 . The largest of theseSj1 has size1

2(a − l), or
h− 2.

(2) Sincea 6≡ l (mod 2), h= 1
2(a − 1− l)+ 2. Follow the same procedure as for case

(1) except that this time there are1
2(a − 1− l) remaining agents to be redistributed

onceS′l has been formed. Therefore, when we redistribute all these agents among
the coalitionsS1, . . .Sl−1, we get all coalitions that were found in part (1), along
with coalitions of sizeh− 1. 2

From Lemma 1, it follows that after searching levell with Algorithm 1, we cannot have
seen two coalitions ofh members together in the same coalition structure.

Theorem 4. Assume that Algorithm1 has just completed searching levell. The bound
k(n) is da/he if a ≡ h− 1 (modh) anda ≡ l (mod 2). Otherwise the bound isba/hc.

Proof. (Case 1). Assumea ≡ h−1(modh) anda ≡ l (mod 2). Letα be an assignment of
coalition values which give the worst case. For any other assignment of coalition values,
β , the inequality

k(n)= Vα(CS∗)
Vα(CSN)

> Vβ(CS∗)
Vβ(CSN)

holds. SinceCS∗ is the best coalition structure underα, we can assume thatvS = 0 for all
coalitionsS /∈CS∗ without decreasing the ratioVα(CS∗)/Vα(CSN). Also, no two coalitions
S,S′ ∈ CS∗ can appear together ifvS + vS ′ > max

S
′′ ∈CS∗ vS ′′ since otherwise we could

decrease the ratiok(n). Therefore

Vα(CSN)= max
S∈CS∗

vS.

Call this valuev∗. We can derive an equivalent worst case,α′, fromα as follows:
(1) Find a coalition structureCS′ with ba/hc coalitions of sizeh and one coalition of

sizeh− 1.
(2) Define

v = Vα(CS∗)
ba/hc + 1

.

(3) Assign valuev to each coalition inCS′ and let all coalitions not inCS′ have value 0.
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Clearly Vα(CS∗) = Vα′(CS′). From Lemma 1 we know that no two coalitions inCS′
have been seen together. The best value of a coalition structure seen during the search
is Vα′(CSN)= v. Therefore the following inequalities hold:

Vα′(CS′)=
(⌊a
h

⌋
+ 1

)
v =

(⌊a
h

⌋
+ 1

)
Vα′(CSN),(⌊a

h

⌋
+ 1

)
Vα′(CSN)6

(⌊a
h

⌋
+ 1

)
v∗ 6

(⌊a
h

⌋
+ 1

)
Vα(CSN).

SinceVα(CS∗)= Vα′(CS′) andVα′(CSN)6 Vα(CSN),

k(n)= Vα(CS∗)
Vα(CSN)

6 Vα′(CS′)
Vα′(CSN)

=
⌊a
h

⌋
+ 1=

⌈a
h

⌉
.

Therefore the bound isda/he.
(Case 2). This is a similar argument as in case 1, except that the assignment of values

to the coalitions in the equivalent worst case coalition structure is different. Defineα as
before and letCS+ be a coalition structure withba/hc coalitions of sizeh and one possible
remainder coalition of size less thanh. Define

v = Vα(CS∗)
ba/hc .

If S ∈ CS+ and |S| = h, then setvS = v, otherwisevS = 0. The best coalition structure
seen has valueVα+(CSN)= v and we have the following inequalities:

Vα+(CS+)=
(⌊a
h

⌋)
v =

(⌊a
h

⌋)
Vα+(CSN),(⌊a

h

⌋)
Vα+(CSN)6

(⌊a
h

⌋)
v+ 6

(⌊a
h

⌋)
Vα(CSN).

Therefore the boundk(n)= ba/hc. 2
Theorem 5. Right after completing levell with Algorithm1, the bound in Theorem4 is
tight.

Proof. (Case 1). Assumea ≡ h − 1 (modh) and a ≡ l (mod 2). The bound isda/he.
Assume you have the coalition structureCS′ from Theorem 4. Assign value 1 to each
coalitionS ∈ CS′ and assign value 0 to all other coalitions. ThenV (CS′)= da/he. Since
(according to Lemma 1) no two of the coalitions inCS′ have ever appeared in the same
coalition structure,V (CSN)= 1. Therefore

V (CS′)
V (CSN)

= da/he
1
=
⌈a
h

⌉
and the bound is tight.

(Case 2). Assumea 6≡ h−1(modh) or a 6≡ l (mod 2). The bound isba/hc. Assign value
1 to each coalitionS ∈CS+ from Theorem 4 and assign value 0 to all other coalitions. Then
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V (CS+)= ba/hc andV (CSN)= 1. Therefore

V (CS+)
V (CSN)

= ba/hc
1
=
⌊a
h

⌋
and the bound is tight.2

As we have shown in the previous section, before 2a−1 nodes have been searched, no
bound can be established, and atn = 2a−1 the boundk = a. The surprising fact is that
by seeing just one additional node (n = 2a−1 + 1), i.e., the top node, the bound drops
in half (k = 1

2a). Then, to dropk to about 1
3a, two more levels need to be searched.

Roughly speaking, the divisor in the bound increases by one every time two more levels
are searched, but seeing only one more level helps very little.

Put together, the anytime phase (step 2) of Algorithm 1 has the desirable feature that the
bound drops rapidly early on, and there are overall diminishing returns to further search,
Fig. 3.

Trivially, a bound ofk = 1
2a can be established in time that is linear in the size of

the input. This is because the input has 2a − 1 numbers while a boundk = 1
2a can be

established by seeing 2a − 1 coalition structures: the bottom two levels and the top node.

Fig. 3. Ratio boundk as a function of search size in a 10-agent game.
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6. Comparison to other algorithms

All previous coalition structure generation algorithms for general CFGs [22,44]—that
we know of—fail to establish any worst case bound because they search fewer than
2a−1 coalition structures. Therefore, we compare our Algorithm 1 to two other obvious
candidates:
• Merging algorithm, i.e., breadth first search from the top of the coalition structure

graph. This algorithm cannot establish any bound before it has searched the entire
graph. This is because, to establish a bound, the algorithm needs to see every coalition,
and the grand coalition only occurs in the bottom node. Visiting the grand coalition as
a special case would not help much since at least part of level 2 needs to be searched
as well: coalitions of sizea − 2 only occur there.
• Splitting algorithm, i.e., breadth first search from the bottom of the graph. This is

identical to Algorithm 1 up to the point where 2a−1 nodes have been searched, and
a boundk = a has been established. After that, the splitting algorithm reduces the
bound much slower than Algorithm 1. This can be shown by constructing bad cases
for the splitting algorithm (the worst case may be even worse). To construct a bad
case, setvS = 1 if |S| = 1, andvS = 0 otherwise. Now,

CS∗ = {{1}, . . . , {a}}, V (CS∗)= a, and V (CS∗N)= l − 1,

wherel is the level that the algorithm has completed (because the number of unit
coalitions in aCSnever exceedsl − 1). So,

V (CS∗)
V (CS∗N)

= a

l − 1
.

(The only exception comes when the algorithm completes the last (top) level, i.e.,
l = a. ThenV (CS∗)/V (CS∗N) = 1.) See Fig. 3. In other words the divisor drops by
one every time a level is searched. However, the levels that this algorithm searches
first have many more nodes than the levels that Algorithm 1 searches first.

While this comparison is based on worst (or bad) case performance, a recent conference
paper compares the average case performance of these three algorithms experimentally
using four different ways of choosing the coalition structure values [23]. While each of
the algorithms dominated the others in different settings, COALITION-STRUCTURE-
SEARCH-1 performed the most consistently across settings, and its performance was close
to that of the best out of the three algorithms in each of the four settings.

7. Variants of the problem

This section discusses variations to the coalition structure generation problem.

7.1. Anytime versus design-to-time algorithms

In general, one would want to construct an anytime algorithm that establishes a lowerk

for any amount of searchn, compared to any other anytime algorithm. However, such an
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algorithm might not exist. It is conceivable that the search which establishes the minimalk

while searchingn′ nodes (n′ > n) does not include all nodes of the search which establishes
the minimalk while searchingn nodes. This hypothesis is supported by the fact that the
curves in Fig. 3 cross in the end. However, this is not conclusive because Algorithm 1
might not be the optimal anytime algorithm, and because the bad cases for the splitting
algorithm were not shown to be worst cases.

If it turns out that no anytime algorithm is best for alln, one could use information (e.g.,
exact, probabilistic, or bounds) about the termination time to construct adesign-to-time
algorithm [4,13,50] which establishes the lowest possiblek for the specified amount of
search.

7.2. Off-line versus on-line search control policies

In this paper we have discussed algorithms that have anoff-line search controlpolicy,
i.e., the nodes to be searched have to be selected without using information accrued from
the search so far. Withon-line search control, one could perhaps establish a lowerk with
less search because the search can be redirected based on the values observed in the nodes
so far.

Especially with on-line search control, it might make a difference whether the search
observes only values of coalition structures,V (CS), or values,vS , of individual coalitions,
S ⊆ A, in those structures. The latter gives more information. The algorithms presented
so far in the paper do not rely on such information: they work in both settings. However,
it is conceivable that one could do better by capitalizing on the extra information that is
available in the latter setting. As a special case, when an algorithm that observes coalition
values,vS , has searched the bottom two layers, it could, in theory, jump to the optimal
coalition structure immediately. However, this shifts the burden of search to the meta-
level (search control level): that level still needs to figure out where the optimal coalition
structure lies (given the values of the coalitions) so that it can direct the search to jump
there.

7.3. Observing coalition structure values,V (CS), versus observing coalition values,vS

We now discuss the complexity of determining the desired coalition structure if the
algorithm has the luxury of observing values,vS , of individual coalitions,S ⊆ A instead
of merely observing valuesV (CS) of coalition structures. In such settings, the coalition
structure generation problem is the same problem as weighted set packing [18], weighted
independent set, weighted maximum clique, and winner determination in combinatorial
auctions [31,36].

7.3.1. Observing coalition values,vS : Full input
If the algorithm observes thevS values directly, the optimal coalition structure can be

determined using the following dynamic programming algorithm which was originally
developed for winner determination in combinatorial auctions [31].
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Algorithm 2 (Dynamic programming for coalition structure generation).
INPUT: vS for all S ⊆A. If no vS is specified thenvS = 0.
OUTPUT: the optimal coalition structure,CS∗.
1. For allx ∈A, setf (x) := v{x}, C({x}) := {x}
2. Fori := 2 toa, do:

For allS ⊆A such that|S| = i, do:
(a) f (S) :=max{f (S \ S′)+ f (S′): S′ ⊆ S and 16 |S′|6 1

2|S|}
(b) If f (S)> vS , then setC(S) := S∗ whereS∗ maximizes the right hand side of (a).
(c) If f (S) < vS , then setf (S) := vS andC(S) := S.

3. SetCS∗ := {A}.
4. For everyS ∈CS∗, do:

If C(S) 6= S, then
(a) SetCS∗ := (CS∗ \ {S})∪ {C(S), S \ C(S)}.
(b) Goto 4 and start with newCS∗.

Clearly, this algorithm takes�(2a) time because it looks at all coalitionsS ⊆ A. It
also runs in O(3a) time [31]. This is significantly less than exhaustive enumeration of all
coalition structures. The savings come from the fact that the solutions for the subsets need
not be computed over and over again, but only once. In a trivial sense, the algorithm is
polynomial. If the input includes a value for everyS ⊆ A, the input includes 2a numbers.
The algorithm runs in

O
(
3a
)=O

(
2(log2 3)a)=O

(
(2a)log2 3)

time. Thus the complexity is O(y log2 3), wherey is the number of values in the input.5

Put together, if the algorithm has the luxury of observing coalition valuesvS directly,
it may still be desirable to use our search-based algorithm since it establishes a bound in
2a−1 steps while dynamic programming takes significantly longer. However, if it is known
that there will be enough time (O(3a)) to run the dynamic programming to completion,
it is better to opt to do that than to run our search-based algorithm since the latter has to
search the entire graph—i.e., O(aa) andω(aa/2) coalition structures—to guarantee that
the optimal solution has been found. Note also that the dynamic programming algorithm
serves as the optimal (k = 1) design-to-time algorithm if it is known that there will be
enough time to run it to completion.

7.3.2. Observing coalition values,vS : Partial input
Another setting arises if the input to the algorithm only includes values of some

coalitions, and the unmentioned coalitions havevS = 0 by default. The dynamic
programming algorithm will still run the same number of steps, and will therefore not,
in general, be polynomial in the size of the input.

It turns out that, unless P=NP, no algorithm can find the optimal coalition structure in
polynomial time in the size of the input in general:

Proposition 2. Finding the optimal coalition structure isNP-complete.

5 Furthermore, each value,vS , takes logvS bits to represent in the input.
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Proof. The decision problem is the following: given coalition values,vS , for some
coalitionsS ⊆ A, and a real number,k, does there exist a coalition structure whose value
is at leastk?

The problem is in NP because verifying the value of a solution can be done in polynomial
time. Specifically, it only involves summing the values of the coalitions in the structure, and
there are at mosta coalitions in any coalition structure.

What remains to be shown is that the problem is NP-hard. We prove this by reducing the
set packingproblem to our problem. The set packing decision problem is the following:
given a family of sets{Tj } and a positive integerq , does{Tj } containq mutually disjoint
sets? Karp showed that this problem is NP-complete [21].

We use the following reduction. Letk = q . Let vS = 1 for everyS that corresponds to a
Tj , and letvS = 0 otherwise. Now, a coalition structure with value at leastk exists if and
only if there existq mutually disjoint sets in{Tj }. Thus our problem is NP-hard.2

Furthermore, in this setting, unless probabilistic polynomial time = NP, no polynomial
time algorithm can even establish a boundk = z1−ε for anyε > 0 in general wherez is the
number of coalition values in the input [16,36].6

Recently, a search-based algorithm was developed for the partial-input setting [36].
Again, it was developed for winner determination in combinatorial auctions, but can
be used for optimal coalition structure generation. It constructs a tree where the nodes
are coalitions instead of coalition structures as in this paper. It is computationally very
efficient if the input is sparse, i.e., if only a small fraction of the coalitions are mentioned
in the input (vS = 0 for mostS ⊆ A). The algorithm does this by provably sufficient
selective generation of children in the search tree, by using a secondary search for fast
child generation, by heuristics that are relatively accurate and optimized for speed, and by
four methods for preprocessing the search space.

7.4. Centralized versus distributed

Coalition structure generation could occur centrally where one agent tries to find a good
coalition structure given the values of all coalitions. In this case the arcs of the coalition
structure graph represent deliberative search steps.

Alternatively, coalition structure generation could be a distributed process where no
agent knows the values of all coalitions up front, but the coalitions are formed by
negotiating over which coalitions should form (and how each coalitions’ optimization
problem should be solved and how payoff should be divided). In this case, the arcs of
the coalition structure graph represent committal agreements to make/break coalitions.

In both settings there is a potential distinction between a deliberative phase where agents
search locally for good options, and a committal phase where the agents make binding
agreements. For example, under the centralized model, one agent can do the deliberative

6 If the coalitions whose values are mentioned in the input (vS 6= 0) have certain types of additional structure,
known polynomial time approximation algorithms for weighted set packing and weighted independent set can be
used to establish somewhat lower bounds [5,14,15,17]. These bounds are still so high that they are irrelevant for
coalition structure generation in practice. For a recent review, see [36]. If the coalitions that havevS 6= 0 happen
to have very particular structure, polynomial time algorithms can solve for the optimal coalition structure [31].
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search, but the outcome might not be imposable on the others without their consent.
Similarly, in the distributed model, each agent could do deliberative lookahead into the
future of the coalition structure generation process amidst making binding agreements with
others.

A third method is for the coalition values to be known to all but to distribute the search
among the agents. This variant is discussed in Section 8.

7.5. Degree of generality of our results

None of these variants would affect our results that in general, searching the bottom two
levels of the coalition structure graph is the unique minimal way to establish a worst case
bound, and that the bound is tight. However, the results on searching further might differ in
the anytime versus design-to-time, and off-line versus on-line search control variants. This
is a focus of our future research.

8. Distributing coalition structure search among insincere agents

This section discusses the distribution of coalition structure search across agents (e.g.,
because the search can be done more efficiently in parallel, and the agents will share the
burden of computation) and the methods of motivating self-interested agents to actually
follow the desired search method. Self-interested agents prefer greater personal payoffs,
so they will search for coalition structures that maximize personal payoffs, ignoringk. In
order to motivate such agents to follow a particular search that leads to a socially desirable
outcome (e.g., a search that guarantees a desirable worst case boundk), the interaction
protocol has to be carefully designed.7 The following method for distributing search
motivates the agents to abide:

(1) Deciding what part of the coalition structure graph to search: This decision can
be made in advance (outside the distributed search mechanism), or be dictated by
a central authority, or by a randomly chosen agent (see footnote 8), or be decided
using some form of negotiation. The earlier results in this paper give prescriptions
about which part to search. For example, the agents can decide to search the bottom
two levels of the coalition structure graph.

(2) Partitioning the search space among agents: Each agent is assigned some part of
the coalition structure graph to search. The enforcement mechanism, presented
later, will motivate the agents to search exactly what they are assigned, no matter
how unfairly the assignment is done. One way of achievingex antefairness is to
randomly allocate the set search space portions to the agents. In this way, each
agent searches equally on an expected value basis, althoughex post, some may

7 In some domains, the protocol designer cannot prevent agents from opting out. However, such agents receive
null excess payoffs since they do not collude with anyone. That is, for|S| = 1, the payoff to the agent equals
its coalition valuevS . This assumes that agents do not recollude outside the protocol, which may be out of the
protocol designer’s control.
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search more than others.8 The fairest option would be to distribute the space so
that each agent gets an equal share. Unfortunately, the number of search nodes in
(the to-be-searched portion of) the coalition structure graph might not be divisible
by the number of agents,a, so an exactly equal division of computation may not
be possible. Appendix B presents a method for dividing the search space intoa

disjoint, exhaustive parts—of possibly unequal sizes. Ifex postequality is required,
a payment scheme could be included for compensating those agents that carry out a
larger portion of the search.

(3) Actual search: Each agent searches part of the search space. The enforcement
mechanism guarantees that each agent is motivated to search exactly the part of
the space that was assigned to that agent. Each agent, having completed the search,
tells the others whichCSmaximizedV (CS) in its search space.

(4) Enforcement of the protocol: One agent,i, and one search space of an agentj, j 6= i,
will be selected at random.8 Agent i will re-search the search space ofj to verify
thatj has performed its search as required. Agentj gets caught of mis-searching if
i finds a betterCSin j ’s space thanj reported (ori sees that theCSthatj reported
does not belong toj ’s space at all). Ifj gets caught, it has to pay a penaltyP . To
motivatei to conduct this additional search,i should be made the claimant ofP .
There is no pure strategy Nash equilibrium in this mechanism.9 If i searches any
given node inj ’s space, and the penalty is high enough, thenj is motivated to search
that node. However, theni is not motivated to search that node since it cannot receive
P . On the other hand, ifi skips a given node inj ’s space,j is motivated to skip it
as well (unless searching that node has a high chance of improving the best solution
found by all agents so much thatj ’s share of that improvement outweighs the search
cost). However, theni is motivated to search that node since it would receiveP .
Instead, there can be a mixed strategy Bayes–Nash equilibrium wherei andj search
nodes with some probabilities. By increasingP , the probability thatj searches all
of the nodes in its space could be made close to one. The probability thati searches
would go close to zero, which minimizes enforcement overhead.10

(5) Additional search: The previous steps of this distributed mechanism can be repeated
if more time to search remains. For example, the agents could first do step 1 of
Algorithm 1. Then, they could repeatedly search more and more as time allows,
again using the distributed method.

8 The randomization can be done without a trusted third party by using a recent distributed nonmanipulable
protocol for randomly permuting the agents [51]. Distributed randomization is also discussed in [24].

9 In short, agents’ strategies are said to be in Nash equilibrium if each agent’s strategy is a best response to the
strategies of the others [26,27].
10 Agentj will try to trade off the cost of search against the risk of getting caught, and could decide that the risk

is worth taking. Similarly, agenti will try to trade off the cost of re-searching against the chance of catchingj .
This problem can be minimized by choosing a high enoughP . A further complication arises from the fact that
an agent can decide whether to search further in its space—and where to search within that space—based on the
results of its search so far. These result signal to the agent about how good the unsearched coalition structures
would be. Due to this update, the equilibrium would not be a basic mixed strategy Nash equilibrium, but a mixed
strategy Bayes–Nash equilibrium. The detailed analysis of this equilibrium is part of our current research.
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(6) Payoff division: Many alternative methods for payoff division among agents could
be used here. The only concern is that the division ofV (CS) may affect whatCS
an agent wants to report as a result of its search since differentCSs may give the
agent different payoffs (depending on the payoff division scheme). However, by
makingP high enough compared to theV (CS) values, this consideration can be
made negligible compared to the risk of getting caught.

9. Related research

Coalition formation has been widely studied in game theory [1–3,20,26,29,48]. How-
ever, most of that work has not taken into account the computational limitations involved.
This section reviews some of the research that has been done on the computational as-
pects. We will discuss payoff division among agents, coalition structure generation, and
optimization within each coalition.

9.1. Payoff division

The bulk of the game theoretic coalition formation work focuses on the question of
how to divideV (CS∗) among agents so as to achieve stability of the payoff configuration.
Several different notions of stability in characteristic function games have been proposed,
see [20] for a review. In most cases, computing a stable payoff configuration is intractable.

Transfer schemesrepresent a dynamic approach to the payoff division activity of
coalition formation in CFGs [20,46]. The agents stay within a given coalition structure
and iteratively exchange payments in a prespecified manner. Again, there is no guarantee
that a self-interested agent would be best off by using the specified local strategy: by using
some other strategy, an agent may be able to drive the negotiation to a final solution that
is better for the agent. Transfer schemes address the payoff distribution activity but not the
optimization activity or coalition structure generation.

For example, a transfer scheme for thecoresolution concept has been developed [49].11

This scheme alternates between two operators. In the first, an agent’s payoff is incremented
by its coalition’s excess (value of the coalition minus the sum of the members’ current
payoffs) divided by the number of agents in the coalition. In the second, every agent’s
payoff is decremented equally, just enough to keep the total payoff vector feasible. The
method can be implemented in a largest-excess-first manner, or in a round-robin manner
among agents. Both schemes converge to a payoff vector in the core, if the core is
nonempty, i.e., if such a stable payoff vector exists.

Transfer schemes reduce the cognitive demands placed on the agents. For example, in
the case of the core, the agents do not need to search for a payoff vector that satisfies
the numerous constraints in the definition of the core. Instead they can simply follow the
transfer scheme until a payoff division in the core has been reached.

11 A payoff configuration is in the core if no subgroup of agents can achieve higher payoff by moving out of the
payoff configuration and forming a coalition of their own [20].
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Transfer schemes could be used in conjunction with our work. Our approach would be
used for coalition structure generation, and a transfer scheme could be used for dividing
the resulting value of the coalition structure among agents.

Zlotkin and Rosenschein [51] analyze payoff division in “Subadditive Task Oriented
Domains” (STODs), which are a strict subset of CFGs. In their work, the coalition structure
generation is trivial since the agents always form the grand coalition. Specifically, one
agent handles the tasks of all agents. In STODs this is optimal because STODs never
exhibit diseconomies of scale. Their method guarantees each agent an expected value that
equals its Shapley value [42]. The Shapley value is a specific payoff division among agents
that motivates individual agents to stay in the coalition structure. The group of all agents
is also motivated to stay in the coalition structure. Unlike the core, the Shapley value does
not in general motivate every subgroup of agents to stay. In a subset of STODs, “Concave
Task Oriented Domains”, the Shapley value also motivates every subgroup to stay, i.e., that
payoff configuration is in the core [51].

A naive method that guarantees each agent an expected payoff equal to the Shapley value
has exponential complexity in the number of agents, but Zlotkin and Rosenschein present
a novel way of achieving this with linear complexity in the number of agents. Each agent
gets paid its marginal contribution to the coalition. Because this depends on the order in
which the agents join the coalition, the joining order is randomized. The randomization is
carried out in a distributed nonmanipulable way so as to avoid the need for a trusted third
party to carry out the randomization.

Zlotkin and Rosenschein’s payoff division method could be used in conjunction with
the coalition structure generation methods of this paper. The Shapley value is well-defined
for every coalition structure, not only the grand coalition. Therefore, our methods could
be used to choose the coalition structure, and the agents could get paid their marginal
contribution to the coalition structure. Again, the joining order would be randomized. This
would give each agent an expected payoff equal to its Shapley value.

Recently Deb et al. [9] investigated games where all effective coalitions must contain at
leastq agents, whereq is a constant, 16 q 6 a. It is also assumed that there is a finite
number of payoff configurations. They determine an upper bound on the size of the space
of payoff configurations that guarantees existence of a stable coalition structure. They do
not address the problem of coalition structure generation, nor how to restrict the space of
payoff configurations. They also do not discuss bounds on solution quality.

9.2. Coalition structure generation

Shehory and Kraus [43] present an algorithm for coalition structure generation among
cooperative—social welfare maximizing, i.e., not self-interested—agents. Among such
agents the payoff distribution is a nonissue and is thus not addressed. The distributed
algorithm forms disjoint coalitions—which by their definition can only handle one task
each—and allocates tasks to the coalitions. Recently Shehory and Kraus have extended
this work to overlapping coalitions and coalitions that can jointly handle more than one
task [45]. The complexity of the problem is reduced by limiting the number of agents per
coalition. The greedy algorithm guarantees that the solution is within a loose ratio bound
from the best solution that is possiblegiven the limit on the number of agents. However,
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this benchmark can, itself, be arbitrarily far from optimum. On the other hand, our work
computes the bound based on the actual optimum.

Our result that no algorithm can establish a bound while searching less than 2a−1 nodes
does not apply to their setting because they are not solving CFGs. First, theirvS values
have special structure. Second, they have dependencies betweenvS values. Third, in their
work, a given coalition may have several values that correspond to different tasks. While
the third difference may cause more complexity than is present in CFGs, the first difference
may allow a worst case bound to be established with less search than in general CFGs. In
CFGs where thevS values are known to satisfy additional constraints, it may be possible
to exploit such structure and establish a worst case bound with less search than in general
CFGs.

De Vany [10] uses information theory to measure the complexity of coalition structures.
He observes that finding the optimal coalition structure rapidly becomes intractable as the
number of agents grows. He therefore concludes that “almost optimal” coalition structures
should be sought instead, and proposes this as fruitful future research. Unlike our work, he
does not present algorithms for doing this.

9.3. Combining coalition structure generation and payoff division

While payoff division and coalition structure generation are important problems to study
in isolation, it would be desirable to extend those studies by focusing on both of these
activities simultaneously as well. This is important from the perspective of many practical
applications since in many settings these two activities interact. Among self-interested
agents, the coalition that an agent wants to join often depends on the agent’s payoffs in
alternative coalitions.

9.3.1. Nonnormative approaches
One strand of research in this field is focused on asking the question of what types of

outcomes follow if the agents follow particular strategies.
Early work in this field includes Friend’s program that simulates a 3-agent coalition

formation situation where agents can make offers, acceptances, and rejections to each other
regarding coalitions and payoffs [12,20]. In the model, at most one offer regarding each
agent can be active at a time. A new offer makes old offers regarding that agent void.
Players consider only current proposals: they are assumed to do no lookahead or to have
no memory. The negotiations terminate when two agents have reached a dyad and the
third one has given up. Specifically, the termination criterion is based on a local threat-
counterthreat examination: an agent does not necessarily accept a new better offer if that
introduces a risk of being totally excluded in the next step. The model is not normative:
there is no guarantee that a self-interested agent would be best off by using the specified
local strategy.

Ketchpel [22] presents a coalition formation method which addresses coalition structure
generation as well as payoff distribution. These are handled simultaneously. His algorithm
uses cubic time in the number of agents, but each individual step may be very complex
due to an inefficient pairwise auction protocol. His coalition formation method guarantees
neither a bound from optimum nor stability of the coalition structure (which is normally



T. Sandholm et al. / Artificial Intelligence 111 (1999) 209–238 231

achieved via appropriate payoff division). There is no mechanism for motivating self-
interested agents to follow his algorithm.

Ketchpel’s method is related to a contracting protocol of Sandholm [33,34,39] (TRACO-
NET) where agents construct the global solution by reallocating a small number of tasks
among themselves at a time. Payments are made regarding each such contract before
new contracts take place. An agent updates its approximate local solution after each task
transfer.

Shehory and Kraus [44] analyze coalition formation among self-interested agents with
perfect information in CFGs. Their protocol guarantees that if agents follow it (nothing
necessarily motivates them to do so), a certain stability criterion, kernel-stability, is met.
Their other protocol reduces the complexity somewhat by requiring only a weaker form of
stability, polynomial kernel-stability. Their algorithm switches from one coalition structure
to another and guarantees improvements at each step: it is an anytime algorithm. However,
it does not guarantee a bound from optimum.

9.3.2. Normative approaches
Another strand of research in this field asks the question of what happens if each agent

uses the strategy that is best for itself. In other words, agents are assumed to act rationally
instead of using some particular ad hoc strategies. The fact that ad hoc strategies are not
acceptable introduces the analytical burden of showing what the best strategy for each
agent is. This may depend on the strategies of other agents. Such settings can be analyzed
using solution concepts from noncooperative game theory. This area of study is called
coalitional bargaining. It addresses both coalition structure generation and payoff division.
Coalitional bargaining can be seen as a generalization of the Rubinstein alternating offers
bargaining model [32]. A typical model has agents in a characteristic function setting
sequentially making proposals to the group. A proposal consists of a possible coalition
to be formed and a payoff vector determining how the value of the coalition would be
divided among the members. Unanimous agreement among the members of the proposed
coalition leads to that coalition being formed, otherwise no coalition is formed and another
proposal is made. Time discounting is usually included in the model.

Chatterjee et al. [6] discuss efficiency properties of stationary equilibria of strictly
superadditive games. Responses to a proposal are always done in the order defined in the
protocol and the first agent to reject a proposal becomes the next agent allowed to make a
proposal. They show that inefficiencies can arise in the form of delay and nonformation of
the grand coalition. The protocol, or ordering of agents, significantly affects the efficiency
of the outcome, and grants different agents differing amounts of power.

Okada [28] studies a similar setting, but is interested in how efficiency of agreement
is affected by the bargaining procedure, in particular by the rule governing the selection
of proposers. Unlike the work of Chatterjee et al., the proposer is chosen randomly with
equal probability from among the group of remaining agents. It is shown that no delay of
agreement occurs in equilibrium for superadditive games and if players are patient enough,
the grand coalition is formed with an equal payoff allocation if and only if it has the largest
value per capita among all coalitions.

Evans [11] investigates a situation where there is no time discounting and where the
protocol does not specify which agent will make a proposal. Instead, at each round of
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bargaining, agents compete for the right to make a proposal by investing resources. The
agent that invests the most in a round is awarded the ability to make the proposal for that
round. A player’s final payoff is the resources awarded to it in the final agreement minus the
amount spent in the proposal competition. In this game, pure stationary subgame perfect
equilibrium payoffs coincide with the core, if the core exists. When a time discount is
included, no stationary pure strategy equilibria exist.

Put together, on the positive side, coalitional bargaining does not make ad hoc assump-
tions about the agents’ behavior. On the negative side, the computational complexity has
usually not been addressed.

9.4. Optimization within each coalition

Sandholm and Lesser [38,41] study coalition formation with a focus on the optimization
activity: how do computational limitations affect which coalition structure should form,
and whether that structure is stable? That work used a normative model of bounded
rationality based on the agents’ algorithms’ performance profiles and the unit cost of
computation. All coalition structures were enumerated because the number of agents was
relatively small, but it was not assumed that they could be evaluated exactly because the
optimization problems could not be solved exactly due to intractability. The methods of
this paper can be combined with their work if the performance profiles are deterministic.
In such cases, thevS values represent the value of each coalition, given that the coalition
would strike the optimal tradeoff between quality of the optimization solution and the cost
of that computation. Our algorithm can be used to search for a coalition structure, and
only afterwards would the coalitions in the chosen coalition structure actually attack their
optimization problems. If the performance profiles include uncertainty, this separation of
coalition structure generation and optimization does not work, e.g., because an agent may
want to redecide its membership if its original coalition receives a worse optimization
solution than expected.

9.5. Combining coalition structure generation, optimization within each coalition, and
payoff division

As discussed above, prior work on computational coalition formation has reduced the
complexity of coalition structure generation (in the number of agents), payoff division
(in the number of agents), or the optimization activity (in the size of the coalitions’
optimization problems). However, to our knowledge, no work up to date has reduced
the complexity of these three activities simultaneously. We postulate this as a desirable
direction for future research. Above we also presented steps toward this direction by
discussing ways of combining our coalition structure generation methods with existing
methods for reducing the complexity of payoff division or optimization.

10. Conclusions and future research

Coalition formation is a key topic in multiagent systems. One may prefer a coalition
structure that maximizes the sum of the values of the coalitions. However, often the
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number of coalition structures is too large to allow exhaustive search for the optimal
one. Furthermore, the problem is NP-complete, so unless P= NP, no algorithm can find
the optimal coalition structure in time that is polynomial in the size of the input (which
itself is exponential because it includes the values of all coalitions). This paper focused
on establishing a worst case bound on the quality of the coalition structure while only
searching a small fraction of the coalition structures.

We showed that none of the prior coalition structure generation algorithms for general
characteristic function games can establish any bound because they search fewer nodes
than a threshold that we showed necessary for establishing a bound (in special cases where
the coalition values have additional structure, it may be possible to establish a bound with
less search). We presented an algorithm that establishes a tight bound within this minimal
amount of search, and showed that any other algorithm would have to search strictly more.
The fraction of nodes needed to be searched approaches zero as the number of agents
grows.

If additional time remains, our anytime algorithm searches further, and establishes a
progressively lower tight bound. Surprisingly, just searching one more node drops the
bound in half. As desired, our algorithm lowers the bound rapidly early on, and exhibits
diminishing returns to computation. It also drastically outperforms its obvious contenders:
the merging algorithm and the splitting algorithm. Finally, we showed how to distribute the
desired search across self-interested manipulative agents.

Our results can also be used as prescriptions for designing negotiation protocols for
coalition structure generation. To optimize worst case performance, the agents should not
start with everyone operating separately—as one might do intuitively. Instead, they should
start from the grand coalition, and consider different ways of splitting off exactly one
coalition. After that, they should try everyone operating separately, and can continue from
there by considering mergers of two coalitions at a time.

Future research includes studying design-to-time algorithms and on-line search con-
trol policies for coalition structure generation. We are also analyzing the interplay of dy-
namic coalition formation and belief revision among bounded-rational agents [47]. When
coalition values have uncertainty, agents may want to redecide their coalitions. The design
of applicable backtracking methods for self-interested agents is nontrivial. In the future
we plan to extend Sandholm and Lesser’s nonmanipulable leveled commitment contracts
[34,40] to coalition formation deals as one possible way of implementing backtracking in
this setting. The long term goal is to construct normative methods that reduce the complex-
ity of all three activities of coalition formation simultaneously: coalition structure genera-
tion, optimization within each coalition, and payoff division.
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Appendix A. Number of coalition structures

Proof of Proposition 1. We first prove that the number of coalition structures is O(aa).
Let there bea agents. Let there be a set oflocationswhere coalitions can form, at most
one coalition per location. Let the number of locations bea. This allows for any coalition
structure to form since a coalition structure can have at mosta coalitions. Now, say that
the agents get placed in locations one agent at a time. Each agent could be placed ina

different locations, and there area agents to place. Therefore, the number of possible
overall assignments isaa . Thus, the number of coalition structures isO(aa). 12

What remains to be proven is that the number of coalition structures isω(aa/2). We use
the following lemma in the proof.

Lemma A.1. Let a andb be positive integers. Thenda/be!6 (a/b)a/b for a/b> 2.

Proof.
da/be!
(a/b)a/b

6 a/b+ 1

a/b
· a/b
a/b
· a/b− 1

a/b
· · · 2

a/b
6 a/b+ 1

a/b
· a/b− 1

a/b

=
(

1+ b
a

)(
1− b

a

)
= 1−

(
b

a

)2

6 1.

Thereforeda/be!6 (a/b)a/b. 2
One way to count the number of coalition structures is to useBell numbers. The Bell

numberBa is equal to the number of ways a set ofa elements can be partitioned into
nonempty subsets. That is,Ba is equal to the number of coalition structures that can be
generated witha agents. There are several ways of calculating Bell numbers, including
Dobinski’s formula [7]:

Ba = 1

e

∞∑
i=0

ia

i! .

To show that the number of coalition structures isω(aa/2) it suffices [8] to show that

lim
a→∞

Ba

aa/2
=∞.

Since each term in the series of Dobinski’s formula is positive, it suffices to take one term,
ia

i! and show that

lim
a→∞

ia

i!
aa/2
=∞.

12 Note thataa overestimates the number of coalition structures. Some coalition structures are counted multiple
times because for any given coalition in the structure, the structure is counted once for each location where the
coalition can form (although it should be counted only once).
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Seti = da/be for some constantb, whereb > 2. Then the expression we are interested in
is

(da/be)a
(da/be)!aa/2 >

(a/b)a

(da/be)!aa/2 >
(a/b)a

a/ba/baa/2
= a

a(b−2)/(2b)

ba(b−1)/b
.

We now calculate

lim
a→∞

aa(b−2)/2b

ba(b−1)/b
.

Since the natural logarithm and exponential functions are continuous, we can calculate the
limit as follows. Set

φ(a)= ln
aa(b−2)/(2b)

ba(b−1)/b

= a(b− 2)

2b
lna − a(b− 1)

b
lnb

= a
b

[
b− 2

2
lna − (b− 1) lnb

]
.

Then

lim
a→∞

aa(b−2)/(2b)

ba(b−1)/b
= lim
a→∞eφ(a)

= lim
a→∞ea/be((b−2)/2) lna−(b−1) lnb

= lim
a→∞ea/b lim

a→∞e((b−2)/2) lna−(b−1) lnb

=∞ ·∞
=∞.

Thus, we have shown thatBa ∈ ω(aa/2). 2

Appendix B. Dividing the search space among agents

In Section 8 we presented a nonmanipulable method for distributing the search among
agents. To allow the agents to perform the distributed search, it is necessary to partition any
given search spaceM ′ ⊆M among them. This appendix presents a method for choosing
which agent searches which portion of the space. It would be desirable to partition the
space so that the agents’ portions are exhaustive (i.e., they coverM ′, the part of the overall
space that the agents have decided to cover), disjoint (i.e., there is no redundant search), and
of the same size (each agent searches equally many coalition structures13 ). Unfortunately,
it may not be possible to divide the space equally because, for example,|M ′| might not be
divisible bya.

13 This is desirable if each coalition structure requires the same amount of computation.
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It would also be desirable to define the coalition structures that an agent needs to search
without actually enumerating those coalition structures. This is because enumeration can
be almost as costly as the search itself.

This appendix presents a nonenumerative method for dividing the space exhaustively
and disjointly, albeit unequally in general. Giving the entire search to one agent would
achieve this trivially. On the other hand, our method distributes the search more evenly,14

and assigns each agent the sameexpectedamount of search. The method works as follows:
(1) The agents draw a random permutation of the numbers 1. . .a (again, the random-

izations can be done via a trusted third party, or using a nonmanipulable distributed
method [49]). This permutation sets a size ordering criterion for coalitions in coali-
tion structures. For example, ifa = 5 and the permutationP1 = 32154 is drawn,
then coalitions of size 3 will appear first in coalition structures, coalitions of size 2
will appear second, etc.

(2) For each coalition size the agents draw a random permutation. According to this
permutation the agents within the coalition are ordered. For example, ifP2= 25341
is drawn for coalition size three, then the coalition of agents 1, 3, and 5 will be
ordered 531.
These orderings give implicit names to the coalitions. These names can be used
to break ties regarding step (1): coalitions of the same size can be ordered, for
example, in lexicographically increasing order within a coalition structure. However,
this method gives significantly more search to agents with small indices. Therefore
we suggest that the lexicographic comparison is done on the reversed name of the
coalition. For example, for the coalition 531, the key to compare would be 135.
This still imposes some more search on agents with small indices, but only if the
lexicographic comparison has to use each digit of the name. Furthermore, this slight
ex postunfairness does not affectex anteequality because in the main algorithm
(Section 8), the search portions get randomly assigned to agents anyway. In other
words, the agents get randomly assigned indices.

(3) Each agent is responsible for searching coalition structures where it is the first agent
of the first coalition. For example, assume thatP1 andP2 were drawn as above.
Now, coalition structure{541,23} should be searched by agent 5.

The complexity of this assignment scheme is very low compared to the complexity of the
actual coalition structure generation search. Each distributed random permutation takes
only O(a2) operations, and our scheme usesa such permutations (one in step (1), and
one for each coalition size in step (2) (except that coalitions of size one do not need a
permutation)).
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