(AAMAS 2002, Bologna, Italy)

Forthcoming, Proceedings of the First International Conference on Autonomous Agents and Multi-Agent System

Synthetic Pheromone Mechanisms for
Coordination of Unmanned Vehicles

H. Van Dyke Parunak
ERIM
PO Box 134001
Ann Arbor, Ml 48113-4001
+1 734 623 2509

vparunak@erim.org

ABSTRACT

Agents guided by synthetic pheromones can imitate the
stigmergetic dynamics of insects. The resulting software
architecture is well suited to problems such as the control of
unmanned robotic vehicles. We introduce the approach, describe
the mechanisms we have developed, and summarize the
technology’s performance in a series of scenarios reflecting
military command and control.
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1. INTRODUCTION

Many social insect species coordinate the activities of individuals
in the colony without direct communication or complex
reasoning. Instead, they deposit and sense chemical markers
called “pheromones” in a shared physical environment that
participates actively in the system’s dynamics. The resulting
coordination is robust and adaptive. Seeking such characteristics
in engineered systems, we have developed a software runtime
environment that uses synthetic pheromones (data structures
inspired by the insect model) to coordinate computational agents
using mechanisms similar to those of social insects.

We have applied synthetic pheromone mechanisms to the
problem of controlling air combat missions, with special emphasis
on unmanned air vehicles. [11]. In the course of our
experimentation, we have developed several mechanisms that are
promising for agent coordination in general. This report describes
pheromone-based movement control as a variety of potential-
field-based methods (Section 2), reviews the mechanisms we have
developed (Section 3), and describes their performance in several
air combat scenarios (Section 4).

2. POTENTIAL FIELDS VIA
PHEROMONES

From an engineering perspective, pheromones are a particularly
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attractive way to construct a potential field that can guide
coordinated physical movement.

2.1 Potential Fields

Potential-based movement systems are inspired by
electrostatics. The (vector) electric field E(7) at a point in space

is defined as the force felt by a unit charge at that point. We
define a (scalar) potential field ¢, = - j & E o dF by integrating
A

this vector field from an arbitrary reference point to each point in
the space. Conversely, the field may be expressed as the gradient

of the potential, £ = —[0¢, and a massless charged particle will

move through space along this gradient. In electrostatics, the field
is generated by the physical distribution of charges according to
Coulomb’s law. Einstein’s extension of the formalism to gravity
leads to a gravitational field generated by the physical distribution
of mass. Thus the movement of a massive charged particle will
follow a composition of two fields.

The notion of movement guided by a potential gradient has
been applied to other situations in which the field is generated,
not by natural physical phenomena, but by synthetic constructs. A
parade example is robot navigation [14], which automatically
maps from a given distribution of targets and obstacles to a
movement plan. In such applications, the designer of the field is
not limited to two components of the field (electrostatic and
gravitational), but can include many different fields to represent
different classes of targets and obstacles.

We use a potential field to guide unmanned robotic vehicles
(URV’s) through the battlespace (Figure 1). In this scenario,
robotic vehicles seek to destroy the tank farm, which is defended
by two missile batteries. The vehicles climb a potential gradient
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Figure 1: Potential Fields Corresponding to Physical Assets
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centered on the tank farm while avoiding gradients centered on
the threats. To be useful in warfighting, this field requires four
characteristics (mnemonically, “4-D”):
Diverse.—It must fuse information of various types and from
various sources, including targets to be approached, threats to be
avoided, and the presence of other URV’s with whom
coordination is required.
Distributed.—Centralized processing of a potential field imposes
bottlenecks in communications and processing, and generates
localized vulnerabilities to attack. Ideally, the potential field
should be stored close to where the information that it integrates
is generated, and close to where it will be used.
Decentralized.—Efficiency and robustness also dictate that
components of the system be able to make local decisions without
requiring centralized control, ideally on the basis of nearest-
neighbor interactions with one another.
Dynamic.—The battlespace is an uncertain and rapidly changing
environment, and the methods and architecture used to construct
and maintain the field must be able to incorporate such changes
rapidly into the field.

An architecture inspired by insect pheromones satisfies these
requirements, and can be applied to warfighting scenarios.

2.2 Synthetic Pheromones

Insects coordinate without direct communication, by sensing and
depositing pheromones (chemical markers) in the environment
[10]. For example, the networks of paths that they construct
joining their nests with available food sources form minimum
spanning trees [5], minimizing the energy ants expend in bringing
food into the nest. This structure emerges as individual ants
wander, depositing and sensing pheromones.

The real world provides three operations on chemical
pheromones that support purposive insect actions.

It aggregates deposits from individual agents, fusing
information across multiple agents and through time.

It evaporates pheromones over time. This dynamic is an
innovative alternative to traditional truth maintenance. Traditional
knowledge bases remember everything they are told unless they
have a reason to forget something, and expend large amounts of
computation in the NP-complete problem of detecting
inconsistencies that result from changes in the domain. Ants
immediately begin to forget everything they learn, unless it is
continually reinforced. Thus inconsistencies automatically remove
themselves within a known period.

It diffuses pheromones to nearby places, disseminating
information for access by nearby agents.

The pheromone field constructed by the ants in the
environment is in fact a potential field that guides their
movements. Unlike many potential fields used in conventional
robotics applications, it satisfies the 4-D characteristics:
Diverse.—Ants can respond to combinations of pheromones, thus
modifying their reaction to multiple inputs at the same time.
Distributed.—The potential field is generated by pheromone
deposits that are stored throughout the environment. These
deposits do their work close to where they are generated, and are
used primarily by ants that are near them.

Decentralized.—Both ant behavior and pheromone field
maintenance are decentralized. Ants interact only with the
pheromones in their immediate vicinity, by making deposits and
reading the local strength of the pheromone field. Because

diffusion falls off rapidly with distance, deposits contribute to the
field only in their immediate vicinity.

Dynamic.—Under continuous reinforcement, the pheromone field
strength stabilizeg, rapidly, as a concave function of time
(proportional to T E'dr where E O (0,1) is the evaporation
rate) [2]. Thus new information is quickly integrated into the
field, while obsolete information is automatically forgotten,
through pheromone evaporation.

An implementation of synthetic pheromones has two
components: the environment (which maintains the pheromone
field and performs aggregation, evaporation, and diffusion), and
the walkers (which deposit and react to the field maintained by the
environment). Our implementation has two corresponding species
of agents. A set of place agents with a Neighbor relation defining
adjacency makes up the environment, and each walker is
represented by a walker agent.

Each place agent maintains a scalar variable corresponding to
each pheromone flavor. It augments this variable when it receives
additional pheromones of the same flavor (whether by deposit
from a walker or by propagation from a neighboring place),
evaporates the variable over time, and propagates pheromones of
the same flavor to neighboring place agents based on the current
strength of the pheromone. The underlying mathematics of the
field developed by such a network of places, including critical
stability theorems, are described elsewhere [2]. If the strength of
the pheromone at a location drops below a threshold, the software
no longer processes that pheromone, and it disappears.

In principle, there are no restrictions on the graph of place
agents. In physical movement problems, each place agent is
responsible for a region of physical space, and the graph of place
agents represents adjacency among these regions. There are
different ways in which place agents can be assigned to space. In
JFACC, we tile the physical space with hexagons, each
representing a place agent with six neighbors.

A walker agent inhabits one place agent at any given time. It
can read the current strength of pheromones at that place as a
function of their flavors, and deposit pheromones into the place. It
can also determine from the place agent the relative strength of a
given flavor at the place and at each of its neighbors. A walker
moves from one place to another by spinning a roulette wheel
whose segments are weighted according to this set of strengths.

Such techniques can play chess [4] and do combinatorial
optimization [1], and we have applied them to manufacturing [2]
and military C* [11].

3. BASIC MECHANISMS

We have explored several basic mechanisms essential to the
engineering deployment of pheromone mechanisms. These fall
into three broad categories: combinations of multiple pheromones,
using history in movement decisions, and ghost agents. Some of
the results discussed in this section are expounded at more length
in other publications, but are drawn together here so that they can
be more readily considered as an integrated system.

3.1 Pheromone Vocabulary

There are two ways in which the pheromone vocabulary can be
multiplied. First, different flavors may reflect different features of
the environment (e.g., Red (hostile) air defenses, Blue (friendly)
bases). These flavors have different semantics. Second, different
flavors with the same semantics (e.g., all generated by the same



feature) may differ in their evaporation or propagation rate or
threshold, thus having different dynamics.

Pheromones with Different Semantics.—We explored the effect
of increasing the semantics of a pheromone vocabulary in the
context of the classic missionary-cannibal problem [12]. Three
missionaries and three cannibals are together on one bank of a
river, with a dugout canoe capable of carrying only one or two
people. If at any time the cannibals outnumber the missionaries on
either bank of the river, they will eat them. The problem is to plan
a sequence of moves that gets all six people safely across the
river.

At each decision epoch, only those agents on the bank with
the boat make a movement decision. Each such agent decides
whether to move by evaluating a personal choice function that
returns a real number between 0 and 1, evaluating a random
variable uniformly distributed on [0,1], and comparing these two
values. If the random number is less than the value of the choice
function, the agent volunteers to move. The actual riders in the
boat are chosen randomly from the list of candidates.

The details of the agent’s decision are embedded in its choice
function, which is a function of the levels of the available
pheromones. In principle, each individual agent could have its
own choice function, but in our experiments all Missionaries
share one choice function and all Cannibals share another.

We explore the performance of the system for various
combinations of three pheromones: a bank pheromone that tells
agents where they are, an undifferentiated population pheromone
deposited by both Missionaries and Cannibals, and distinctive
Missionary and Cannibal pheromones. Our performance metric is
the number of steps necessary for the system to move the agents
from one bank to the other. Because of the stochastic nature of the
decisions, different runs often yield different numbers of steps,
and we report the median run length over 100 runs.

Figure 2 shows the result for one series of experiments,
comparing three different pheromone configurations. “R”
indicates the performance for agents executing a random walk.
“BSmart" shows the performance when the agents have access
only to a pheromone indicating which bank they inhabit (thus one
bit of information). The performance at “BPSmart” results from
telling them in addition the total population on their bank. Since
there are six possible populations on either of two banks, the
information available is logy(2*6) = 3.58. “BMCSmart” reflects
the performance when missionaries and cannibals deposit distinct
pheromones. There are 4*4 possible equilibrium values on each
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Figure 2: Performance and Pheromone Vocabulary (Error bars
show inter-quartile spread)

bank, but no agent will ever sense the combination {0,0}, so the
total information available is Log,(2%(4*4-1)) = 4.91. Figure 2
shows that log performance is linear in information content, so
performance is exponential in information content.

In these experiments, the agent’s choice function explicitly
takes into account the levels of the different pheromones. An
alternative approach, used in our air combat applications,
computes a weighted function of the various input pheromones to
create a single "net pheromone" whose gradient walkers then
follow. In this case, the basic pheromone flavors are:

*  RTarget: emitted by a red (hostile) target.

e  GTarget: emitted by a blue (friendly) agent who has
encountered a red target and is returning to base.

*  GNest: emitted by a blue agent who has left the base and is
seeking a target.

*  RThreat: emitted by a red threat (e.g., missile battery)

In addition, we provide the blue agent with Dist, an estimate of

how far away the target is.

Initially, we experimented with an equation of the form

O[RTarget +y GTarget +

a [RThreat + 0 [(Dist + B

where a, B3, v, 6, and 6 are tuning factors, easily manipulated in a
genetic algorithm or particle swarm optimization [15]. B avoids
singularities when other terms are 0. This form attracts blue agents
to targets or to the trails of other blue agents who have found
targets, avoids threats, and seeks to minimize distance to the
target. While yielding reasonable performance, this equation left
some performance gaps. Manual manipulation of the equation
yielded the alternative form
O[RTarget + y | GTarget + 5

(o [GNest + ) Dist + ¢)(5+”(RT’"““'+1))) +f3 ’

which gives much improved performance. While more complex,
this latter equation could be discovered by genetic programming.
Pheromones with Different Dynamics.—Another technique
involving multiple pheromones uses pheromones with the same
semantics but differing dynamics (e.g., rates of evaporation E and
propagation F and threshold S) [3]. To motivate this mechanism,
consider the distribution of pheromone sources shown in Figure 3.
Each source (or background 0) is at one cell of a hexagonal grid.

We are interested in the guidance that the pheromone field
offers a walker at a given place. Let f; be the pheromone strength
at place i. The guidance g; available to a walker at place j is

g, = Max f' 7] 0 o 0 0 0 0 0
7o) Z f, 0 o 0 0 0 o0
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Figure 4: Guidance fields for low (left) and high (right)
propagation parameters

different propagation parameters F. When F is low (left plot),
most places in the target-rich region at the left of the figure have
high guidance, but the pheromones do not propagate across the
targetless right side of the figure, yielding a broad “valley” with
low guidance. When F is high (right plot), propagation merges
signals from individual sources, yielding low guidance in the
target-rich region but a much narrower valley on the right. Thus
high propagation gives good long-range guidance but poor short-
range guidance, while low propagation gives good short-range

guidance but poor long-
range guidance.

A reasonable
resolution is to have each
source deposit multiple
pheromones with different
dynamics. A walker picks
its next step first by
measuring the guidance
available from each flavor,
then computing its
movement based on the
pheromone with highest
guidance. Figure 5 shows
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Figure S: Guidance field with
multiple pheromones

the guidance field from six
flavors with different dynamics, yielding both high guidance in
the target area, and propagation of pheromones across most of the
eastern valley.

3.2 History

A walker’s movement through the graph of places should balance
several factors. A strong field gradient enables deterministic hill
climbing that the walker should exploit. However, a weak gradient
may result from noise in the system. In this case, it does not
provide reliable guidance. We would prefer that the walker
continue moving in the general direction of its previous steps if
there is one, and otherwise that it explore more broadly.

To balance deterministic hill climbing and stochastic
exploration, the walker moves from one place to another by
spinning a roulette wheel whose segments are weighted according
to the relative strengths of a pheromone flavor (or weighted
combination of flavors) in the place and its neighbors. The
mapping function from relative pheromone weight to segment
width determines the degree of stochasticity in the walker’s
behavior. If s;” is the perceived pheromone concentration at place

i, the normalized weight p; at that place is p=s/ Z s .'> Where
i i Jj
=

the summation ranges over place i and its neighbors, and the
probability p;’ that the walker will move to that place is

p'=e" zeﬁ"’f . The parameter [ determines the degree of
j=1

stochasticity in the walker’s movement. On a hex grid, when <

4, selection probabilities are more similar than the pheromone

strengths would indicate, favoring exploration, while 5> 5 tends

to emphasize stronger gradients, favoring exploitation.

To balance hill climbing against previous direction, we
assign momentum to the walker. Models of actual ant behavior
usually restrict the ant’s ability to smell pheromones to some
angle on either side of its current orientation. In our
implementation, this technique takes the form of multiplying each
segment in the walker’s

roulette wheel by a weight
that is strongest in the
direction the walker is
currently heading, and
weakest in the direction
from which it has just
come.

Such a momentum
works well if the walker is
moving over continuous
space. However,
representing (continuous)

Figure 6: Path anisotropy in a
hex lattice

space as a (discrete) graph
of place agents can introduce anisotropies that confuse a simple
momentum computation. Figure 6 shows five geodesics on a hex
lattice. Trajectories a, b, and ¢ maintain a constant heading, but
trajectories d and e experience local direction changes while
executing a shortest path across the lattice. A straightforward
momentum function will interfere undesirably with these
necessary changes of direction. To avoid this problem, each
walker maintains an exponentially-weighted moving average of its
past headings and modulates the relative strengths of the
pheromones in its vicinity by a measure of the angular alignment
between each candidate place and the current value of the heading
history.

3.3 Ghost Agents

So far, we have distinguished stationary place agents
(corresponding to regions of the problem space, and forming a
graph structure representing the connectivity of that space) from
walker agents (mobile agents that are associated with one place
agent at a time and move among them according to the edges in
the place network). For some purposes, it is useful to further
refine the concept of walkers into two species.

The walker associated with a single physical robot is its
avatar. In Hindu mythology, the term refers to an incarnation of a
deity, hence, an embodiment or manifestation of an idea or greater
reality. In our system, an avatar is the manifestation in our system
of the greater reality (ground truth in the battlespace). A physical
entity has only one avatar, which travels with the physical entity
that it represents. It moves from one place agent to another only
when its parent entity moves physically from one region to
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Figure 7: Path Condensation

another. Thus its speed is limited by the physical speed of its
associated entity.

One avatar may send out many unembodied walkers, or
ghosts. Ghosts move as fast as the network among place agents
can carry them. Because they are more numerous than physical
entities and their associated avatars, they can do “what-if”
explorations that physical entities could not afford, and generate
emergent behavior by their interactions. Because they move faster
than physical entities and their avatars, they can look ahead to
plan an avatar’s next steps.

Of particular interest to robotic applications is the emergence
of discrete paths in the pheromone field as many ants concurrently
read and reinforce it. For example, Figure 7a shows the
pheromone field deposited by a swarm of ants wandering out from
their nest (at the lower left of the figure) in search of food (at the
upper right). Initially, the field is roughly circularly symmetrical,
and serves to guide food-bearing ants back home. Once some ants
find the food and begin returning home, this field rapidly
collapses into a path (Figure 7b).

At first glance, this dynamic [6] violates second-law
tendencies to increasing disorder in systems consisting of many
components. Left to themselves, large populations tend to
disorder, not organization. Natural systems can organize at the
macro level because their actions are coupled to a flow field at a
micro level. Agents perceive and orient themselves to the flow
field and reinforce that field by their rational action, as shown by
the solid lines in Figure 8 [8]. Metaphorically, they drain
unwanted entropy from the macro level (where organization is
desired) to the micro level (where disorder is tolerated).

Macro
Non-Newtonian
Flow Field
“Negentropy”

Micro
Newtonian;
Force Field;
Entropy

Key
Jraditional Agen

Dynamics

Pheromone
- —
Dynamics

Figure 8: Coordination through Environmental Fields

Traditional
coordination
mechanisms ignore the
micro level completely,
as agents perceive and
act directly on one
another (dashed line in
Figure 8). We link
agents  through the
environment so that
perception and action
serve both to coordinate
multiple agents and to
control overall disorder.

We validate this

Figure 9: Path to the nearer of two
targets.

mechanism of emergent
coordination explicitly
through  experiments
that  compute  the
entropy over time of the
pheromone molecules
at the micro level and
the agents at the macro
level [13]. The increase
in entropy at the micro
level (through
Brownian motion of

Figure 10: Threading a gauntlet.

pheromone molecules)
more than balances the decrease in entropy experienced by
walkers following the pheromone gradient.

The path emergence illustrated in Figure 7 is the result of
interactions among many walkers. Each walker’s behavior is
highly stochastic, performing a real-time Monte Carlo search of
its local vicinity, and contributing to the emergence of a long-
range path. In engineering applications, it may not be feasible to
ask hundreds of physical robots to explore the domain in this
manner, nor is it necessary. As an avatar moves, it continuously
sends out ghosts. The interaction of the ghosts forms the path,
which is being constantly revised to accommodate dynamic
changes in the environment.

Our experiments show this path formation dynamic to be
extremely robust and adaptive. Figure 9 shows the formation of a
path from a friendly airbase (lower right) to the nearer of two
targets (the house-shaped icons), avoiding threats (the radar
icons). If we increase the strength of the left-hand target to twice
that of the closer target, the path will lead there instead. Figure 10
shows a path to a target protected by a gauntlet of threats, a
configuration that resists classical potential field methods.

When ghost agents choose between two targets, they cannot
tell whether one target’s pheromone is stronger because it is
depositing at a higher rate, or because it is nearer than the other
target. We explore the balance between these factors by setting up
two targets 7; and T, diametrically opposite one another from the
ghosts’ origin, with varying ratios of distance and strength. Then
we compute the percentage p; of runs (out of a total of 45) that
form a path to 7; rather than to 7,. Figure 11 plots of this
probability as a function of the strength and distance ratios. The
dots represent experimental observations, between which other
values are linear interpolations. Most of the plot is dominated by
regions in which p; is either 1 or 0. The region within which both
strength and distance play an active role in target selection is
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4.1 SEADy Storm £ ot
SEADy Storm [7] is a war game used to . !
explore technologies for controlling air 0 ‘ ‘ ‘ ‘
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tasking orders. The battlespace is a )

Target Distance

hexagonal grid of sectors, each 50 km
across). Friendly (Blue) forces defend a
region in the lower left against invading
Red forces that occupy most of the field.
Red’s playing pieces include ground troops
(GT’s) that are trying to invade the Blue
territory, and air defense units (AD’s,
surface-to-air missile launchers) that protect
the GT’s from Blue attack. Blue has
bombers (BMB’s) that try to stop the GT’s
before they reach the blue territory, and
fighters tasked with suppressing enemy air
defenses (SEAD’s).

Each class of unit has a set of
commands from which it periodically
chooses. Ground-based units (GT and AD)
choose a new command every 12 hours,
while air units (BMB and SEAD) choose
every five minutes, reflecting the time it
would take the resource to cross a sector.

The commands fall into three categories (Table 1). GT cannot
attack Blue forces, but can damage BMB’s if they attack GT.

Blue can attack AD and GT when they are moving or
attacking, and AD may attack any Blue forces that are not moving
or waiting. Each unit has a strength that is reduced by combat.

The strength of the battling units, together

with nine outcome rules,

determine the

outcome of such engagements. Informally, the
first five rules are:

Figure 12: Time for first ghost to reach
target
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Figure 13: Red Strength in Blue as a
function of force composition

Fatigue: The farther Blue flies, the
weaker it gets.

Deception: Blue strength decreases for
each AD in the same sector that is hiding.
Maintenance: Blue strength decreases if
units do not rest on a regular basis.
Surprise: The effectiveness of an AD
attack doubles the first shift after the unit
does something other than attack.

Cover: BMB losses are greater if the
BMB is not accompanied by enough
SEAD.

Rules 6-9 specify the percentage
losses in strength for the units engaged in
a battle, based on the command they are
currently executing. For example, Rule 9
states: “If BMB does “AttackGT” and GT
does “Advance”: a GT unit loses 10% for
each BMB unit per shift; a BMB unit
loses 2% per GT unit per shift.”

The primary parameter explored in
the experiments reported here is the
proportion of SEAD in the Blue military,
and of AD in the Red military. Each side
began with a 100 units, each with unit
strength, and 10%, 20%, 50%, 80%, or

90% of SEAD or AD. The uneven spacing
reflects a basic statistical intuition that
interesting  behaviors tend to be
concentrated toward the extremes of
percentage-based parameters. In current
military doctrine, 50% is an upper limit on
both AD and SEAD. We explore higher
values simply to characterize the behavioral
space of our mechanisms.)

The central outcome is total Red
strength in Blue territory at the end of the
run (Figure 13). The landscape shows
several interesting features, including
e a “valley” of Blue dominance for all

Red ratios when Blue SEAD is

between 50% and 80%, with slightly increasing Red success

any Hide

Move Attack
AD Relocate Fire (on
Blue aircraft)
GT Advance
SEAD NewSectors AttackAD
BMB NewSectors AttackAD
AttackGT

Wait

Deceive
Hide
Rest
Rest

Table 1. Unit Commands in SEADy Storm.

as the AD proportion increases;

e clear Red dominance for lower SEAD/BMB ratios,
decreasing as SEAD increases;

e a surprising increase in Red success for the high SEAD and
low AD levels.
Figure 14 compares the population of Red in Blue territory

as a function of red and blue force composition for three different

Blue control strategies. In the top plot, Blue does not use

pheromones at all. The variations are due to the intrinsic dynamics

of the combat, yielding a narrow valley up the center of the plot
where Red’s population is 3 or less (the criterion for Blue
victory). When Blue uses pheromones to seek out Red targets and

threats (middle plot, shown in profile in Figure 13), the wider

valley reflects improved Blue performance. In the bottom figure,



when Blue uses pheromones to avoid threats
and approach targets, the valley with the
lowest Red population is about the same area
but of a very different shape than in the
previous case, but the next level of Red
occupation (4-6) is much larger, showing a
reduction in higher levels of Red occupation.
A detailed discussion of the dynamics of
this scenario and effects when we change the
modeling formalism is available at [9].

4.2 CyberStorm

At the next level of sophistication, we expand
the range of unit types. Red now has armored
and infantry battalions, air defense units,
distinct headquarters types for regiments, air
defense, and the entire corps, and fueling
stations. Blue has three types of fighters and
two types of bombers. The environment
includes bridges and road crossings (which
speed the movement of ground units that
encounter them) and oil fields (which Red
seeks to attack and Blue seeks to protect).
Combat outcome is based on the percentage
survival of the oil fields.

Using this enriched environment, we
have explored a variety of issues around blue
decision-making. In these experiments (as in
SEADy Storm), Blue resources move directly
in response to Red pheromones, without using
ghosts. Our experiments show that reasonable
numbers of Blue resources cannot sample the
pheromone field adequately to overcome the
stochasticity inherent in the domain. As a
result, outcomes vary widely with random
seeds. These experiments demonstrated the
need for ghost agents to sample the primary
pheromone field at a statistically more
significant level, and preprocess it for use by
Blue avatars and the physical resources with
which they are associated.

4.3 Super Cyber Storm

Figure 14: Population of Red in
Blue without pheromones
with pheromones attracted to both
targets and threats (center), and
attracted to targets but repelled by
threats (bottom)
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missions against an entrenched Red force. We
compute these paths using two different
propagation parameters for Red threat
pheromones, one that permits paths to fly
relatively close to the threats, and another that
keeps paths relatively far from the threats.
Then we turn on Red movement and hiding
behaviors, and compare the outcome of two
sets of runs. In one set, Blue does not use
ghosts or pheromones at all, but simply flies
each mission on its precomputed path. This
mode of operation corresponds to traditional
pre-planned flight itineraries, except that our
pre-planned paths, based on complete
knowledge of Red’s locations at the time of
planning, are superior to those that could be
constructed in a real conflict. In the other set
of runs, Blue ignores precomputed paths and
relies on ghosts to form paths for its missions
dynamically. We assess the outcome of each
run by the total remaining strength of Blue and
Red assets at the end of the set of missions.
Figure 15 shows the medians over five
runs of Red and Blue total unit strengths for
three configurations. In “pathscript,” each
mission flies the path precomputed for it using
a high Red propagation parameter, leaving a
conservative margin around Red threats. In
“pathscriptnarrow,”  Blue  again flies
precomputed paths, this time using paths
computed with a lower Red propagation
parameter, and permitting Blue to come closer
to Red locations. These less conservative paths
lead to increased combat between Blue aircraft
and Red threats, and both Red and Blue losses
increase compared with “pathscript.” In
“pathghost,” Blue missions ignore
precomputed paths and send out ghosts to
compute their paths dynamically as the
mission unfolds. In this mode of operation,
Blue’s losses are least, since it can now avoid
pop-up Red threats. As a result, it can deliver
more weaponry to its assigned targets,

We exercised the ghost agents on a third
model of the domain, which includes a
significantly wider range of entity types,
combat resolution on the basis of
individual weapon type rather than unit
type, more realistic dependencies among
entities (for example, the effectiveness of
Red air defense now depends on the
status of other Red air defense units), and
most importantly, a “pop-up” Red
capability that lets us increase greatly the
range of changes in Red’s visibility as a
scenario unfolds. This environment
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Figure 15: Effect of Ghost Agents in Super

Cyber Storm

increasing Red’s losses in comparison
with the other two scenarios.

4.4 Swarming UAV

Experiment

Recently, these algorithms have been
applied successfully to an experiment on
the effectiveness of swarming UAV’s
(unmanned air vehicles) in suppressing
antiaircraft threats in a wargame
simulation conducted by the U.S. military.
The  pheromone approach  shows
significant performance improvements
over the baseline. The public report has

permits us to assess the effectiveness of

ghost-based pheromones in dealing with pop-up threats.
First, we make all Red threats visible and stationary, and let
the ghosts plan paths to the target for each of 181 offensive Blue

paper is available,
version.

not been released, but will be by the time the final version of this

and details will be included in the publication



5. SUMMARY

Synthetic pheromones are a powerful mechanism for controlling
the movement of agents through space. They provide the elegance
of potential field methods, with particular support for integrating
diverse information sources, processing information in a
completely distributed and decentralized environment, and coping
with dynamic changes in the landscape. In exploring successively
complex military scenarios, we have developed a toolkit of
methods and mechanisms, including pheromone vocabularies that
vary in both semantics and dynamics, mechanisms for
incorporating agent momentum into movement decisions, ghost
agents to preprocess the pheromone field and reduce stochasticity
at the level of physical resources, and visualization mechanisms to
enable human stakeholders to understand and monitor the
emergent behavior of the system.
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