An Algorithm for Distributing Coalitional
Value Calculations among Cooperating
Agents

Talal Rahwan and Nicholas R. Jennings

School of Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, UK.

Abstract

The process of forming coalitions of software agents generally requires calculating
a value for every possible coalition which indicates how beneficial that coalition
would be if it was formed. Now, instead of having a single agent calculate all these
values (as is typically the case), it is more efficient to distribute this calculation
among the agents, thus using all the computational resources available to the sys-
tem and avoiding the existence of a single point of failure. Given this, we present
a novel algorithm for distributing this calculation among agents in cooperative en-
vironments. Specifically, by using our algorithm, each agent is assigned some part
of the calculation such that the agents’ shares are exhaustive and disjoint. More-
over, the algorithm is decentralized, requires no communication between the agents,
has minimal memory requirements, and can reflect variations in the computational
speeds of the agents. To evaluate the effectiveness of our algorithm, we compare it
with the only other algorithm available in the literature for distributing the coali-
tional value calculations (due to Shehory and Kraus). This shows that for the case
of 25 agents, the distribution process of our algorithm took less than 0.02% of the
time, the values were calculated using 0.000006% of the memory, the calculation
redundancy was reduced from 383229848 to 0, and the total number of bytes sent
between the agents dropped from 1146989648 to 0 (note that for larger numbers of
agents, these improvements become exponentially better).

1 Introduction

Coalition formation, the process by which a group of software agents come
together and agree to coordinate and cooperate in the performance of a set
of tasks, is an important form of interaction in multi-agent systems. Such
coalitions can improve the performance of the individual agents and/or the
system as a whole, especially when tasks cannot be performed by a single

Preprint submitted to Elsevier Science 2 March 2007

agent or when a group of agents performs the tasks more efficiently. Now, if
we view the population of agents as a set A, then every non-empty subset of
A is a potential coalition (meaning that the total number of these subsets is
2141~ 1). Given this, a number of coalition formation algorithms have been
developed to determine which of the potential coalitions should actually be
formed. To do so, they typically calculate a value for each coalition, known
as the coalition value, which provides an indication of the expected outcome
that could be derived if that coalition was formed.! Then, having computed
all the coalitional values, the decision about the optimal coalition to form can
be taken. The problem here, however, is that computing the coalitional values
is exponentially complex due to the number of possible coalitions that must
be considered. To help combat this computational explosion, some coalition
formation algorithms only search a sub-set of the potential set of coalitions (see
Section 2 for details). In either case, however, it is desirable to distribute the
calculations of these coalitional values among the agents, rather than having
it done centrally by one agent (as is the case in most extant work). In this
way, the search can be faster and the agents can share the burden of the
calculations.? To this end, there are a number of desiderata that we can place
on such a distribution algorithm:

(a). The distribution process should be decentralized. That is, no one decision
maker should be required to decide which agent calculates which values,
otherwise the system would have a performance bottleneck and a single
point of failure.

(b). Communication between the agents should be minimized, particularly
when the agents have limited communication bandwidth.

(¢). The coalitional value of all the desired coalitions should be computed and
the agents should minimize the number of calculations that are redun-
dantly carried out.

(d). In order to minimize the time taken, the computational load should be
balanced among the agents. In other words, if the agents have equal
processing capabilities, each one of them should compute an equal number
of values, and if they have unequal capabilities, the faster computational
agents should take on a greater burden of the calculations.

(e). The amount of memory that each agent requires in order to perform the
computations should be minimized, particularly when the agents have
memory constraints. 3

I The way this value is calculated depends on the problem domain, and the com-
plexity of this calculation varies correspondingly from linear to exponential.

2 Note that the calculations are independent of one another and thus can be done
in a distributed manner if an effective distribution algorithm can be found.

3 Since the number of possible coalitions is exponentially large, any algorithm that
requires each agent to save all the possible coalitions in its share will require infea-

Moreover, in most practical situations, the agents continuously form coalitions
whenever new ones are necessary and formed coalitions are dissolved whenever
it is beneficial to do so. As a result of this continuous change, the process of
calculating the coalitional values is not a one-shot activity. For example, ad-
ditional tasks may be requested from the collective, or the resources available
to the agents may change. In either case, the values need to be re-calculated
to take these changes into consideration. Note that this re-calculation process
might differ from the initial calculation process in the sense that some of the
agents might no longer be able to join subsequent coalitions. For example, in
cases where the coalitions are not allowed to overlap (e.g. Shehory and Kraus
(1995)), then after a coalition is formed, every agent that has joined that
coalition is no longer available to join other coalitions (until that coalition is
dissolved). Another example is in the case where each agent requires a certain
number of resources in order to join a coalition (e.g. Shehory and Kraus (1998,
1996)). In this case, the agents that have now used all of their resources in
one or more coalitions, can no longer be considered. Based on this, whenever
a coalition needs to be formed, the agents must only take into consideration
that subset of agents which is currently available and eligible.

Against this background, we present a novel algorithm (called DCVC) for
Distributing Coalitional Value Calculations among the constituent agents.
Here, the agents are assumed to be cooperative (i.e. they carry out their
share of computations, and they report the results truthfully). However, the
underlying algorithm can also be applied in environments where the agents
are non-cooperative (i.e. they act to increase their own outcome and may lie
about the results if they find it is beneficial to do so). This can be achieved
using an additional enforcement mechanism by which the agents are incen-
tivized to calculate all the values they are assigned and to announce the true
results they find. The exact nature of this mechanism is left for future work
at this stage.

In more detail, DCVC ensures each agent is assigned some part of the cal-
culations such that the agents’ shares are exhaustive and disjoint. Moreover,
the algorithm is decentralized, requires no communication between the agents,
distributes the calculations equally*, and enables each agent to perform its
share of calculations without having to maintain in memory more than one
coalition. We also show how the algorithm can be modified for the case where

sibly large amounts of memory (e.g. saving a list of all the possible coalitions of 40
agents requires a total of 5120 GB of memory).

4 When the total number of coalitions is not exactly divisible by the number of
agents, the size of the agents’ shares will differ by one. However, this additional
calculation is assigned to the agents such that the average size of the shares is
exactly equal. Therefore, through out this paper, we will refer to the agents’ shares
as being equal.

the agents have different computation speeds, and prove that the resulting
distribution minimizes the computation time. To benchmark the effectiveness
of our algorithm, we compare it with the only other algorithm available in the
literature (Shehory and Kraus, 1998). In so doing, we show that for the case
of 25 agents, the distribution process of our algorithm took less than 0.02% of
the time, the values were calculated using 0.000006% of the memory, the cal-
culation redundancy was reduced from 383229848 to 0, and the total number
of bytes sent between the agents dropped from 1146989648 to 0. Note that
for larger numbers of agents, these improvements become exponentially better.

Particularly, this paper advances the state of the art in the followig ways:

e We present a new algorithm for efficiently distributing the coalitional value
calculations.

e We show why, in order to let the agents finish at the same time, it is not
sufficient to consider how many coalitions an agent is assigned, but also
which coalitions an agent is assigned.

e We show how DCVC can be modified to reflect the variations in the agents’
computational speeds, and prove that the resulting distribution minimizes
the required time.

e We analyze the different cases in which only a subset of agents is available or
eligible to join a coalition, and discuss a number of methods for distributing
this subset.

e We calculate the exact number of operations required by these methods,
and show that DCVC requires significantly fewer operations, compared to
the other methods.

e We benchmark DCVC against Shehory and Kraus’s algorithm and show
that it significantly outperforms it on all relevant dimensions.

The remainder of this paper is organized as follows. Section 2 discusses related
research. In Section 3, we present the basic DCVC algorithm, given that every
agent is able to join a coalition, while, in Section 4, we show how DCVC can
be generalized to the case where only a subset of the agents in the system
can join a coalition.® In Section 5, we calculate the complexity of DCVC, and
in Section 6, we evaluate its performance. Section 7 concludes and presents
future work.

® Note that this latter case is the most general one because a subset can be smaller
than, or equal to, the total set of agents. This means that the algorithm we developed
for the specific subset case can be used both when every agent is able to join
a coalition and when only a subset of the agents can join. Despite this fact, for
explanatory purposes, we first deal with the simpler case in which the algorithm
deals with all the agents (in Section 3), before dealing with this generalized case (in
Section 4).

2 Literature review

Coalition formation has received a considerable amount of attention in recent
research, and it has the potential to be useful in a number of scenarios and
multi-agent systems. In e-commerce, buyers can form coalitions to purchase a
product in bulk and take advantage of price discounts (Tsvetovat et al., 2000).
In e-business, groups of agents can be formed in order to satisfy particular mar-
ket niches (Norman et al., 2004). In distributed sensor networks, coalitions of
sensors need to work together to track targets of interest (Dang et al., 2006).
In distributed vehicle routing, coalitions of delivery companies can be formed
to reduce the transportation costs by sharing deliveries (Sandholm and Lesser,
1997). Coalition formation can also be used for information gathering, where

several information servers form coalitions for answering queries (Klusch and
Shehory, 1996).

Generally speaking, however, the coalition formation process can be consid-
ered to include three main activities (Sandholm et al., 1999):

(a). Coalition structure generation: partitioning the set of agents into exhaus-
tive and disjoint coalitions. Such a partition is called a coalition structure.
For example, given a set of agents A = {aq, as, as}, there exist seven pos-

sible coalitions: {a;}, {as}, {as}, {a1,a2}, {a1, a3}, {as,as}, {a1,as, a3},
and five possible coalition structures: {{a},{a2}, {as}}, {{a1}, {as, as}},

{{az} {a1,as}}, {{as}, {ar, as}}, {{a1, a2, a3}}.

(b). Optimizing the value of each coalition: pooling the tasks and resources
of the agents in every coalition in the coalition structure in order to
maximize the coalition value.

(¢c). Payoff distribution: dividing the value of each coalition among its mem-
bers so as to achieve stability or fairness.

Now, clearly, these activities interact (Sandholm et al., 1999). For example,
the coalition that an agent wants to join depends on the payoff that it is likely
to receive in each potential coalition (activities (a) and (c)). Note, however,
that in the case of cooperative environments, the agents are concerned with
maximizing the system outcome, and thus are willing to join the coalition that
maximizes the social welfare, regardless of their share of the coalition value.
Therefore, payoff distribution is less important, and the main concern is gen-
erating a coalition structure so as to maximize the social welfare.

To date, much of the existing research on coalition formation in game theory
has focused on payoff distributions, where it is usually assumed that coalitions
have already been formed. In this context, many solutions have been proposed
based on different stability concepts (e.g. the core, the Shapley value, and the

kernel (Osborne and Rubinstein, 1994)). Here, stability refers to the state
where, once a stable solution is found, the agents have no incentive to deviate
from the coalitions to which they belong (or little incentive in weaker types
of stability). This is desirable because it avoids the costs associated with hav-
ing the agents evaluate reasons for leaving their current coalitions and joining
other ones. Note, however, that game theory does not provide algorithms that
the agents can use in order to actually form the coalitions (Shehory and Kraus,
1998). Moreover, game theoretic approaches are typically centralized, and do
not take into consideration the resource constraints of a computational envi-
ronment (such as communication bandwidth and limited computation time).
Given our focus on computational multi-agent systems, this is a serious short-
coming.

Traditionally, much of the research on coalition formation has focused on
super-additive environments, in which any combination of two groups of agents
into a new group is beneficial (Zlotkin and Rosenschein, 1994; Kahan and
Rapoport, 1984). In such environments, the process of searching for the coali-
tion that maximizes the system welfare is trivial, since this coalition will be
the one in which every agent is a member (commonly known as the grand
coalition). This assumption, however, does not hold for many real-world ap-
plications, due to the intra-coalition coordination and communication costs
which increase with the size of the coalition (Sandholm and Lesser, 1997).

However, in non-super-additive environments, finding the optimal coalition(s)
requires searching the whole set of possible coalition structures. This is com-
putationally complex due to the size of the set which is exponential in the
number of agents. To tackle this problem, some researchers have proposed al-
gorithms that only search a subset and produce solutions that are guaranteed
to be within a finite bound of the optimal. In this context, we briefly discuss
the most widely used algorithms in the literature.

Specifically, Sandholm et al. (1999) have proved that no bound from the
optimal can be established without first searching through an exponential
subset of the coalition structure graph.® They also present an anytime al-
gorithm that can establish a worst-case bound by searching the bottom two
levels of the graph, and can meet tighter bounds by searching the rest of the
graph as long as there is time left, starting from the top level downwards.
However, their algorithm’s computational complexity is exponential. More-
over, they search through coalition structures which, by definition, include
disjoint coalitions, where each agent is a member of only one coalition. This
means that they exclude the possibility of having overlapping coalitions. Dang
and Jennings (2004) presented an alternative way for searching the coalition
structure graph; they first search the bottom two levels, as well as the top

6 For more details on the coalition structure graph see Sandholm et al. (1999).

one. After that, however, instead of searching the remaining levels one by
one, they search specific subsets of all remaining levels. They also proved that
their algorithm can establish the same bounds from the optimal by searching
a significantly smaller space than Sandholm et al.’s. However, the complexity
of their algorithm remains exponential, and again they do not consider the
case of overlapping coalitions. To combat this complexity, Shehory and Kraus
(1998) set limitations on the size of the permitted coalitions which, in turn,
makes the formation process of polynomial complexity. They also consider en-
vironments where the coalitions are allowed to overlap. In more detail, their
solutions are bounded by a logarithmic ratio bound from the optimal solution
given the limit on the coalitional size. However, no bound can be guaranteed
from the optimal solution that could have been found by searching all possible
coalitions (Sandholm et al., 1999).

Now in either the optimal case (in which the coalitional values of all the
coalitions are calculated) or the sub-optimal case (in which only a subset of
the values are calculated) the issue of who performs which of these calculations
is still a key concern. In Sandholm et al.’s work, a method is presented for
choosing which agent searches which portion of the space. Specifically, their
method assigns each agent the same expected amount of search. However,
this still leaves some agents searching more space than others (they justify
this by presenting an enforcement mechanism that motivates the agents to
search exactly what they are assigned, no matter how unfair the assignment
is). Moreover, their distribution does not take into consideration the different
computational speeds of the agents. The algorithm presented by Dang and
Jennings was tested centrally, and there was no description of how the search
can be done in a distributed manner among the agents. Shehory and Kraus
(1998) do present an algorithm for distributing the value calculations among
the agents (the same distribution algorithm, with slight differences, was also
mentioned in (Shehory and Kraus, 1995, 1996)). Specifically, their method
works by making the agents negotiate about which of them performs which of
the calculations (see Section 6 for more details). However, by using their algo-
rithm, some agents may calculate significantly more values than others, and
some values can be calculated more than once. In addition, their algorithm
requires high communication complexity (again see Section 6 for details).

To address these shortcomings, we developed an algorithm that distributes
the coalitional value calculations efficiently among the agents. Like Shehory
and Kraus’s algorithm, ours can be applied for environments where the coali-
tions are allowed to overlap, where some agents might no longer be available
to join new coalitions, and where the algorithm imposes specific limitations
on the coalitional sizes (cf. Sandholm et al.’s algorithm). Therefore, when it
comes to benchmarking performance, we compare our algorithm with Shehory
and Kraus’s algorithm (henceforth called SK).

3 The DCVC algorithm

For illustrative purposes, we start by presenting a basic version of DCVC
in which the differences between the agents’ shares are minimized (Section
3.1). After that, we show how the required time can be further reduced, by
modifying which values an agent calculates, rather than how many values an
agent calculates (Section 3.2). Finally, we show how DCVC can be modified
for the case where the agents have different computation speeds, and prove
that the resulting distribution minimizes the computation time (Section 3.3).
Note that in this section, we assume that every agent is able to join a coalition
(Section 4 deals with situations where this is not the case).

3.1 The basic algorithm

In general, the set of possible coalitions can be divided into subsets, each
containing the coalitions of a particular size. In DCVC, the distribution of all
possible coalitions is carried out by distributing each of these subsets equally
among the agents (i.e. agent a; has x coalitions of size 1 to consider, y of size
2, z of size 3, and so on, and so does ay, az, and so on). This has the following
advantages:

e An increase in the size of the coalition usually corresponds to an increase
in the number of operations required to calculate its value. Therefore, by
distributing the coalitions of every size equally among the agents, each agent
will not only calculate the same number of values, but also perform the same
number of operations.

e Any relevant limitations can be placed on the size of the coalitions that are
allowed to be formed. For example, if coalitions of a particular size are not
allowed to be formed, then the agents simply do not distribute the coalitions
of this size among themselves. In such cases, the agents still calculate the
same number of values. This is important since it makes DCVC applicable
for coalition formation algorithms that reduce the complexity of the search
by limiting the size of the coalitions (as discussed in Section 2).

Now, let A be the set of agents, and n be the number of agents (i.e. n = |A|).
In order to allow for any limitations on the coalitional sizes, we assume there
is a set S of the permitted coalitional sizes. Also, let L, be an ordered list
of possible coalitions of size s € S, and N, be the number of coalitions in L,
(i.e. Ny = |Lg|). Finally, let C; = {¢;1,...,¢is} denote the coalition located
at index ¢ in the list L,, where each element c;; is an integer representing
agent a, ; (For example, C; = {2, 3,5} corresponds to the coalition of agents
as, as, as). Now, for any s € S, we define the order in the list L, as follows:

e The first coalition in the list is: {n — s+ 1,...,n}.
e The last coalition in the list is: {1, ..., s}.

e Given any coalition Cj, the agent can calculate C;_; by checking the values
Ci.s, Ci,s—1, Ci,s—2, --. until it finds a value ¢; , such that ¢; , < ¢; 4, then:

: cifl,k:Ci,k:1§k<x
=cr+lik=x
=cp1t+liz<k<s

© Ci—1k

i1k

This means the agents know how L; is ordered, although they do not ac-
tually maintain L. An example of the resulting lists is shown in Table 1.
Here we have n = 6, A = {a1,a9,a3,a4,as,a6}, S = {1,2,3,4,5,6} and
N1, Ny, N3, Ny, N5, Ng have the values 6,15, 20, 15,6, 1 respectively.

L L [Lo | Ly [L | Ls | Lg |
6 5,6 4,5, 6 3,4,5,6 2,3,4,5,6 |1,234,5,6
5 1,6 3,5, 6 2,4, 5,6 1,3,4,5,6
1 1,5 3,4, 6 2,3,5,6 1,2,4,5,6
3 3,6 3,4, 5 2,3,4, 6 1,2, 35,6
2 3,5 2,5, 6 2,3,4,5 1,23 4,6
1 3, 4 2,4, 6 1,4,5,6 1,2,3,4,5

2,6 2,4, 5 1,3,5,6
2,5 2,3, 6 1,3, 4,6
2, 4 2,3, 5 1,3,4,5
2,3 2,3, 4 1,2,5,6
1,6 1,5, 6 1,2 4,6
1,5 1,4,6 1,2, 4,5
1,4 1,4,5 1,2, 3,6
1,3 13,6 1,2,3,5
1,2 1,35 1,23, 4

1,34

1,26

1,25

1,2 4

1,23

Table 1. The lists of possible coalitions for 6 agents.

Now, for each agent a; € A, let Ly, be its share of L, (i.e. the subset of
L for which it will calculate values) and N;; be the number of coalitions in
L,; (i.e. Ny; = |Ls;|). Given this, we can now express our distribution algo-
rithm (see Figure 1). Here, each agent is assumed to know the total number
of agents, as well as the set of permitted sizes of coalitions; we also assume
that each agent has a unique global identifier (UID) by which it is identified
by other agents. The existence of such an identifier is a reasonable assumption

since all agents need to be uniquely identifiable so that messages can be routed
correctly.

Each agent a; should perform the following:
e Sort the set of agents based on the agents’ UID in an ascending order.
o Set:a=1.
e Forevery s € S, do the following:
1.If (N; > n) then:
1.1. Calculate the size of your share: Ny ; = | N, /n|
1.2. Calculate the index of the last coalition in your share: index, ; = i X N ;
1.3. Calculate the values of each coalition in your share.
1.4. Calculate the number of additional values that need to be calculated: N = Ny — (n x N ;)
Otherwise:
1.5. Calculate the number of additional values that need to be calculated: N’ = N
2.If (N > 0) then:

2.1. Find the sequence of agents A’ in which each agent should calculate one additional value.
And if you are a member of A’, then calculate the appropriate value. This is done as follows:

o If (a+ N'—1<n)then: A" = (an, Ga+1, -, Ga+N'—1)
else: A’ = (Ga, Qa1 s Qny A1, ooy Qo N'—1)—n)
o If (a; € A’) then calculate one of the additional values based on your position in A’

o If (a+N' <n)thenna=a+ N,elseca=a+ N —n

Fig. 1. The DCVC algorithm (basic version).

In more detail, each agent starts by sorting the set of agents according to
their UID in an ascending order. Note that this is done using a unique key,
which means that each agent will end up with the same sequence, denoted by

A Moreover, the agents implicitly agree on A without contacting each other;

this is because every agent knows that every other agent also has Z Note
that sorting the set of agents is only performed once. For the remainder of
this paper, we will denote by a; the agent located at position i of the resulting

sequence A. By having an agreement on A, each agent can know which of
the calculations it should perform based on its position in A, this is done as

10

follows. Each agent a; starts by calculating the number of coalitions in L, ;:

N = | Ng/n] (1)

The agent then calculates the index in Ly at which L,; ends (denoted by
index ;). This is done as follows:

indexs; =1 X Ng;

The agent now calculates the values of all the coalitions in Lg;. This is done
without maintaining Ly in memory, or even maintaining L, ;. Instead, the
agent allocates a space of memory, denoted by M = {my,...,m,}, which is
sufficient to maintain one coalition at a time. Basically, the agent starts by
setting M to the last coalition in L,; (i.e. to the one located at: index,,;) and
calculates its value. After that, the agent sets M to the coalition before it (i.e.
to the coalition located at: indexs; — 1) and calculates its value, and so on.
This is done until the value of every coalition in Ly ; is calculated.

Note that the agent so far has calculated the number of coalitions in its share,
as well as the index in L, at which its share ends. This information alone would
be sufficient for the agent to directly know which coalitions belong to its share
if it maintained Ly. However, since this is not the case, then knowing where
the coalitions are located in Ly does not imply knowing what those coalitions
are. Now, from the way the list is ordered, given a coalition in L,, the agent
can always find the coalition before it. Based on this, the agent would only
need to set M to the last coalition in L,;, and this would be sufficient for it
to find all the coalitions in L, ;. But again, since the agent does not maintain
L, then knowing the index of the last coalition does not give the coalition
directly. For this reason, we show how an agent can find a coalition by only
knowing its index in L.

Generally, the number of all possible coalitions of size s (i.e. the coalitions
that contain s agents) out of n agents, is given by the following equation.
Here, n! represents n factorial (i.e, if n > 0 then: n! =1 x 2 x ... X n, and if
n =0 then n! = 1):

n!

o= 2)

 (n—s)!xs!

Now let P(i,{i + 1, ...,n}) be the list of all possible coalitions of agents a;. 1, ..., a,
after adding a; in the beginning of each coalition. Also, let Ps(i,{i + 1,...,n})
be the list of all the coalitions in P(i,{i + 1,...,n}) that are of size s.” From

7 In other words, Py(i,{i +1,...,n}) would be the list of all possible coalitions of
size (s — 1) that contain agents a;41, ..., an, after adding a; in the beginning of each

11

(2) we find that the number of coalitions in Py(i,{i + 1,...,n}) is:

|Py(i, {i +1,...,n})| = C7} (3)

Now, since Ly is ordered as specified earlier, then L, contains Ps(i, {i + 1,...,n})
with ¢ running from n — s + 1 down to 1. For example, for 6 agents, L, will
contain Py(3,{4,5,6}), then P,(2,{3,4,5,6}) and finally P,(1,{2,3,4,5,6})
(see Table 1). Therefore, any coalition in L, that starts with (n —s+1) —i+1
must have an index k such that:

k> S IP(n—s+1) = j+ 1, {(n—5+1) = j 2o}

j=1

kgzi:\Ps((n—erl)—j+1,{(n—8+1)—j+2,---7n})|

j=1
For example, for 6 agents, any coalition in L, that starts with 1 must have an
index k such that:

k> |Py(3,{4,5,6})] + |Ps(2,{3,4,5,6})| =1 +4 =5

k < |Py(3,{4,5,61)|+|Py(2, {3,4,5,6})|-+|Py(1, {2,3,4,5,6})] = 1+4+10 = 15

Therefore, based on (3), we know that any coalition in L, that starts with
(n — s+ 1) — i+ 1 must have an index k such that:

i
k> ot
j=1
i+1 ‘
k<Y oo
j=1
Based on this, we present an algorithm for setting M to the coalition located
at index,; without maintaining L, (see Figure 2).
At first, the agents form what we call a Pascal matriz which is of size:
(n — 1) x (n — 1). The matrix includes values from Pascal’s triangle® and

is calculated as follows:

Pascali,1] =1:Vie {1,....,n —1}

coalition. By this, each coalition in the list becomes of size s.

8 More details about Pascal triangles can be found in (Conway and Guy, 1996).

12

1. Set j =1, index = index,;, s1 = s.
2. Check the values: Pascalls1, 1], Pascal[s1,2], ... until you find a value: Pascal[s1,x] > index
3.Setmj=(n—s1+1)—x+1.
4. If (Pascal[s1, z] = index) then:
o Set the rest of the coalition as follows: my41 =mp +1:k=7j,...,5s -1
Otherwise:
o Set:j =j+1,index =index — Pascal[s1,x — 1], =81 — 1

o Move to step 2.

Fig. 2. Setting M to the coalition located at index, ; in L.
Pascal[l,j] =7 :Vie{2,...,n—1}

Pascalli, j| = Pascalli—1, j]+Pascalli, j—1] : ¥i,5 € {2,...,n — 1}

By this, the following equation holds:

Pascal[s,i] = > C:H™

=1

Therefore, the agent can find the first member in the required coalition by
checking the values: Pascal[s, 1], Pascalls, 2], ... until it finds a value Pascalls, z]
such that Pascal[s,z] > indexs,;. The first member would then be (n — s +
1)—xz+1. (Step 1 in Figure 3 shows how to find the first member in a coalition
that is located at index 46 in the list L; for 9 agents).

Since the first member is (n — s + 1) — = + 1, then the rest of the members
must be located in the sub-list which contains all the coalitions that start
with (n — s+ 1) — z + 1 without including the first member of each coali-
tion. This sub-list is similar to Ls_;, the only difference is that it contains
Py(i,{i +1,...,n}) with ¢ running down to (n — s+ 2) — x + 1 instead of run-
ning down to 1 (see the list in Figure 3, step 2). Note that in this sub-list,
the index of the required coalition becomes: index,; — Pascal[s, z — 1] (in our
example, the index of the required coalition becomes: 46 — 21 = 25). Based on
this, the agent can find the next member in the coalition by checking the val-
ues: Pascal|s—1,1], Pascal[s—1,2], ... until it finds a value Pascal[s—1,z] >
indexs;—Pascal[s, x—1], the next member would then be (n—(s—1)+1)—x+1.

Similarly, all the members of the coalition can be found. Note that as the agent

checks the values in the Pascal matriz in order to find some member m;, if it
finds a value that is equal to the required index, then the agent can find m;, as

13

(=] o~ wn
(=] (=] o
w 2 & 8 8§ g 7 o9
- o ~ -) 23
“
(=] [32)
i w 9 o T - O fe=)
~ 8 F A © o a ~ 15}
~ <t (-] - m g =
a —
{5
o =8 O o | o e S coowoowoxnNoowoe~ao~o)
= e e b B od NN o8 N IN & G|S6 NN & & &S s 1h d A o
& s o8 wm | o O @r i@ FFFFFF A S)
w 4 R R 8 2 @ 9 = = -
- — o~ 5] - = — -+ = @
& rll\
o o w v w { 2 W
¥ 4 & m o on oo o © P
3
(=1 wn — -l ©w wn
M8 I 4 N N M m
o~ [12] - w0 [~ -] (=] P
i — i i] - i] _ﬁ,
4
(o]
OO NN NONONDIOINONIDNO DNV DN DO N DO 2
BEINN BB S NN GG G668 M od 1 & [6]e6 1 S 6 G s 1 ud i
NN SN S SR A R A AN G S SR A BB A F FFFFFFFFF (oW
R R S s e . L
0555@444444444 MMM mMmMnenmMmnmnmononomnonomn e
- 17

= 5 P

o
-
DO NNV RONNNNENONNONNVRNDYINONCRONIONOTIOD

OO NIYTIFIFIFSFIFIFFFFONLNNNITFIFSFIFFIFFTFF IO M O WL "

®du4udu4.®3.3.3.3.3.3.3.3.3.3.3.3.3.3 NN NNANNANNNN NN NN NN NN NN AN N A A e A) - - -

N : T

step 1

+1 +1

Note in step 3 that the last value matched the required index (10), therefore: 2, 3, 5, 6, 7

Fig. 3. Finding a coalition at index = 46 in the list L5 of coalitions of 9 agents.

14

well as all the members after it as follows: my 1 = mp+1: k=j,...,s—1. Fig-
ure 3 shows a complete example for setting M to the coalition at index = 46
in the list Ls for 9 agents.

Now that each agent a; has set M to the last coalition in Lg;, it repeatedly
performs the following:

e (Calculate the value of M ?.

e Set M to the coalition before it. This is done by checking the following
values: ms, ms_1,Ms_2,... until it finds a value mg such that mg < ¢ 3.
Then, the values my, : k < 3 remain unchanged, while the remaining values
are calculated as follows:

mp=mp+1: k=0
cmp=mp_1+1:0<k<s

This process should be repeated until all the coalitional values in L,; are
calculated. Note that after each agent calculates the values in its share, some
values might remain uncalculated. This is because N, might not be exactly
divisible by the number of agents, and in this case, the agents’ equal shares will
not cover all the required values. In particular, the number of the remaining
values would be:

N' =N, —=> N,j=N,—(nx|N;/n]) (4)

Here, the coalitions that need their values to be calculated would be: C, _nry; -
1 €1,...,N'. Note that N’ < n, and that each agent so far has calculated the
same number of values. Therefore, in order to calculate these additional values
and keep the distribution as equal as possible, each value should be calculated
by a different agent; the agents should agree on a sequence A" which contains
N" agents and in which each agent calculates one additional value. This can be
done by maintaining a value «, initially set to 1, then for any list L, if there
are additional values (i.e. if N’ > 0) then A" would contain N’ agents, starting

9 The details of how to calculate this value are left for the developers to decide,
based on the problem under investigation. For example, in an electronic market-
place, the value of a coalition of buyers can be calculated as the difference between
the sum of the reservation costs of the coalition members and the minimum cost
needed to satisfy the requests of all the members (Li and Sycara, 2002). In informa-
tion gathering, the coalition value can be designed to represent a measure of how
closely the information agents’ domains are related (Klusch and Shehory, 1996).
And in cases where the agents’ rationality is bounded due to computational com-
plexity, the value of a coalition may represent the best value it can get given limited
computational resources for solving the problem (Sandholm and Lesser, 1997).

15

from a,. Then, each agent in A’ calculates one additional value based on its
position in A" (if we denote by a, the agent located at index i of A’, then d
should calculate the value of coalition Cy,_nv4;). Note that after these values
are calculated, the agents need to update « so that for other lists, the next N’
agents perform any additional calculations. In this way, given any set S, the
total number of values calculated by each agent will either be equal, or differ
by only one value (which is insignificant compared to the general problem).
Updating « is done as follows:

If(a + N'<n)thena=a+N', elsea=a+ N —n

And forming A’ such that it contains N’ agents, starting from a,, is done as

follows:

If (a+ N' —1<mn) then A" = (aa, Gas1y -, GasN'—1)
else A" = (Ao, Qog1s ooy Qpy A1y ooy Qo N — 1)

For example, if we have 6 agents, then from equation (4) we find that for
the list Lo, we have N’ = 3. Therefore, A’ would be: (ay,as,a3) and « be-
comes 4. Then for L3, we have N’ = 2. Therefore, A’ would be (a4, as) and
a becomes 6, and for Ly, we have N’ = 3. Therefore, A" would be (ag, ai, az)
and a becomes 3. Finally, for Lg, we have N’ = 1, and therefore, A" would be
(a3) and a becomes 4 (see A’ in Figure 4). After all the values are calculated,
the value of o remains 4 instead of being initialized to 1. This means that
in order to form other coalitions, any additional calculations will start from
ay. By this, the average number of values calculated by each agent becomes
equal. 1°

To illustrate how DCVC works, Figure 4 shows an example of the result-
ing distribution among 6 agents. As shown in the figure, the agents’ shares
are exhaustive and disjoint. Note that this distribution was done without any
communication between the agents and without any central decision maker.
Moreover, each agent only needed to allocate a space of memory which is suf-
ficient to save one coalition.

10 Given a large number of agents, the number of additional values would be in-
significant, compared to the total number of values calculated by each agent. How-
ever, for a small number of agents, it is worthwhile to add this extra step to dis-
tribute these values, rather than simply having every agent a; : i < N’ calculate
one additional value. For example, if we have 6 agents, then by using this ex-
tra step, the average number of values calculated by agents: ai,as,as,aq,as,ag
would be: 10.5,10.5,10.5,10.5,10.5,10.5 respectively, while it would have been:
13,12,11,11,9,9,9 if the agents used the simpler distribution.

16

'
{6 a {Zg \ {‘;;g a) {gjgg a; {23,456 A{1.2,3.4,s,s
; 1435 \4,5,
a {s is 3,4,6 2356 a3 {1,3,456
a a2{3'6 3,4,5 az{"'
3 {4 ; ; :2.5,6 2,3,4,6 83 {12,456
2125
ay {3 a3 {g.i 2,4,6 a3 [%3,:,{5; dy {12,3|5,5
as {2 ' 2,4,5 o :
5 v a 1,2,3,4,6
a4 | 2,6 a3 {2,3,5 ay [1356 s
aG {1 2,5 2,35 1,3,4,6 35 {12,3,4’5
as | 2,4 2,3,4 as | 13,45
2,3 a4 { 1,56 1,2,56
1,4,6
ag) 1,6 a5 1,2,4,6
, 1,5 1,4,5 1,2,4,5
A a5 { 1,3,6 A
1,4 1,3,5 agy> 12,36
1,3 aj> 1235
1,2 1,34 app> 1234
a6 { 1,2,6
12,5

Fig. 4. The resulting distribution for all possible coalitions of 6 agents.

Finally, note that although DCVC gives every agent the ability to save one
coalition at a time, the agent can still choose to maintain its entire share of
coalitions, provided that it has sufficient memory space. This way, the agent
avoids performing the operations required to set M from one coalition to an-
other, throughout the list, every time a coalition is formed.

3.2 Modifying the coalitions to which an agent is assigned

By using the distribution process specified earlier, any two agents require an
equal time to calculate their share of values. The distribution, however, is
done without taking into consideration the time required for each agent to
set M from one coalition to another (i.e. the time required to shift M up
in the list by 1 coalition). In more detail, after an agent calculates the value
of a coalition, it needs to set M to the coalition before it. This is done by
performing a number of comparisons and additions as shown earlier in Section
3.1. Specifically, changing = values in M requires performing x comparisons,
as well as x additions, which gives a total of (2 x x) operations. See Figure 5
for an example.

As shown in the figure, the agent first searches for 3, and then changes the
values mg, mg41, ..., ms. This means that the agent would perform more
operations for smaller values of 3. Note that by ordering L, as specified earlier
in Section 3.1, 3 would generally have smaller values in the coalitions that are
located at smaller indices in L. Now since the distribution is done such that

17

compare compare compare
+1 +1

5,6:058; 5,6,7,(8 -
2358E>235 E> 2,3,6),8,9 236@9E>2367.

€;=56,7,8,9 Check values: M5, M, , ... untila
; My=M,+1:k= M, =M, ;+1:3<k<s
M=2,3,58,9 E> value M is found such that: M8< €13 :> k= Tk B E> Mt T

Fig. 5. An example for setting M to the coalition before it in the list L5 of 9 agents.

the agents located at smaller indices in A calculate the values of the coalitions
located at smaller indices in L, these agents would generally perform more
operations. For example, for the case of 7 agents, Figure 6 shows how agents
ay and ag set M from one coalition to another through the lists Ly and Lag
respectively. As shown in the figure, as requires changing a total of 9 values,
and thus performs 18 operations, while ag requires changing a total of 6 values,
and thus performs only 12 operations. Therefore, although they both calculate
the same number of coalitional values, agent a, would finish after ag.

2567 2,56,7 2,567 2,5.,6,7 M 2,5,6,7
M
24,67 change 2467 change 246.,7 change (248.7) | change 2467
a, 2457 |2G57) 2457 |245() 24G7) 2457 |2@%7) 2457
24,56 MGas%) 2456 2456 2,456
MG367) 2367 2367 2,367 2367
12,67 1267 1267 12,67 M@azs7)
M
1257
k% change L257 change \ s L2 vl change . change il
ag 1256 12,56 i 12,56 G7) 1256
124 M 12047 125 1257
1247 1247 1247 1247
MG7a%) 12,46 1246 1246 12,46

Fig. 6. For the case of 7 agents , the figure shows how as, ag set M from one coalition to another
through the lists Ly 2, L4 ¢ respectively.

The differences between the agents grow with the number of agents involved.

For example, for the case of 31 agents, Figure 7(A) shows the time required for
each agent to set M to the coalitions in its share. As shown in the figure, the
required time differs considerably from one agent to another. Now in order to
reduce these differences, the distribution needs to be modified. This involves
modifying which values an agent calculates, rather than how many values
it calculates. In more detail, instead of having agent a; calculate a list of
sequential coalitions, a;’s share can be divided into two sub-lists L} ; and L2,

where each sub-list is located at a different position in L. This prov1des the
ability to reduce the differences between the agents by adjusting both the size

18

a1

32<

and the position of the sub-lists of every agent.

Lg second
/V 1.236 sec
N1) '
NS,Z 0.945 sec
0.8
0.6
0.4
0.2
Ns,n
0 ;
7 ; 1
N 24 6 81012141618 2022 24 2628 30

(A)

B

4

iy Ny vy

Lg second
40%*Ng 1
12 —i kb
%N Py
1 [t 47
40%*Ng 5 :
: 0.8
60%*Ng
06+,— 5 7
0.4
60%*Ng 5
? 0‘2._ -
60%*Ns |
0
N’ 24681(5]214]618202224262830

(B)

Fig. 7. For the case of 31 agents with equal computational speeds, the figure shows the time

required for each agent to set M to the coalitions in its share. (A) shows the case where each agent’s

share consists of a set of sequential coalitions, while (B) shows the case where each agent’s share is

divided into two sub-lists.

To this end, let Ngz be the number of coalitions in wa (i.e. stl = \Lf”), and
let index]; be the index in L, at which L7, ends. The modification can then

be expressed as follows:

e Each agent a; calculates N,; using equation (1), and then calculates the
number of coalitions in the sub-lists L}, and L2 as follows: "

N, ;= |Ny; x 0.4]

N2, = [N, x 0.6]

(5)
(6)

' The values 0.4 and 0.6 that are presented in the equations were determined via
empirical studies. In this case, a range of different values were explored for a range
of coalition scenarios, and these values were consistently the most efficient.

19

i

e After that, the agent calculates N’ using equation (4), and then calculates
the indices at which the sub-lists end; this is done as follows:

- 1 _ 1
index,; =1 X Ng;

index?; = Ny— N — ((i — 1) x NZ;)

e The calculation of the coalitional values is then handled using the same
method specified in Section 3.1.

In more detail, the modification works as follows. For each agent a;, the sub-
list L;,i is located at the upper part of L,, and the sub-list Lii is located at
the lower part. Moreover, the higher L;,i is, the lower Lg,i is. By this, the total
number of operations performed for both sub-lists is broadly the same for all
the agents. For example, for the case of 31 agents with equal computational
speeds, Figure 7(B) shows the modified distribution, as well as the time re-
quired for each agent to set M to the coalitions in its share.'? As shown in
the figure, the differences between the agents were considerably reduced. In
particular, the difference between the first agent to finish and the last dropped
from 291 to 17 milliseconds (i.e. it was reduced by 94.2%). Moreover, the time
required for the distribution process dropped from 1.236 to 1.081 (i.e. it was

reduced by 12.5%).

One could argue that the differences between the agents can be further reduced
by having more than two sub-lists. However, since setting M to a coalition
located at a particular index requires more operations than setting M from
one coalition to another, and since every sub-list requires calculating the index
at which it ends, as well as setting M to the coalition located at that index,
then, by having more sub-lists, the number of operations required becomes
greater, and adjusting both the size and the position of each sub-list becomes
more complicated. Based on this, as well as the fact that having two sub-lists
reduces the differences considerably between the agents, we only divide the
agents’ shares into two sub-lists.

3.8 Considering different computational speeds

As mentioned earlier, the DCVC algorithm distributes the required calcula-
tions such that each agent gets an equal share (with a possible difference of at
most one calculation). This distribution is efficient if the agents do not need

12 The PC on which we ran our simulations had a processor: Pentium(R)4 2.80 GHz,
with 1GB of RAM.

20

to take into consideration the differences in computational speeds (e.g. be-
cause all agents have the same computational speed or because the differences
are insignificant). However, in the case where the agents do have significantly
different computational speeds, it is inefficient to have each agent calculate
the same number of values. In such cases, the distribution needs to be done
with respect to the agents’ relative computation speed. In order to do so, we
present the required modifications to the algorithm.

After sorting the set of agents, and setting « to 1, each agent calculates the
time it requires to perform a particular number of operations; the number and
type of these operations should be pre-determined by the developers. This can
then be used to indicate the agent’s relative computation speed. For example,
the developers can agree on having each agent perform 10000 additions. Then,
if agent a; took a time ¢; = 20 milliseconds, while a; took a time ¢; = 40, then
this indicates that a; has a computational speed twice as fast as a;.

Now that each agent a; has calculated ¢;, it sends this value to every other
agent. By this, each agent a; would have ¢; for every j # i. Note that this
step is only performed once. The algorithm then distributes the calculations
as follows:

Instead of calculating the number of coalitions in its share, each agent a;
calculates the number of coalitions in every agent’s share. This is done using
the following equation:

%o el

The agent then calculates the values N, and N?; using equations (5) and
(6), and then calculates the values index,; and index?; using the following
equations:

i

~ 1 _ 1

index,; =Y Ny,

i=1

i—1

: 2 _ / 2

index?; = Ny— N' =" N¢;
J=1

After each agent calculates the values of the coalitions in its share, some values
might remain uncalculated. In this case, the number of the remaining coali-
tions is given as follows:

The calculation of these values is then handled using the method defined in

21

Section 3.1. We now prove that by using the modified algorithm, we minimize
the time required for all the values to be calculated.

Theorem 1 For any size s € S, the distribution specified in the DCVC
algorithm minimizes the time required for all the values to be calculated.

Proof. Since the agents perform the calculations in parallel, then the time
required for all the values to be calculated is equal to the time required for
the last agent to finish calculating its share. Therefore, minimizing the re-
quired time is equal to minimizing the value: r?%f((tj X N ;). Now since we
need to distribute the calculation of N, values among n agents, we can define
the space of possible solutions as the space of vectors V' C R"™ in which for
every vector ve V, we have }_©" ; v; = N,. Then, in order to minimize the
value: maxf_,(t; X Ny;), we need to find a vector x € V that satisfies the
following condition:

v<§€ V)(HZ € {1,,’)7,}) Xy <t X xp = (El] € {1,,77,}) :tj XY; > tj X Z; >t X x; (7)

That is, decreasing some component x; must be at the expense of increasing
some other component x; such that ¢; x y; > t; X x;. Now since we have
* ,x; = Ng, then (7) implies that:

tlxx1:t2xx2:...:tnxxn

By solving this equation, we find that z; = N,/(t; x 3%_, 1/t;). This means
that by making Ny; = N,/ (t; x Xj_, 1/t;) for every i € {1, ...,n}, we minimize
the overall time of calculations. O

Note that the agent’s actual share is {NS/(ti X 3 1/tj)J with a possibil-
ity of one additional calculation. This difference, however, is very small and is
therefore not considered in the proof.

4 Generalizing DCVC to deal with subsets of agents

So far, we assumed that every agent is able to join any coalition. However,
as discussed earlier, there are cases where this assumption does not always
hold. Now let A* (A* C A) be the set of agents that are currently able to
join any coalition, and let n* = |A*|. Similarly, let A* = {a},a,...,a%.} be
the set of agents that are not able to join any coalition, where n* = ’fl*’ (this
means that: A* = A/A* and n* = n —n*). Finally, let P denote the set of all
potential coalitions that are of any size s € S, and let P* denote the subset
of P in which every coalition contains only members of A*. Based on this,

22

every time the agents need to form a coalition, they only need to consider the
coalitions that belong to P*. Note that A* is continuously changing due to the
coalitions that are being formed. Also note that any change in A* corresponds
to a change in P*, and whenever A* = A, we have: P* = P.

As mentioned earlier, after a particular coalition is formed, the coalitional
values might need to be re-calculated before the agents can form another
coalition. Now in order to perform this re-calculation process in a distributed
manner, the set P* must first be distributed among the agents. This can be
done using either of the following methods:

e Searching through P.

e Repeating the entire distribution process.

We will first discuss the first method since this is the way that the SK algo-
rithm handles the problem, and then we will show that simply repeating the
distribution process (which DCVC can do, but SK cannot) is faster and more
efficient.

4.1 Searching through P

In this method, the set P is initially distributed among the agents, and each
agent a; maintains its share of P (denoted by F;). Then, whenever the coali-
tional values need to be re-calculated, each agent a; searches through P;, and
finds the coalitions that belong to P*. These coalitions are then the agent’s
share of P*, for which it calculates the coalitional values. In more detail, based
on the memory that is available to the agent, this can be done using one of
the following approaches:

(a). Each agent maintains its share of P, but does not maintain its share of
P*. Therefore, whenever the coalitional values need to be re-calculated,
each agent a; has to search through P;, and find the coalitions that belong
to P* (and that is even if P* remains unchanged). Specifically, finding the
coalitions that belong to P* is done by finding those that contain only
members of A*. Note that we assume every coalition is written in memory
using n bits, where each bit indicates whether an agent is a member of
the coalition. * Therefore, finding whether a coalition belongs to P* is
done by first checking the bit that represents aj, and if it is set to 1, then
the coalition contains a member of A*, and therefore does not belong

13 For example, given 8 agents, the coalition {a1, as,as,ar,ag} can be written in
memory as: 11010011 instead of: 1,2, 4,7, 8. This way, writing a coalition in memory
requires less space, and finding whether an agent belongs to the coalition requires
checking a single value instead of searching the entire coalition

23

to P*. On the other hand, if it is set to 0, then the agent must check
the bit that represents a3, and so on. This is repeated until a member
of A* is found in the coalition, or until all the members of A* are checked.

. Bach agent a; does not only maintain F;, but also maintains its share

of P* in a temporary list (denoted by temp;). Obviously, this approach
requires allocating a larger memory space (For example, if there are no
limitations on the coalitional sizes, then this approach would require allo-
cating 50% more memory space). However, using this approach requires
performing fewer operations (see Section 5 for details).

To show how temp; can be used, let us first consider A;rev to be the
previous value of A* (i.e. ApTeU is the set of agents that were not able to
join other coalitions dumng the previous re-calculation process, while A*
is the set of agents that are currently not able to join other coalitions).
Also, consider A%, .4 to be the set of agents that belong to A%, but

do not belong to A*, and consider A*,,.; to be the set of agents that
belong to A*, but do not belong to A* _ . By this, we have:

prev*

A* - A;rev / Aremoved U Aadded A:emoved N Aadded - ¢ (8>
Now, let 7., be the number of agents in A%, (ie., 7}, =)Aprev
and let 77, ed Magdgeq P€ the number of agents in Ammoved and A’ ed
respectively. By this, we have:

nt o= ﬁ;refu - ﬁ:emoved + ﬁdeed (9>
Finally, let B, ., be the previous value of P*, let A7 be the previous
value of A, and let ny,.., = ‘A;;rev‘ Now, whenever the coalitional values

need to be re-calculated, the agents would have one of the following pos-
sible cases:

(1) A:emoved QS’ and Aadded 7é Qb

Here, we have: A* = A* U A%, ;. and in this case: P* C P

prev’
Thus, in order to find the coalitions that belong to P*, it is sufficient
to search through P7. ., (in other words, it is sufficient for each agent
to search through temp;. *) Now since every coalition in temp; does
not contain members of A;;m), and since we have: A* = Apm) UAadded,
then every coalition in temp; that does not contain members of A* ;..

14 This is because whenever the coalitional values need to be re-calculated, the set
temp; would initially contain the coalitions in P; that belong to P}., (because

prev

each agent a; would initially have in memory the set temp; from the previous re-
calculation process).

24

(ii).

would be a coalition that does not contain members of A*, and there-
fore belongs to P*. Based on this, each agent a; should search through
temp;, and copy the coalitions that do not contain members of A%, .
to a new list, then free the memory allocated to temp;. This new list
would then be the new temp;.

A * _ A * _ .
removed ~ Qb, and Aadded - ¢ .

In this case, we have: A* = A7 . which implies that: P* = P; .

Since the agents already have their shares of P’ _ maintained in

prev
memory, then no search is required.
A:emoved 7é ¢7 and A:dded = ¢ :
Here, we have: A% = A*U A%, ;. and this implies that: Py, ., C

P*. In this case, finding the coalitions that belong to P* can be done
using two different methods:

e Since temp; contains the coalitions in P; that do not contain

members of fl;,,ev, and since we have: /_X;TGU = A*UA?, . then
agent a; already knows the coalitions in P; that do not contain
members of A* U A* . In this case, the agent must search
through P;, find the coalitions that do not contain members
of A*, but contain members of A%, and then add them to
temp;. In more detail, for every coalition in P;, the agent searches
for members of A¥, . and if it finds any, then it searches for
members of A*, and if it does not find any, then it adds the

coalition to temp;.

e This method involves finding the coalitions that belong to P*,

without taking into consideration the fact that each agent main-
tains its share of P . In more detail, each agent a; starts by
emptying temp;. After that, the agent searches through F;, finds
the coalitions that do not contain members of A*, and copies

them to temp;.

By using the first method (instead of the second), the coalitions that
contain members of A* . would always require more operations
15 while the coalitions that do not contain members of A*
might or might not require fewer operations. ' However, even if they

15 Because instead of searching for members of A*, the agent first has to search for
members of A

*

T emoveqs ad then search for members of A*.

16 Because instead of searching for members of A*, the agent has to search for
members of A*

T emoveqs dd the number of these members might or might not be less

than the number of the members of A*.

25

do require fewer operations, the number of these coalitions is often
much smaller than the number of coalitions that contain members of
AY ovea- Therefore, agent a; performs fewer operations by not taking

temp; into consideration.

. A:emoved # (b? and A:zdded 7£ (b :

Here, we have: A* = (Ax /A%) U A%44eq- In this case, finding
the coalitions that belong to P* can also be done using two different

methods:

e Each agent a; should first search through temp;, find the coali-
tions that do not contain members of A*,,., and then copy
them to a new list. This new list would then contain the coali-
tions in P, that do not contain members of (A* U A, .17

After that, a; should search through P;, find the coalitions that

do not contain members of A*, but contain members of A%,

and then add them to the new list. Finally, a; should free the

memory allocated to temp;, and the new list would then be the

new temp;.

e This method finds the coalitions that belong to P*, without
taking into consideration the fact that each agent maintains its
share of P}, .

Here, using the first method (instead of the second) requires even
more operations (compared to the case where: A7, .4 # ¢, and
A} ggea = ¢). This is because the agent must also search through
temp;, and find the coalitions that do not contain members of A* ..,
Therefore, agent a; performs less operations by not taking temp; into
consideration.

Now that we have discussed the different approaches of the first method (i.e.,
searching through P), we will discuss the other method (i.e., repeating the
entire distribution process) and then make a comparison between these two
methods.

17 This is because temp; contains the coalitions in P; that do not contain members
of A?

L Llprev:
A2 14ed» the agent actually finds the coalitions in P; that do not contain members

of A*

prev

Then, by finding the coalitions in temp; that do not contain members of

U A% jieq- And from equation (8), we know that (A%, U A% ..0) = (A* U

prev

removed/*

26

4.2 Repeating the entire distribution process

In this method, the agents initially distribute P* (instead of P), and then
repeat the entire distribution process of P* whenever A* is changed. Note that
when using other distribution algorithms (e.g. Shehory and Kraus (1998)), this
method is considered inapplicable, due to the communication that is required
every time the distribution process is repeated, as well as the time required
for each agent to re-build its entire share in memory. However, when using
DCVC, the distribution process can be repeated without any communications
between the agents. Moreover, the agents do not have to re-build any lists in
memory, thus, reducing the required time (for more details, see Section 6).
This makes repeating the distribution process a feasible possibility. Note that
in order to distribute P* (instead of P), DCVC should be modified as follows:

e Replace N, with N} in Figure 1. This would be sufficient for calculating
the number of coalitions in each agent’s share of P* (and not P), as well as
calculating the index of the last coalition in the share, and the number of
additional values.

e Replace n with n* in Figure 2. This would be sufficient for setting M
to the last coalition in each agent’s share.

e Replace n with n* when calculating C;. By this, C; = {n*—s+1,...,n*—
1,n*}. This would be sufficient for setting M to the coalition before it (This
is because searching for (is done by comparing values of M with values of

).

4.3 Comparing the distribution efficiency

We will now compare both methods (i.e., searching through P and repeating
the entire distribution process) in terms of distribution efficiency (a compar-
ison of both methods, in terms of computational complexity can be seen in
Sections 5):

e When each agent a; searches for the coalitions in P; that belong to P*, some
agents might find significantly more coalitions than others, and thus end up
with larger shares of P*. In fact, using this method results in a random dis-
tribution of P*. Clearly, this is not optimal since P* needs to be distributed
in a way that minimizes the calculation time. On the other hand, repeating
the distribution process results in an optimal distribution of P*.

Although we have advanced qualitative reasons for the relative advantages

of repeating the entire distribution process, we need to provide quantitative
results to back this up. To this end, we tested both methods for the case of

27

30 agents. '® Here, we assume that S = {1,..,30}, and that the agents have
equal computational speeds. Initially, each agent was given an equal share
of P. Then, both of the methods were tested given different sizes of A* (i.e.,
given different values of 7*, ranging from 0 to 281%); the results were taken
as an average of running a statistically significant number of times, and in
every case, the members of A* were randomly selected from A.

n* | Repeating the | Searching each
distribution | agent’s share

1 1 4,445,182

2 1 5,105,232

3 1 3,808,067

4 1 1,482,807

5 1 1,120,504

6 1 679,789

7 1 382,358

8 1 213,289

9 1 116,533

10 1 62,869

11 1 31,964

12 1 16,638

13 1 8,290

14 1 4,431

15 1 2,627

16 1 1,402

17 1 681

18 1 350

19 1 197

20 1 106

21 1 59

22 1 29

23 1 16

24 1 9

25 1 4

26 1 3

27 1 2

28 1 1

Table 2. For the case of 30 agents, the table shows the difference between the agent that had the
biggest share of calculations and the one that had the smallest, given different values of n*.

18 Tests with different numbers of agents were carried out and gave broadly similar
results and so they are not shown here.

19 This is because having 7* = 29 means that A* contains only one agent, which
implies that there is only one potential coalition. In other words, no distribution is
required in this case.

28

Table 2 shows the difference between the agent that had the biggest share
of the calculations and the one that had the smallest. As shown in the table,
by having each agent a; search for the coalitions in P; that belong to P*, the
agents ended up with unequal shares. On the other hand, when repeating
the distribution process, the difference between the agents was as small as
possible.

e By having each agent a; search through P;, the set P* will always be dis-
tributed among all of the agents. Note, however, that some agents might
have already joined other coalitions, and these agents might be busy per-
forming the tasks they were assigned. Therefore, it might be more efficient
if they did not take part in the re-calculation process. Otherwise, if all the
agents were always busy performing the search process as well as the value
calculation process, then the members of the formed coalitions might not
be able to focus on their assigned tasks long enough to actually perform
them on time. On the other hand, by repeating the distribution process,
the set P* would not necessarily be distributed among all of the agents.
Instead, it can be distributed among any subset of A. For example, it can
be distributed among those that are not members of any coalition.

To sum up, Figure 8 shows the final version of DCVC, including the modifi-
cations mentioned in sections 3.2, 3.3, and 4.2 (henceforth, all references to
DCVC refer to this version unless stated otherwise). Here, we assume that
the required calculations are distributed among the entire set of agents (A).
However, if the distribution is required to be among a subset of A, then two
changes need to be made to the algorithm. The first is to replace n with the
number of agents that are required to take part in the re-calculation process.
The second is to initialize o every time the distribution process is carried out
(otherwise, the agents that did not take part in a previous distribution will
not be able to know the current value of «).

5 Computational complexity

As discussed earlier, by repeating the entire distribution process, we obtain
an optimal distribution of P*. However, we need to show whether this comes
at the expense of an increase in the number of operations required per agent.
Therefore, we calculate the computational complexity for each of these meth-
ods. Here, we consider the computational complexity to be the number of
operations required, given different values of n*. Note that instead of using
the big-O notation (which only gives an idea of how the number of operations
grows with 7*), we calculate the complexity using equations that give the
exact number of operations required.

29

Each agent a; should first perform the following once:
e Sort the set of agents based on the agents’ UID.

o Setta=1.

o If (equal_computational _speeds = false) then:

1. Calculate ¢;, and send it to every other agent.

For every coalition that needs to be formed, each agent a; should perform the following:
e Forevery (s € S, s < n) do the following:
1.If (N > n) then:
1.1. If (equal_computational _speeds):
o Calculate the size of your share: N, ; = | NS /n|
o Calculate the size of both sub-lists: N ; = | N, ; x 0.4] , N2, = [N, ; x 0.6]
o Calculate the number of additional values that need to be calculated: N' = N —n x N, ;

o Calculate the index of the last coalition of each sub-list: index} ; =i x N,
index?; = Ny —N'—((i—1)xNZ,)
Otherwise:

o Calculate the size of every agent’s share: N, ; = {NSJ g=1,...n

tj XZ)::1 l/tk
o Calculate the size of both sub-lists: N} ; = |N,; x 0.4] ,N2; = [Ny; x0.6] : j =

o Calculate the number of additional values that need to be calculated: N/ = N¥ — Z?:l N ;
o Calculate the index of the last coalition of each sub-list: index} ; = Z;zl N} j
index?, = Ny — N' = Y'_] N2,
1.2. Calculate the values of each coalition in your share.
Otherwise:

1.3. Calculate the number of additional values that need to be calculated: N’ = N

2.If (N' > 0) then:

2.1. Find the sequence of agents A’ in which each agent should calculate one additional value.
And if you are a member of A’, then calculate the appropriate value. This is done as follows:

o If (a+N'—1<n)then: A’ = (aa,Gat1, -, GatN'—1)
else: A’ = (Go, Qa1 oy Qny 1y ooy Aot N'—1)—n)
o If (a; € A’) then calculate one of the additional values based on your position in A’

o If (a+N' <n)thenna=a+ N,else:a=a+ N —n

Fig. 8. The DCVC algorithm (final version).

30

5.1 Searching through P

Here, each agent a; searches through P; in order to find the coalitions that
belong to the set P*. As mentioned earlier, this can be done using two different
approaches:

(a). If the agents do not maintain their shares of P*, then whenever the coali-
tional values need to be re-calculated, every agent a; must search through
P,, and find the coalitions that do not contain members of A*. In this
case, the total number of operations is calculated as follows. For every
coalition in P, we calculate the number of comparisons required to de-
termine whether it contains members of A*. In more detail, for every size
s € S, we have:

e The number of coalitions that require 1 comparison is equivalent to the
number of coalitions in which a} is a member, and that is: C77.

e The number of coalitions that require 2 comparisons is equivalent to the
number of coalitions in which aj is not a member, and a@; is a member,
and that is: 08(7:1)_1 = Cr 2.

e Similarly, for every i (1 <1 < %), the number of coalitions that require

n—i

¢ comparisons is given as follows: C} 7.

e Finally, the number of coalitions that require n* comparisons is equiva-
lent to the number of coalitions in which a7, ..., a;._; are not members,
and @’. is a member (and that is: C?'-/""), plus the number of coalitions
in which @}, ..., a%. are not members (and that is: C?~"").

Note, however, that there are a number of issues that also need to be
considered when calculating the number of comparisons that need to be
performed:

o If n* =0 (i.e., if all the agents were able to join other coalitions), then
we have P = P*, in which case no search is required.

e If 0 < n* < n, then the agents would only need to search through the
coalitions that are of size: s € S, s < n—n*; this is because A* contains
only n — n* agents (i.e., the agents in A* cannot form a coalition that
contains more than n — n* members).

e If n* = n, then no coalition can be formed, and therefore no search is
required.

Based on this, the number of required operations (denoted by op(n*)) is

31

given in the following equation:

Y ((XixCl) + (arxCr) if 0<@*<n

0 otherwise

Note that the agents search through the coalitions of size: s < n — n*,
and perform a maximum of n* operations per coalition. Therefore, given
a larger value of n*, the search space would be smaller, but the average
number of operations per coalition would be larger. Figure 9 shows the
total number of operations required, given different values of n*, and that
is for the case of 30 agents.

Num of operations
(divided by 109)

2,000

1,600 A

1,200 +

800

400 +

0 5 10 15 20 25 30

Fig. 9. The total number of operations required for distributing P*, and that is given 30
agents, where each agent a; searches through P; without maintaining its share of P*.

As shown in the figure, as long as n* < 10, the number of operations
increases given larger values of n*. This is because the search space be-
comes slightly smaller, while the average number of operations required
per coalition becomes larger. However, when n* > 10, the number of
operations decreases given larger values of n*, and that is because the
search space becomes significantly smaller.

32

(b). If each agent maintains its share of P*, then whenever the coalitional val-
ues need to be re-calculated, the agents would have one of the following
possible cases:

().

A:emoved ¢7 and Adeed 7& (b :

Here, we have: A* = A;rev U A% 10eq- In this case, for every coali-
tion in temp;, agent a; must determine whether it contains members
A% ieq, and, if not, then the agent must copy it to a new list. Note
that temp; contains the agent’s share of P .. Therefore, the total
number of operations is calculated as follows. First, for every coali-
tion in P, we calculate the number of comparisons required to
determine whether it contains members of A*,,.,. In more detail, for

every size s € S, we have:

e The number of coalitions that require 1 comparison is equivalent
to the number of coahtlons in Py ., in which aj is a member,

prev
and that is: C’ p”“

e The number of coalitions that require ¢ comparisons, where 1 <
i < Mpggeqs 1S equivalent to the number of coalitions in B, in

which C_Ll,. .,af_; are not members, and a; is a member (and
—1
that is: p““).

e The number of coalitions that require 7n},,., comparisons is

equivalent to the number of coalitions in P, in which EL"{, s dn

are not members, and az. is a member (and that is: C ™)
plus the number of coahtlons in P, in which aj,...,a%. are
prev added

not members (and that is: C prev™ “ddEd).

Now, we calculate the number of operations required to copy the
coalitions that are in P;Tev and do not contain members of A%, ..
Note that every coalition is maintained in memory using n bits, and
that the minimum unit of memory that can be allocated is one byte.
Therefore, we can say that every coalition is maintained in an array
of [n/8] bytes, and thus, copying a single coalition requires [n/8]
operations.

Finally, since we have: A* = A% U Aadded, and since fladded # o,
then: A* # ¢, and this implies that 7* > 0. Therefore, 7* can have
one of the following values: (1,2, ...,n), and for any given value of n*,

the number of required operations is given in the following equation:

33

added
pTev adderi)

Y

0 ifn*=n

Op(n*) == ﬁ;dded . n* - n* i
E ((E 17 X s_paev)+ ((ﬁ:dded + "n/g"‘) < Cs prev added))

seS,s<n—n* i=1

ifn* <n

Now for the case of 30 agents, Figure 10 shows the number of op-
erations required, given different values of n*. Note that we have:
n* = Ny, + Naggeq- Therefore, we calculated op(n*) by taking the
average of all possible cases, where 7} ,,., = 1,2,...,n". For example,
op(10) was calculated as an average of the cases where (7)., = 9,
Mhggeq = 1), and where (77 ., = 8, 2% 445.4 = 2), and so on. As shown
in the figure, except when n* < 3, having each agent maintain its
share of P* requires less operations, especially given large values of
n*. This is because the number of operations in this case depends

mainly on the size of Py (which is often much smaller than P).

Num of operations
(divided by 109)

3,200
@ Search for P* (without
2,800 1 using femp;)
¥ Search for P* (using
2,400 femp,)
2,000 -+
1,600 -
1,200
800
400 1
01 —x
0 5 10 15 20 25 30
Fig. 10. Given that A*_ . = ¢, and A% ., # ¢, the figure shows the total number of

operations required to distribute P*, and that 1s given 30 agents, where each agent maintains
its share of P as well as P*.

34

(11) :emoved - Qb, and Adeed - ¢ :

In this case, we have: P* = P . As mentioned earlier, since the

agents already have their shares of P, ., maintained in memory, then

no search is required (i.e. the number of required operations is 0):

op(n*) =0

(Hl) A;ﬁemoved # (b? and A;dded = (b :

As mentioned earlier, finding the coalitions that belong to P* is done
without taking into consideration the fact that each agent maintains
its share of P . Instead, each agent a; searches through P;, and
copies the coalitions that do not contain members of A* to the list
temp;. Based on this, the total number of operations is calculated as
follows.2° First, for every coalition in P, we calculate the number
of comparisons required to determine whether it contains members
of A*. After that, we calculate the number of operations required

to copy the coalitions that are in P and do not contain members of

A*. Note that we have A* = A* JA* . and A%, .4 # ¢. This
means that n* < n, ., which implies that n* < n. Based on this,

n* can have one of the following values: (0,1,...,n — 1), and for any
given value, the number of operations is given as follows:

S (X ix)+ (@ + [nf8]) x C7))if 0 <@

s€S,s<n—n* =1

0 otherwise

Now for the case of 30 agents, Figure 11 shows the number of oper-
ations required, given different values of n*. When compared to the
case where the agents do not maintain their shares of P*, we find that
unless 7* = 0, this method would always require more operations. 2!
However, as shown in the figure, this difference becomes insignificant
when n* > 8.

20 Note that the agent must first empty temp;. However, this is done using a single
operation, and, therefore, is not considered when calculating the total number of
operations required.

21 These additional operations would be the ones required to copy the coalitions
that do not contain members of A*.

35

Num of operations
(divided by 109)

3,200

@ Search for P* (without

2,800 1 using femp;)

¥ Search for P* (using
temp;)

2,400 +

2,000

1,600

1,200 +

800

400 ¥

0 5 10 15 20 25 30

Fig. 11. Given that A*_ . = ¢, and A%, , = ¢, the figure shows the total number of
operations required to distribute P*, and that 1s given 30 agents, where each agent maintains
its share of P as well as P*.

<1V) A:emoved 7& (b’ and A:deed 7£ (b :

In this case, finding the coalitions that belong to P* is also done
without taking into consideration the fact that each agent maintains
its share of Py, . Therefore, op(n*) is calculated just as in the case
where A5, .. # ¢, and A%, = ¢. Note, however, that we have:
(A* = A;_rev/A:emoved_U Adeed : A:emovedmAdeed 7é ¢)7 and therefore,
having: A’ jied 7 s Aremoved 7 ¢, implies that: 0 < n* < n. Based on

this, the total number of required operations is given as follows:

o) = S (i X M)+ (A + [nf8]) x CI 7))

s€S,s<n—n* i=1
5.2 Repeating the entire distribution process

When repeating the distribution process using DCVC, we distinguish between
two different cases, based on the memory that is available to the agent:

36

e In case the agent has sufficient memory space to maintain P;, then, by main-
taining P;, the agent can avoid repeating the distribution process whenever
- %

n* = 0, because repeating the distribution process in this case would only
result in the same share as the one maintained in memory. 22 .

e In case the memory space is not large enough for agent a; to maintain P,
then the agent can only repeat the distribution process, even when n* = 0.

Next, we calculate the complexity for the second case (the complexity of the
first case can then be calculated easily, by replacing the value with 0 when-
ever n* = 0.). Specifically, for every size s € S, we calculate the number of
operations required to set M from one coalition to the next, throughout the
list. 2> As mentioned earlier, changing x values in M requires performing x
comparisons, as well as z additions, which gives a total of (2 X x) operations
(see Figure 5 for an example). Therefore, to calculate the number of oper-
ations required, we calculate the number of comparisons, and then multiply
this number by 2. In more detail, the number of coalitions that require 1 com-
parison is equivalent to the number of coalitions in which a. is a member
(ie., C™ "), and the number of coalitions that require i comparisons, where
1 <4 <'s, is equivalent to the number of coalitions in which a., ..., a,’;*_(i_l)
are not members, and a._, is a member (i.e, C’;f;fl). Based on this, the to-
tal number of operations required, in order to set M from one coalition to
another, is:
S
op(n*) = 2x (> D ixCri)

s€S, s<n—n* i=1

We will now compare the number of operations required, given different values
of n*, and that is when searching through P, and when repeating the distri-
bution process using DCVC. To make this comparison possible, we assume
that every agent a; has sufficient memory space to maintain P; (otherwise,
the agents have no other choice but to repeat the distribution process using

DCVC).

22 However, the agent in this case might still need to maintain one coalition (instead
of maintaining P;) This is because the agent, at some point, might need this space
to perform other tasks (e.g., the tasks that are assigned to the coalition in which it
is a member).

23 Clearly, these are not the only operations required (e.g. operations are also re-
quired to calculate the size of each agent’s share, the index at which each share ends,
...etc.). However, we will only consider these when calculating the complexity. This
is because we are dealing with an exponential number of coalitions, and, therefore,
we only consider the operations that are performed for every coalition. In other
words, we only count the operations that grow exponentially with the number of
agents.

37

Now, given 30 agents, Figure 12 shows the number of operations required
to distribute P* using any of the methods that were discussed earlier. Note
that when repeating the distribution process (using DCVC), the dashed line
shows how the number of operations increases when each agent maintains one
coalition (instead of maintaining F;). Also note that when searching through
P (using temp;), the figure shows the average number of operations required,
and that is for all the different cases of: A%, . A*,. ..

Unlike what we had initially expected, we find that, on average, repeating
the entire distribution process (using DCVC) requires fewer operations, and
that is even when the agents do not maintain P;. Specifically, when compared
to the case where each agent searches through P; (without using temp;), we
find that if each agent maintains P;, then, repeating the distribution process
requires 13.8% of the operations, otherwise, repeating the distribution pro-
cess requires 27.6% of the operations. Similarly, when compared to the case
where each agent searches through P; (using temp;), we find that if each agent
maintains P;, then, repeating the distribution process requires 20.3% of the
operations, otherwise, it requires 40.7% of the operations.

Num of operations
(divided by 109)

v
A Search for P* (without using femp,)
4,000
Search for P* (using femp,)
3,500 ¥ Repeat the distribution process
(using DCVC)
3,000 A
2,500
2,000 +
1,500
1,000 -
500 /'
. |
04 ¥ R A A e o WK RSN 7*
0 5 10 15 20 25 30

Fig. 12. The number of operations required for distributing P* given 30 agents, and that is using
different distribution methods.

38

6 Performance evaluation

Having calculated the computational complexity, we now present empirical re-
sults against SK (for the reasons outlined in Section 2). In more detail, Figure
13 shows how SK operates. Note that the figure only shows the steps that
are required for each agent to know its share of calculations (i.e. the figure
does not show the steps that are performed to calculate the coalitional values
themselves), because we are only interested in the distribution process. Also
note that Shehory and Kraus assume that the coalitions are only allowed to
contain up to k agents. Finally, note that in SK, each agent a; maintains P,
and whenever the coalitional values need to be re-calculated, the agent finds
the coalitions that belong to P* by searching through P; using temp; (in SK,
temp; is equivalent to L¢").

Each agent a; should perform the following:
e Putin S; the set of potential coalitions that include up to k agents including a;.
e While S; is not empty do:

o Contact an agent a; that is a member of a potential coalition in .S;.

o Commit to the calculation of the values of a subset .S;; of the common potential coalitions (i.e.
a subset of the coalitions in S; in which a; and a; are members).

o Subtract S;; from P;. Add S;; to your long-term commitment list ;.

o For each agent ay, that has contacted you, subtract from S; the set Sy; of the potential coalitions
it had committed to calculate values for.

o Calculate the values for the coalitions you have committed to (.S75).

o Repeat contacting other agents until S; = a; (i.e., no more agents to contact).

Fig. 13. The SK algorithm.

As mentioned earlier in Section 4, without repeating the entire distribution
process, P* would be distributed among all the agents in A. However, by using
SK, every coalition in P; would be a coalition in which a; is a member, and
in this case, P* would be distributed among the members of A* instead.?*
Note that the agents in A* might not always be too busy to take part in the
re-calculation process. In other words, it would be more efficient if P* can also
be distributed among A whenever necessary (as in DCVC). However, since
SK only distributes P* among A*, then, when comparing the performance of

24 This is because whenever a; € A*, every coalition in which a; is a member can no
longer be formed, including all the coalitions in P;. In other words, even if a; was
able to take part in the re-calculation process, it will not find any coalitions in P;
that belong to P*.

39

both DCVC and SK, we set DCVC to distribute P* only among A*.

We tested the performance? of DCVC and SK given different numbers of
agents, ranging from 10 to 25 (However, given any number of agents out-
side this range, the ratio between the performance of DCVC and SK remains
broadly similar). Note that we have 25 agents as a limit, rather than 30 as per
the previous sections, because SK requires each agent to maintain a list of all
the potential coalitions in which it is a member, and for 30 agents, this list
would require more memory space than is actually available to the agent in

the simulation. In other words, the agent would not be able to run SK, given
N = 30.

Given the desiderata mentioned in Section 1, we compare the performance
of both algorithms based on the following metrics:

Distribution time.

e Communication between the agents.

e Redundant calculations performed.
e Memory requirements.
e Equality of the agents’ shares.

As for SK, note that all the results (except the memory requirements) were
empirically evaluated rather than theoretically proven. This is because they
depend heavily on the order in which the agents contact each other, and there
are an exponential number of possible contact sequences, which makes the
results non-deterministic and not amenable to a theoretical analysis. As for
the time requirements, we deliberately chose empirical evaluation based on
clock time; this is because the large memory requirements for SK affect the
computer’s performance speed, and this effect will not appear in a theoret-
ical analysis that takes into account only the number of operations performed.

As for DCVC, note that when calculating the distribution time, as well as
the memory requirements, we distinguish between the case where each agent
maintains one coalition, and the case where each agent maintains P;. This is
because the issue of maintaining P; affects both the distribution time and the
memory requirements.

In our simulation, the agents initially distribute P among themselves, and
after that, given different values of n*, they distribute P*. The results pre-
sented below are for the case where each agent has the same computational

25 The PC on which we ran our simulations had a processor: Pentium(R)4 2.80 GHz,
with 1GB of RAM.

40

speed, and coalitions of any size are allowed to be formed (which means in
our terms S = {1,...,n}, and in SK’s terms: k = n).?® Section 6.1 shows the
results for distributing P, while Section 6.2 shows the results for distributing
P*, given different values of n*.

6.1 Distributing P

Here, given different numbers of agents (ranging from 10 to 25), we show the
results for distributing P among the agents.

6.1.1 Distribution time

The time required to distribute P among the agents is shown in Table 3.27

Number of | DCVC DCVC SK

Agents (maintain P;) | (99% confidence)
10 < 0.01 < 10.01 018 +1%
11 < 0.01 < 0.01 1.11 £ 1.2 %
12 < 0.01 < 0.01 1.54 £ 0.9 %
13 < 0.01 < 0.01 0.16 + 0.5 %
14 < 0.01 < 0.01 1.73 £ 1.4 %
15 < 0.01 < 0.01 1.83 + 1%
16 < 0.01 < 0.01 0.36 &£ 0.5 %
17 < 0.01 < 0.01 0.32 £ 2.2 %
18 < 0.01 0.01 0.61 £ 0.3 %
19 < 0.01 0.02 1.68 + 2 %
20 < 0.01 0.04 2.44 £ 1.1 %
21 < 0.01 0.08 4.81 + 1.8 %
22 < 0.01 0.16 10.64 £ 1.9 %
23 < 0.01 0.33 21.41 £ 48 %
24 0.01 0.67 4899 £ 19 %
25 0.02 1.36 108.724+ 3.1 %

Table 3. The time required (in seconds) for the distribution process.

As can be seen, by using DCVC, the agents performed significantly faster,

26 Note that if there are any limitations on the coalitional sizes, then P would
contain a smaller number of coalitions. However, the ratio between the performance
of DCVC and SK remains broadly the same.

2T Here, we calculated the standard error of the mean, as well as the 99% confidence
intervals. Thus, showing the results in the form: z + y, means that we are 99%
confident that the true mean (i.e. average) lies within the range of values: © — y to
x + y. For more details on how to calculate the standard error of the mean, as well
as the confidence intervals, see (Altman et al., 2000).

41

even when each agent maintains its share of P. The reason for this is that
when using DCVC, each agent can start processing its share of coalitions
immediately, while in SK each agent had to build a list of all the coalitions
in which it is a member, and then repeat the process of negotiating with
other agents and committing to some coalitions and deleting others, until
there are no more agents to contact. Note that in our simulation, the set P*
was distributed among A*. However, by using DCVC, the set P can also be
distributed among A whenever applicable. By having more agents take part
in the distribution process, the required time would be even less (for example,
given that n = 25 and |A*| = 10, distributing P among all the agents would
only take 40% of the time required to distribute it among A*).

6.1.2 Communications between the agents

Table 4 shows the total number of bytes that had to be sent between the
agents, in order for each one of them to know its share of the calculations.
As shown in the table, SK requires sending an exponentially large number
of bytes between the agents; this is mainly because if an agent a; contacts
another agent a;, and commits to a set of coalitions S;;, then a; would have
to subtract this set from its list, and in order to do so, a; would have to send
Sij to a;. In contrast, DCVC requires no communication between the agents
because each of them knows its share by using the provided equations, and
not by negotiating with other agents.

Number of DCVC SK

agents (99% confidence)
10 0 879 £ 0%
11 0 20,447 + 0 %
12 0 45,076 £ 0 %
13 0 99538 + 0 %
14 0 217,080 = 0 %
15 0 469,173 £ 0 %
16 0 101,1217 £ 0 %
17 0 3,242,544 £ 0 %
18 0 6,888,787 + 0 %
19 0 14,644,832 + 0 %
20 0 30,913,264 £ 0 %
921 0 65,114,817 = 0 %
22 0 136,877,925 £ 0 %
23 0 986,712,976 = 0 %
24 0 573,494,824 + 0 %
25 0 1,146,989,648 £ 0 %

Table 4. The total number of bytes that had to be sent between the agents.

42

6.1.3 Redundant calculations performed

Here by redundant we mean having the value of the same coalition calculated
by more than one agent, while it was sufficient for only one agent to calcu-
late it. Table 5 shows that using DCVC results in no redundant calculations
(because each agent knows the precise bounding of the calculations it should
perform, and these are disjoint). In contrast, SK results in an exponentially
large number of redundant calculations; this is because each agent’s commit-
ment to a set of coalitions is undertaken with very limited knowledge about the
other agent’s commitments. For example, agent a;’s knowledge about agent
a;’s commitments is restricted to the set Sj;; that a; sends to a;. This means
that a; is not aware of the coalitions to which a; has committed by contacting
other agents. This results in having the agents commit to calculating coali-
tion values without knowing that other agents have already committed to
calculating them.

Number of DCVC SK

agents (99% confidence)
10 0 3,381 £ 0%
11 0 8,182 £ 0%
12 0 18,449 + 0 %
13 0 41,584 + 0 %
14 0 92,164 + 0 %
15 0 201,827+ 0%
16 0 440,081 £ 0 %
17 0 949,783 £ 0 %
8 0 2,034,125 £ 0 %
19 0 4,357,330 £ 0 %
20 0 9,255,853 £ 0 %
21 0 19,607,795 £ 0 %
2 0 41,431,679 £ 0 %
23 0 87,182,393 £ 0 %
24 0 182,993,734 + 0 %
25 0 383,229,848 £ 0 %

Table 5. The total number of redundant values that were calculated.

6.1.4 Memory requirements

As mentioned earlier, each coalition is maintained in memory using [n/8]
bytes. Given this, Table 6 shows the number of bytes required per agent to
maintain the necessary coalitions. 2 As can be seen, the memory requirements

28 Clearly, this is not the only memory space that is required per agent. For example,
one could take into consideration the memory required to save the program that
actually performs the algorithm, along with all the variables that are required for

43

grow exponentially for SK. This is because SK cannot be applied without hav-
ing each agent start with a list of all the potential coalitions in which it is a
member (line 2 in Figure 13), and the number of such coalitions is (2"~1). 2
In contrast, when using DCVC, each agent only needs to maintain in memory
one coalition at a time. This makes DCVC particularly suitable for domains
where very little memory space is available for the agents (e.g. agents located
on mobile devices).

Number of | DCVC DCVC SK
Agents (maintain ;)

10 2 206 1,024
11 2 374 2,048
12 2 684 4,096
13 2 1,262 8,192
14 2 2,342 1,6384
15 2 4,370 32,768
16 2 8,192 65,536
17 3 23,133 196,608
18 3 43,692 393,216
19 3 82,785 786,432
20 3 157,287 1,572,864
21 3 299,595 3,145,728
22 3 571,953 6,291,456
23 3 1,094,169 12,582,912
24 3 2,097,153 25,165,824
% 1 5,368,712 67,108,864

Table 6. The minimum number of bytes required per agent to save the necessary coalitions.

As mentioned earlier, given sufficient memory space, each agent using DCVC
can also maintain its share of P, and that is to avoid repeating the distribution
process whenever P* = P. In this case, the agent would maintain 2" /n coali-
tions in memory.®® Note that DCVC would still require allocating a smaller
memory space, compared to SK, and that is given any number of agents n > 2
(for example, given 25 agents, the memory required by DCVC would only be
8% of that required by SK).

this program, such as: n, S, ...etc. However, these do not grow exponentially with
the number of agents involved, and thus, are considered insignificant.

29 This is because in the simulation, we assume no limitations on the coalitional
sizes. However, if there are limitations, then the number of such coalitions becomes:

n—1
ZSGS Cs—l :
30 Given any limitations on the coalitional sizes, this number becomes:

ZSES Cg:ll/n

44

6.1.5 FEquality of the agents’ shares

Since the agents in our simulation are assumed to have equal computational
speeds, then the agents’ shares should be as equal as possible. Table 7 shows
the difference between the agent that had the biggest share of the calculations
and the one that had the smallest. As can be seen, when using DCVC, the
maximum difference is only 1, and that is only because the total number of
values was not divisible by the given numbers of agents. However with SK,
the difference grows exponentially with the number of agents. This is because
the agents’ shares are arbitrarily determined based on the order in which
they contacted each other. Thus, some agents were contacted by more agents
than others, and so removed more coalitions from their list, and ended up
with smaller shares. On the other hand, some agents contacted more agents
than others, and thus committed to more coalitions, and ended up with larger
shares.

Number of DCVC SK

agents (99% confidence)
10 1 51 + 0.4 %
11 1 76 + 0.4 %
12 1 136 + 0.4 %
13 1 215 + 0.4 %
14 1 358 + 0.5 %
15 1 636 = 0.5 %
16 1 962 £ 0.7 %
17 1 1,537 £ 1%
18 1 2,882+ 1.3 %
19 1 4,441 £ 1.8 %
20 1 7,717 £ 2.8 %
21 1 12,094 £ 3.9 %
22 1 18,243 + 6 %
23 1 33,568 + 5.2 %
24 1 54,544 + 5.7 %
25 1 85,817 + 4 %

Table 7. The difference between the agent that had the biggest share of calculations and the one
that had the smallest.

6.2 Distributing P*

Here, for the case of 25 agents, we show the results for distributing P*, given
different values of n*.

45

6.2.1 Distribution time

Here, given different values of n*, Figure 14 shows the time required to dis-
tribute P* among A*. As for DCVC, the dashed line shows how this time
increases when each agent maintains one coalition (instead of maintaining ;).
As for SK, the figure shows the average of all the different cases of: A%, .ca
and A’ ;.- As shown in the figure, using DCVC requires significantly less time,
compared to SK. Specifically, by calculating the average for all the different
values of n*, we find that if each agent maintains P;, then DCVC requires

0.4% of the time, otherwise DCVC requires 0.8% of the time.

Time
(seconds)

Fig. 14. For the case of 25 agents, the figure shows the time required to distribute P* among A*,
given different values of n*.

Note that in Section 5, when calculating the number of operations performed,
using each of the methods (i.e., repeating the distribution process using DCVC,
and searching through P using temp; (as in SK)), we found that DCVC re-
quires either 20.3% or 40.7% of the operations (depending on whether the
agents maintain F;). In other words, the difference between both methods was
smaller than what we have here. The main reason for this is that when calcu-
lating the number of operations required to search through P, we assumed that
the agents are searching through exactly |P| coalitions. However, when using
SK, the total number of coalitions through which the agents had to search
was much larger than |P| (due to the redundancy in the agents’ shares). An-

46

other reason for this is that when using SK, the agents were dealing with an
exponentially large space of memory (while in DCVC, the agents deal with
an extremely small space of memory), and this affects the performance speed.
As we mentioned earlier, this effect does not appear when theoretically cal-
culating the number of operations required. Moreover, when using SK, the
required operations were not distributed equally among the agents, unlike in
DCVC (see Section 6.2.5 for details). Note that having unequal shares does
not affect the total number of operations performed. However, it does affect
the required time.

6.2.2 Communications between the agents

Here, note that distributing P*, using any of the two algorithms, is done
without any communication between the agents.

6.2.3 Redundant calculations performed

Table 8 shows the total number of redundant values that were calculated, and
that is given different values of n*.

[7* | DCVC | SK (99% confidence) |

0 0 383,229,848 + 0 %
1 0 183,341,930 + 0 %
2 0 87,514,975 £ 0 %
3 0 41,671,477 £ 0 %
4 0 19,792,110 + 0 %
5 0 0,374,041 £ 0 %
6 0 4,424,080 £ 0 %
i 0 2,080,256 + 0 %
8 0 974,435 + 0 %

9 0 454271 £ 0 %
10 0 210,717 £ 0 %

11 0 97,156 £ 0 %

12 0 44,459 £ 0 %

13 0 20,093 £ 0 %

14 0 8,987 + 0.1 %

15 0 3,960 + 0.1 %

16 0 1,713 £ 0.2 %

17 0 725 + 0.2 %

18 0 207 + 0.4 %

19 0 113+ 0.6 %

20 0 40 + 1.4 %

21 0 13+25%

22 0 4+48%

Table 8. For the case of 25 agents, the total number of redundant values that were calculated, given
different values of n*.

47

As shown in the table, DCVC results in no redundant calculations (because
each agent knows the precise bounding of the calculations it should perform,
and these are disjoint). In contrast, when using SK, the number of redundant
calculations becomes exponentially large (because the agents’ shares of P* are
subsets of their shares of P, and these are not disjoint). Note, however, that
for smaller values of n*, the redundancy becomes smaller, since P* becomes
smaller.

6.2.4 Memory requirements

Note that by memory requirements, we mean the minimum memory space
that must be available to the agent in order for it to perform the distribution
algorithm. As for DCVC, distributing P* (instead of P) does not change the
fact that the agent still needs to maintain one coalition at a time (and that
the agent might also maintain P; to avoid repeating the distribution process
whenever P* = P). As for SK, when searching for the coalitions that belong to
P*, the agent will not be using a memory space that is sufficient to maintain
every potential coalition in which it is a member (as when initially distributing
P). However, this does not change the fact that without having this memory
space available, the agent will not be able to use SK. Based on this, the
memory requirements remain as in Section 6.1.4.

6.2.5 Fquality of the agents’ shares

Table 9 shows the difference between the agent that had the biggest share of
the calculations and the one that had the smallest, and that is given different
values of n*. As can be seen, when using DCVC, the maximum difference is
only 1 (and that is only because the total number of values was not divisible
by 7*). On the other hand, when using SK, the difference becomes much
larger. This is because when each agent a; searches for the coalitions in P,
that belong to P*, some agents find more coalitions than others, and thus end
up with larger shares of P*. Note that for smaller values of n*, the difference
between the agents becomes smaller, because P* becomes smaller.

7 Conclusions and future work

In this paper, we have developed a novel algorithm for distributing the coali-
tional value calculations among cooperative agents. We have shown how the
algorithm can be modified to reflect variations in the agents’ computational
speed, analysed the case in which only a subset of agents can form a coalition,
calculated the computational complexity of the algorithm, and benchmarked
its performance against the only available one in the literature. This com-

48

| n* DCVC [SK (99% confidence) |
0 1 85,817 + 4 %
1 1 58,485 + 5.1 %
2 1 35973 £+ 48 %
3 1 20,738 + 4.4 %
4 1 11,580 + 4.1 %
5 1 6,237 £ 3.5 %
6 1 3,301 + 3 %
i 1 1,814 + 3.2 %
8 1 936 + 3.9 %
9 1 498 £ 4 %
10 1 259 + 3.9 %
11 1 132 + 3.8 %
12 1 67 + 48 %
13 1 45+ 49 %
14 1 28 + 5.7 %
15 1 19 +65%
16 1 13 +6.7%
17 1 8+ 6%
18 1 6 + 6.6 %
19 1 5+ 6.8%
20 1 3+74%
21 1 2+9%
o9 1 1+11.8%

Table 9. For the case of 25 agents, the table shows the difference between the agent that had the
biggest share of the calculations and the one that had the smallest, given different values of n*.

parison showed that our algorithm is significantly faster, requires significantly
less memory space, and requires infinitely less communication. These improve-
ments stem from the fact that our algorithm performs no redundant calcula-
tions and distributes the calculations equally among the agents. 3! Thus, our
algorithm can be seen to represent a significant advance in the state of the
art. For future work, we will concentrate on the following:

e Develop an enforcement mechanism so that DCVC can be applied in envi-
ronments where the agents are selfish. In such cases, the agents might not
necessarily perform all the calculations they are assigned or they might lie
about the results they found in order to improve the outcome for them-
selves. The enforcement mechanism should motivate the agents to calculate
the values they are assigned and to truthfully reveal the results they find.

e Many of the existing coalition formation algorithms involve calculating the
values of coalition structures in order to form the most profitable one. We

31In cases where there are differences in the agents’ computational speeds, the

equality refers to the time taken for the calculations, rather than the number of
calculations performed.

49

believe this calculation can be distributed using techniques that are similar
to those used in the DCVC algorithm. Therefore, we intend to develop an
algorithm for distributing the set of possible coalition structures among the
agents so that each agent calculates the values of the coalition structures
it is assigned. We also need to study the available coalition formation algo-
rithms that search only a subset of the coalition structure graph (e.g., Dang
and Jennings (2004), Sandholm et al. (1999)); this is necessary since the
distribution algorithm should also be efficiently applicable given any subset.

e We would like to relax the assumption of having a fixed number of agents
(N) in the system. In particular, we would like to specify how the agents
should react to events such as the appearance or disappearance of agents
in the agent society. For example, if an agent enters the society during the
value calculation process, then the agents should be able to decide whether
to restart the whole distribution and calculation process to take into con-
sideration the arrival of the new agent or continue in the ongoing process
and have the new agent perform some of the remaining calculations.

8 Acknowledgments

This article is a significantly revised and extended version of (Rahwan and
Jennings, 2005). We are grateful to the participants of AAAI-05, as well as
EUMAS-05, for giving us much useful feedback. We would also like to thank
Onn Shehory, Gal A. Kaminka, Alex Rogers, and Sarvapali Ramchurn for their
helpful comments. Finally, we would like to thank the anonymous reviewers
for their help. This research was funded by the DIF-DTC project (8.6) on
Agent-Based Control.

References

D. G. Altman, D. Machin, T. N. Bryant, and M. J. Gardner. Statistics with
Confidence: Confidence Intervals and Statistical Guidelines. BMJ publish-
ing group, London, UK, 2000. ISBN 0-7279-1375-1.

J. H. Conway and R. K. Guy. The Book of Numbers. Springer, New York,
USA, 1996. ISBN 0-387-97993-X.

V. D. Dang and N. R. Jennings. Generating coalition structures with finite
bound from the optimal guarantees. In Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 564-571, 2004.

V. D. Dang, R. K. Dash, A. Rogers, and N. R. Jennings. Overlapping coalition
formation for efficient data fusion in multi-sensor networks. In Proceedings

of The Twenty First National Conference on Artificial Intelligence (AAAI-
06), pages 635-640, 2006.

J. Kahan and A. Rapoport. Theories of Coalition Formation. Lawrence Erl-
baum Associates Publishers, New Jersey, USA, 1984. ISBN 0898592984.
M. Klusch and O. Shehory. A polynomial kernel-oriented coalition formation
algorithm for rational information agents. In Proceedings of International

Conference on Multi-Agent Systems (ICMAS-96), pages 157-164, 1996.

C. Li and K. P. Sycara. Algorithm for combinatorial coalition formation and
payoff division in an electronic marketplace. In Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), pages 120-127, 2002.

T. J. Norman, A. D. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D.
Dang, T. D. Nguyen, V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian.
Agent-based formation of virtual organisations. International Journal of
Knowledge Based Systems, 17(2-4):103-111, 2004.

M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press,
1994. ISBN 0262650401.

T. Rahwan and N. R. Jennings. Distributing coalitional value calculations
among cooperating agents. In Proceedings of The Twentieth National Con-
ference on Artificial Intelligence (AAAI-05), pages 152-157, 2005.

T. W. Sandholm and V. R. Lesser. Coalitions among computationally bounded
agents. Artificial Intelligence, 94(1):99-137, 1997.

T. W. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé. Coali-
tion structure generation with worst case guarantees. Artificial Intelligence,
111(1-2):209-238, 1999.

O. Shehory and S. Kraus. Task allocation via coalition formation among
autonomous agents. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), pages 655-661, 1995.

O. Shehory and S. Kraus. Formation of overlapping coalitions for precedence-
ordered task-execution among autonomous agents. In Proceedings of Inter-
national Conference on Multi-Agent Systems (ICMAS-96), pages 330-337,
1996.

O. Shehory and S. Kraus. Methods for task allocation via agent coalition
formation. Artificial Intelligence, 101(1-2):165-200, 1998.

M. Tsvetovat, K. P. Sycara, Y. Chen, and J. Ying. Customer coalitions in the
electronic marketplace. In Proceedings of the Fourth International Confer-
ence on Autonomous Agents, pages 263264, 2000.

G. Zlotkin and J. S. Rosenschein. Coalition, cryptography and stability: Mech-
anisms for coalition formation in task oriented domains. In Proceedings of
the Twelfth National Conference on Artificial Intelligence, pages 432-437,
1994.

o1

