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Abstract

One key issue facing robotic teams is effective coordina-
tion mechanisms. Many robotic groups operate within do-
mains where restrictions such as limiting areas of opera-
tion are liable to cause spatial conflicts between robots. Our
previous work proposed a measure of coordination, inter-
ference, that measured the total time robots dealt with re-
solving such conflicts. We found that a robotic group’s pro-
ductivity was negatively correlated with interference: Ef-
fective coordination techniques minimized interference and
thus achieved higher productivity. This paper uses this re-
sult to create adaptive coordination techniques that are able
to dynamically adjust the efforts spent on coordination to
match the number of perceived coordination conflicts in a
group. Our robots independently calculate a projected level
of interference they will encounter. By using this metric as a
guide, we are able to create adaptive coordination methods
that can quickly and effectively adjust to a given domain’s
spatial limitations. We present two adaptation heuristics
that are completely distributed and require no communi-
cation between robots. Using thousands of simulated tri-
als, we found that groups using these approaches achieved
a statistically significant improvement in productivity over
non-adaptive coordination methods.

1. Introduction

Groups of robots are likely to accomplish certain tasks
more quickly and robustly than single robots [3, 5]. How-
ever, the physical environment where such teams operate
often pose a challenge for the robots to perform properly.
For example, domains such as robotic search and rescue,
vacuuming, and waste cleanup are all characterized by lim-
ited operating spaces where the robots are likely to collide.
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Improved coordination methods in such domains result in
more productive groups.

Our previous work [9] defined a measure called inter-
ference to facilitate comparison between various coordina-
tion methods. Interference is defined as the total time each
robot spends in resolving conflicts with other robots. This
not only includes the time robots collide, but also the time
robots spend preventing such collisions and the time they
engage in resolution behaviors after such an event. It was
found that a strong negative correlation exists between inter-
ference in a group and its productivity. However, this does
not mean that robots should avoid the coordination activi-
ties which constitute interference as such behaviors are of-
ten critical for achieving cohesive team behavior. Rather, it
was suggested that the coordination method of choice needs
to appropriately match the needs of the domain. As such,
interference should be kept to a minimum, while still suf-
ficiently high to meet the coordination requirements of the
environment.

This paper builds on this hypothesis by presenting two
applications whereby robots dynamically adapt their coor-
dination techniques based on the amount of interference
they project will be encountered. Our first method works
by tweaking the strength within one coordination method
to adapt to its environment. Our second approach pro-
ceeds to dynamically self select between a range of mu-
tually exclusive coordination methods. In order to quickly
adapt to a changing environment, we use weight-based
heuristics by which every robot in the group is capable of
quickly modifying its resolution methods to match its esti-
mates of resource conflicts. Our approach is completely dis-
tributed, and requires no communications between robots.
We found that our adaptive methods result in statistically
significant higher average productivity than those of non-
adaptive methods regardless of the group size.

The remainder of this paper is organized as follows. The
next section discusses the correlation between interference
and any group’s productivity. We present the problem of
matching the best coordination method to a given domain.



Section 3 presents our adaptive coordination algorithm, and
presents our hypothesis that such an approach can effective
adapt to the dynamic nature of many robotic domains. Such
a method will be able to overcome the shortcoming in static
methods. In section 4 we present and evaluate our experi-
ments with dynamic groups to confirm this hypothesis. We
discuss related work in section 5. Section 6 concludes and
describes possible future directions.

2. Interference versus Productivity

A strong inverse relationship seems to exist between a
robotic group’s productivity and the length of time these
robots engage in coordination behaviors. We previously
found [9] a strong negative correlation between the total
amount of time robots spend in resolution behaviors, a con-
cept referred to as interference, and the productivity of the
group. While adding robots may speed up the time to com-
plete certain tasks, and can even be necessary for complet-
ing other tasks, these robots can trigger collisions which de-
tract from the group’s performance.

Our previous work [9], contrasted various coordination
algorithms within the foraging domain. The foraging do-
main has been extensively studied, and is formally defined
as locating target items from a search region S, and deliver-
ing them to a goal region G [4]. Various coordination meth-
ods have been developed that could work within this do-
main [10, 3, 14, 8]. We compared algorithms including the
concepts of Aggression [14], a dynamic Bucket Brigade [8],
and the use of a repulsion schema mechanism (Noise group)
[1]. Among others, we compared three additional groups
called Gothru, Repel Fix and Timeout. Gothru represents
idealized group behavior without any possibility for inter-
ference and can only exist in simulation. These robots were
never affected by obstacles, and were allowed to simply
pass through teammates. Repel Fix resolved collisions by
moving away from a teammate for a fixed period of time,
here set to 500 cycles. The Timeout method only reacted
once a robot detected it had not sufficiently moved for 100
cycles. After this point, it attempted to become unstuck by
moving in a random walk for 150 cycles.

Figure 1 graphically presents the results that motivate
this work. The X-axis represents the number of robots in
the group, and the Y-axis corresponds to the number of for-
aging pucks that the group brought to the goal region. No-
tice how Gothru is the only group to achieve positive gains
in productivity over all group sizes. The levels of interfer-
ence that existed in all other groups eventually caused the
group’s productivity to decrease with the addition of robots.
We found a very high negative correlation between the to-
tal time groups spent reasoning about and reacting to colli-
sions, and the corresponding productivity. However, no one
group was successful in minimizing this level of interfer-

Figure 1. Comparing Coordination Methods

ence across all group sizes. Our conclusion was that static
groups are often not suited for minimizing interference over
all conditions. This paper describes how to create adaptive
coordination methods that are able to react to the dynamic
conditions within robotic domains and thus achieve better
productivity across all group sizes.

3. Adaptive Coordination

We focus on adaptive methods which use weight-based
heuristics to dynamically modify team coordination algo-
rithms to match perceived environmental conditions. By ob-
serving the triggers for episodes of interference, we be-
lieve it is possible to create coordination methods that move
between simple and complex techniques as needed. We
present two variations of this approach and their advantages
over static methods. In the first technique we have the robots
self adjust within one coordination method to match the per-
ceived environmental conditions. Our second technique in-
volves adaptation between distinct coordination algorithms.

In order to demonstrate the shortcomings within static
methods, we studied 5 variations of the Repel group. We
chose values of 10, 50, 100, 200, and 500 cycles for the
length of time these robots would repel after a projected
collision. As was the case in our previous work, we used
the robot simulator, Teambots [2], to collect data for these
groups. We left other details of our setup identical to the im-
plementation previously used. As such, Teambots [2] sim-
ulated the activity of groups of Nomad N150 robots in a
foraging area that measured approximately 5 by 5 meters.
We used a total of 40 target pucks, 20 of which where sta-
tionary within the search area, and 20 moved randomly. For
each group, we measured how many pucks were delivered
to the goal region by groups of 1 – 30 robots within 9 min-
utes. For statistical significance, we averaged the results of
50 trials with the robots being placed at random initial po-



sitions for each run. Thus, this experiment consisted of a
total of 15,000 trials of 9 minutes of simulated robotic ac-
tivity.

The best variation of the Repel coordination method de-
pended on the size of the group. As the group size grew,
robots required increasingly more aggressive coordination
methods to fight collisions. Among these groups, Repel50
had the highest productivity in groups up to 10 robots. Be-
tween 10 and 15 robots the Repel100 group did best. The
Repel200 group fared better over the next 5 robots, and the
Repel500 group had the highest productivity between 20 –
30 robots. The goal of our first adaptive approach is to cre-
ate an algorithm that can select the best repel amount for the
environment given the group size.

Figure 2. Static Repel Group Productivity

Adaptation could also help to switch between distinct co-
ordination methods. As figure 1 demonstrates, there is no
one best coordination method for all sized groups within
our domain. Our Noise group fared best in groups up until 7
robots. The Aggression method fared best in groups 8 – 17
robots. Repel500 had the highest average group productiv-
ity after this group size. Our second adaptive approach aims
to select between various coordination approaches based on
the needs of the group.

Both of our adaption techniques are based on heuristics
that are sensitive to the triggers of interference the robots
face within their domain. As the robot senses the probabil-
ity of collisions is high, it uses more robust interference res-
olution mechanisms. If the threat of collisions is low, more
simple coordination methods are used. Specifically, our al-
gorithm works as follows: We first initialize a base value,
Vinit, representing the supposed interference level the robot
will encounter. For each cycle that passes where a robot
detects no impending collisions, it decreases its value of
V by a certain amount, Wdown. For each cycle where the
robots detects it is approaching another teammate or obsta-

cle, it increases its value V by a certain amount, Wup. Thus,
the robots’ value V which is constantly in flux and aims to
model itself based on the projected amount of interference
that particular robot independently encounters.

The coordination method used is based on the dis-
tinct values of V within each robot. In our first adaptation
method, we translate the various values for V into the num-
ber of cycles the Repel method uses to repel once it detects
a collision is imminent. In our second adaptation method
the values for V are used to switch between a set of coordi-
nation techniques ranging from those with little computa-
tional overhead, but are not likely to scale, to more robust
methods with higher overheads. In both methods, when col-
lisions are unlikely, the value V is low and thus coordina-
tion methods with little overhead will be used. Thus, the
interference will be low, and the level of the group’s pro-
ductivity will be high. When the robot contains a high
value of V , it will select more aggressive coordination be-
haviors to more effectively resolve the projected colli-
sion. These computationally high behaviors are needed
to prevent the robot from re-triggering its resolution be-
havior for the same event. While these repulsion activi-
ties themselves constitute interference, these behaviors are
a necessary evil as more simple behaviors would not suf-
fice.

4. Creating and Evaluating Adaptive Coordi-
nation Methods

We began by experimenting with various values for these
weights within our first approach of adapting within one co-
ordination method. We found many nearly optimal combi-
nations for the values of Vinit, Wup, and Wdown. Our adap-
tive approach was flexible in that a value of Vinit being orig-
inally set too high was soon corrected by the weights in
Wdown. Ultimately, we found that a value of Vinit = 350
seemed to work best. We used values for Wdown ranging
from 0 to 200 based on how quickly the repel mechanism
was previously triggered. Our values for Wup ranged from
0 to 550 based on how quickly the robot neared its next col-
lision. This led to a heuristic that took a graduated approach
— it would adjust the amount it would repel in the case of a
collision fairly quickly up or down based on how frequently
collisions occurred within the domain.

We found that our adaptive Repel group produced statis-
tically significant higher levels of performance than that of
even the best static method we studied. For statistical signif-
icance we ran our adaptive group for 50 trials over a range
of 1 – 30 robots. The adaptive Repel team on average col-
lected 1.5 pucks more than the best of the static groups.
Figure 3 graphically depicts the success of this group. We
conducted the two-tailed paired t-test on our data to con-
firm the statistical significance of our findings. We com-



pared the averaged productivity values of our adaptive Re-
pel group to all of the non-adaptive methods over the range
of 30 robots. All scores were far below the needed 0.05 for
significance with the highest p-value for the Null hypothe-
sis being only 0.00013 (between our dynamic group and the
Repel100 group).

Figure 3. Adapting within Repel Groups

Our second approach used the values of V to switch
between 3 distinct coordination methods — Noise, Ag-
gression, and Repel500. The Noise group had the least
costly coordination method, and was most effective in small
groups up until 7 robots. At the other extreme, the Repel500
fared poorly in small groups but had the best productivity in
groups larger than 17 robots. In our implementation we set
the values of both Wdown and Wup to be one. We set thresh-
old values of V for each of the three states at 100, 200 and
300 accordingly. Thus, if V increased by a total of 100, the
robot would assume a more robust coordination method was
required and would transition to use the next most expen-
sive coordination method, say from Noise to Aggression. If
this method was still insufficient to resolve projected col-
lisions, Wup would increase the value of V until the next
threshold was reached. Conversely, if that method was suf-
ficient to resolve that incident of a projected collision, the
value of Wdown would begin to decrease the value of V

and the robot could eventually move down to the next lower
method of coordination.

Our adaptive coordination heuristic was even more effec-
tive within this method. As figure 4 demonstrates, our adap-
tive group averaged significantly higher productivity than
the 3 coordination methods it was based on. Once again, we
performed the two-tailed paired t-test on our data and found
a p-value below 0.0001 between all groups, demonstrat-
ing the strong statistical improvement. In fact, in all groups
sized over 2 robots, the adaptive group always scored bet-
ter than all static methods it was based on, often by more

than 20 percent. This result was unexpected. We had as-
sumed adaptation would only be capable of achieving re-
sults in line with the best levels of productivity for the meth-
ods it was based on, not significantly higher.

Figure 4. Adapting Between Methods

In order to understand this phenomenon, a closer anal-
ysis of our trials is necessary. As was the case in our first
adaptive application, values of V were used to determine the
strength of the coordination method to be used. Values of V

below 100 translated to using the original method, values
between 100 – 200 to the Aggression method, and values
above 200 in the Repel500 method. Throughout our exper-
iments, we found that values for V on average only ranged
between 0 and 200. This implies that the adapting groups
on average never used the extreme coordination method Re-
pel500. This is slightly surprising as we found that best per-
formance in groups over 17 robots were achieved by using
this method. However, we hypothesized that the best coordi-
nation method often changes in the course of a trial. Robots
operating within dynamic environments will encounter pe-
riods when collisions are more or less likely. As such, ideal
performance is likely to require different methods through-
out the course of even one trial, even within one group size.
Thus, at times where collisions are frequent, and only then,
should more robust coordination methods be used. For ex-
ample, in one trial of 25 robots, the entire team spent 56 per-
cent of their time in the original behavior, 11 percent in Ag-
gression behavior, and 33 percent in the Repel500 behavior.
Thus, the average value of V was never above 200.

Our working hypothesis is that fluctuations in the level
of collisions even within one trial allow for this adaptive
method to outperform the static ones it is based on. Our
adaptive method is capable of capitalizing on these fluctu-
ations by changing its fundament coordination method as
needed. We believe this led towards the marked improve-
ment in our adaptive method over the static one. For ex-



Figure 5. Threshold Values (V ) in Switching
Method

ample, figure 6 represents the percentage of robots that are
colliding throughout the course of three trials (540000 cy-
cles) in groups of 25 robots. The X-axis in this graph rep-
resents the number of cycles elapsed in the trial (measured
in hundreds of cycles), while the Y-axis measures the per-
centage of robots colliding at that time. We found that these
values do in fact fluctuate, at times sharply, throughout our
trials. This illustrates the danger in attempting to converge
on one ideal coordination method, even within one trial.
As traditional learning methods require many iterations to
converge, they would likely fail to be flexible in light of
quickly changing environments. We believe that our adap-
tive heuristic based approach was able to yield significantly
improved group results by quickly changing between co-
ordination methods based on the triggers for interference.
This allowed these group to reduce their overall interfer-
ence and increase performance within the dynamic domain
the robots operated within.

Figure 6. Fluctuations in Collisions over Time

5. Related Work

Our previous work in interference metrics [9] proved
quite successful in contrasting various robotic coordination
methods. In this work, we use this metric to create adap-
tive methods based on coordination algorithms for homo-
geneous robots that use no communication and are not pre-
programmed to operate only within certain portions of the
domain. The methods of Arkin and Balch [1], Vaughan
et al. [14], and Ostergaard et al. [8] all similarity use
heuristics to create group activity without communication
or prior knowledge of the operating environment. Other
algorithms such as those within the work of Fontan and
Matarić [10] and the territorial arbitration scheme in Gold-
berg and Matarić [3] prevent collisions by limiting robots to
specific areas within foraging domains. Jäger and Nebel [5]
present an algorithm that can dynamically create these areas
in a vacuuming domain, but require the robots to communi-
cate locally. Another group of algorithms preassign values
so that certain robots inherently have a greater priority to re-
sources than others. Vaughan et al.’s fixed hierarchy system
[14] and Goldberg and Matarić’s caste arbitration algorithm
[3] present variations of this idea for foraging robots.

We found that sharp spatial fluctuations can exist even
over the course of one trial for one group size. These fluc-
tuations complicate the problem of having robots learn
from their environment. Previously, work in Mahadevan
and Connell [6] found reinforcement learning based on Q
Learning to be effective for a box pushing robot. While they
concede that behavior based learning is especially slow to
converge within robotic domains, using a behavior based
approach did speed up the process. Matarić [7] studied var-
ious reinforcement learning approaches on foraging robots
and stressed that the time to learn can be quite long if cer-
tain events, such as the inter-robot collisions in our do-
main, occur sporadically. However, the time to learn certain
tasks could be diminished by using behaviors that use im-
plicit knowledge of their domain. Both of these approaches
highlight the difficulty in exclusively using traditional learn-
ing methods within robotic domains. In order to speed the
time our robots adapted to spatial changes, we used meth-
ods based on heuristics, and not traditional learning meth-
ods. In tasks such as interference resolution where robots
must react quickly and near-optimal results are sufficient,
our method is likely to be of an advantage over those that
exclusively use reinforcement learning. Additionally, fluc-
tuations in spatial constrictions over the course of a trial
may make forcing a convergence of an ideal robotic coordi-
nation method undesirable.

Several methods have also been proposed to use learn-
ing to create better coordination within robotic groups. One
possibility is to have team members explicitly communi-
cate learned information learned about their environment



with others. Work by Tan [12] represents one proponent of
this approach. Other approaches, such as work by Sen et al.
[11] attempt to create better coordination through implic-
itly learning about the domain. Our robots follow this sec-
ond approach as they never communicate, and create their
interference gauges by observing their environment.

Our system is completely distributed as each robot con-
tains a distinct and possibly diverse estimate of interfer-
ence from that of its teammates. In contrast, work by Tews
[13]used a centralized mechanism for coordinating the ac-
tivities of all members of the group. While having one
mechanism to oversee coordination simplifies the process
of gathering inputs from various team members, it creates
a single possible point of failure. Another key difference
is that our work intentionally allowed robots to create es-
timates for interference without input from teammates. We
believe this allowed robots to quickly fit a coordination to
its ever changing environment as it sees fit, regardless of its
teammates’ conditions.

6. Conclusion and Future Work

In this paper we presented a method for dynamically ad-
justing coordination methods based on the conditions robots
sense in its operating domain. Our use of interference met-
rics allowed us to create powerful adaptive heuristics based
on the projected amount of interference a robot will face.
We implemented two adaptive methods, one based on dy-
namically adjusting the strength within one coordination
method, and a second based on adapting between the funda-
mental coordination method used by the robots in the group.
In both cases we found a statistically significant improve-
ment in performance by using the adaptive methods, with
the second method strongly outperforming the basic static
coordination techniques it was based on. The spatial con-
strictions which cause interference in the foraging domain
are common to many areas such as waste cleanup, area cov-
erage in vacuuming, search and rescue domains, and cre-
ating collision-free trajectories in restricted spaces. We be-
lieve our approach of dynamic coordination methods will
greatly benefit designers of robotic teams in these domains
as well.

For future work, several directions are possible. The ad-
dition of explicit communication may speed the adaption
process within coordination groups. Our work also has in-
tentionally limited itself to studying homogeneous groups
of robots. An interesting study would be to apply our sys-
tem to groups of heterogeneous robots. We leave for future
work contrasting our approach versus those with commu-
nication and traditional reinforcement learning. One main
disadvantage of our current approach lies in the manual ini-
tial work in setting the weights within our heuristic. Before
our adaptive coordination methods could begin, work was

needed to set the weights in our robots. It may be possi-
ble to simplify the process of initially setting these weights.
One possibility would be to pass information based on pre-
vious trials and use a combination of classical reinforce-
ment learning in addition to our heuristic based weight sys-
tem. It is possible that combining these approaches might
lead towards creating robot groups with even more effec-
tive adaptation.
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