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Abstract

Distributed Constraint Satisfaction (DCSP) has long
been considered an important area of research for multi-
agent systems. This is partly due to the fact that many real-
world problems can be representel as constr aint satisfac-
tion and partly b ecause r eal-world pblems often present
themselves in a distributed form. In this paper, we present
a complete, distributed algorithm calle dasynchronous par-
tial overlay (APO)for solving DCSPs that is based on a
cooperative mediation process. The primary idas behind
this algorithm are that agents, when acting as a mediator,
centr alize small, elevant portions of the DCSP, that these
centr alizd subproblems overlap, and that agents increase
the size of their subproblems along critical p aths within the
DCSP as the problem solving unfolds. We present empir-
ical evidence that shows that APO performs better than
other known, complete DCSP techniques.

1. Introduction

Distributed constraint satisfaction has become a clas-
sic formulation that is used to describe a number of
distributed problems including distributed resource allo-
cation [1], distributed scheduling [8], and distributed in-
terpretation [5]. It’s no w onder that a vast amount
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of effort and research has gone into creating algo-
rithms, such as distributed breakout (DBO) [10], asyn-
chronous bac ktraking (ABT) [9], and asynchronous
w eak-commitmert (A WC) [11], for solving these prob-
lems.

Unfortunately, a common drawback to each of these
techniques is that they prevent the agents from mak-
ing informed local decisions about the effects of chang-
ing their local variable value without actually doing it.
For example, in A WC, agents ha veto try a value and
w ait for another agen to tell them that it will not work
through a nogood message. Because of this, agents never
learn why another agent or set of agents is unable to ac-
cept the value, they only learn that their value in com-
bination with other values doesn’t work.

In this paper, we present a coop entive media-
tion based DCSP protocol, called Asynchronous Partial
Overlay (APO), that allows the agents to extend and
overlap the context that they use for making their lo-
cal decisions. When an agent acts as a mediator, it
computes a solution to a portion of the overall prob-
lem and recommends value changes to the agents in-
volved in the mediation session. This technique allows
for rapid, distributed, asynchronous problem solv-
ing without the explosive communications overhead
normally associated with current distributed algo-
rithms. APO represents a new methodology that lies
somewhere betw een cen tralized and distributed prob-
lem solving which exploit the best characteristics of
both. In the graph coloring domain, this algorithm per-
forms better, both in terms of communication and
computation, than the A WC algorithm. This is partic-
ularly true for problems that lie near or to the right of
the phase transition.

In the rest of this paper, w e preser a formalization
of the DCSP problem. We then present the APO algo-
rithm and present an example of the execution on a sim-

ple problem. Next, w epresent the results of extensive
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procedure initialize
d; < random d € Dy;
p; < sizeof(neighbors);
m; < true;
mediate < false;
add z; to the good_list;
send (init, (z;,pi, d;,m;, D;, C;)) to neighbors;
initList < neigh bors;
end initialize;

when received (init, (z;,p;,d;,m;,D;,C})) do
Add (:1:] ,Pj,d;j,mj, D;, C;) to agent_view;
ifz; is a neighbor of some x;, € good_list do
add z; to the good_lzst
add all z; € agentview A z; ¢ good_list
that can no w be connected to thegood_list;
p; < sizeof(good_list);
end if;
ifx; ¢ initList do
send (init, (z;,ps,d;, mi, D;, C;)) to xj;
else
remo ver; from initList;
check_agen tview;
end do;

Figure 1. The APO procedures for initialization
and linking.

testing that compares APO with AWC within the com-
monly used graph coloring domain. Lastly, w ediscuss
some of our conclusions and future directions.

2. Distributed Constraint Satisfaction

A Constraint Satisfaction Problem (CSP) consists of
the following:

e a set of n variablesV = {z1,...,z,}.

e discrete, finite domains for each of the variables
D ={Di,...,Dy,}.

e a set of constraints R = {Ry,..., Ry} where each
Ri(di1, . ..,d;;) is a predicate on the Cartesian prod-
uct Dj; x --- x Dy; that returns true iff the value
assignments of the variables satisfies the constraint.

The problem is to find an  assignment
A = {dy,...,dp|d; € D;} such that each of the con-
straints in R is satisfied. CSP has been sho wnto be
NP-complete, making some form of search a neces-
sity.

In the distributed case (DCSP), each agent is assigned
one or more variables along with the constraints on their
variables. The goal of eadh agent, from a local perspec-
tive, is to ensure that each of the constraints on its vari-
ables is satisfied. Clearly, each agert’s goal is not inde-
pendent of the goals of the other agents in the system. In
fact, in all but the simplest cases, the goals of the agents
are strongly interrelated. For example, in order for one
agent to satisfy its local constraints, another agent, po-
tentially not directly related through a constraint, may

when received (ok?, (z;,pj,d;,m;)) do
update agent_view with (z;,p;,d;, m;);
check_agen tview;

end do;

procedure chec kagen tview
if initList # ) or mediate #false do
return;
m/, - hasCon flict(x;);
if m} and ~3;(p; > p; A m; == true)
if H(d’ € D (7d U agent_view does not conflict)
and conﬂlcts are with lower priority neigh bors
d; d;;
send (ok?, (z;,p;,d;,m;)) toallz; € agent_view;
else
do medlate
else if m; 75 m
m; < m;
send (okz‘7
end if;
end chec kagent_view;

(x4,pi,di,m;)) to allz; € agent_view;

Figure 2. The procedures for doing local resolu-
tion, updating the agent_view and the go odlist.

In this paper, for the sake of clarit y we restrict our-
selves to the case where each agent is assigned a sin-
gle variable and is given kno wledgeof the constraints
on that variable. Since each agent is assigned a single
variable, we wll refer to the agent by the name of the
variable it manages. Also, w e restrictourselves to con-
sidering only binary constraints which are of the form
Ri(ws1,mi2). Tt is fairly easy to extend our approach to
handle the case where one or both of theserestrictions
are removed.

3. Asynchronous Partial Overlay
3.1. The Algorithm

Figures 1, 2, 3, 4, and 5 present the basic APO algo-
rithm. The algorithm works by constructing a good_list
and maintaining a structure called the agent_view. The
agent_view holds the names, values, domains, and con-
strain ts of variables to which an agent is link ed. The
good_list holds the names of the variables that are known
to be connected to the owner by a path in the constraint
graph.

As the problem solving unfolds, each agent tries
to solve the subproblem it has centralized within its
good_list or determine that it is unsolvable which in-
dicates the entire global problem is over-constrained. To
do this, agents tak e the role of the mediator and at-
tempt to change the values of the variables within the
mediation session to achieve a satisfied subsystem. When
this cannot be achieved without causing a violation for
agents outside of the session, the mediator links with
those agents assuming that they are somehow related
to the mediator’s variable. This process continues un-
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procedure mediate
preferences < (;
counter < 0;
for eac hx; € good_list do
send (evaluate?, (z;, p;)) to x;;
counter ++;
end do;
mediate < true;
end mediate;

when receive (w ait}(z;,p;)) do
update agent_view with (x;,p;);
counter --;
if counter == 0 do c hoosesolution;
end do;

when receive (evaluatel (z;,p;, labeled Dj)) do
record (z;, labeled Dj) in preferences
update agent_view with (x;,p;);
counter --;
if counter == 0 do c hoosesolution;
end do;

Figure 3. The procedures for mediating a session.

til one of the agents finds an unsatisfiable subsystem, or
all of the conflicts have been removed.

In order to facilitate the problem solving process, each
agent has a dynamic priorit ythat is based on the size
of their good_list (if tw oagents ha vethe same sized
good_list then the tie is brok enusing the lexicograph-
ical ordering of their names). Priorities are used by the
agents to decide who mediates a session when a con-
flicts arises. Priority ordering is important for two rea-
sons. First, priorities ensure that the agent with the most
knowledge gets to make the decisions. This improves the
efficiency of the algorithm by decreasing the effects of
myopic decision making. Second, priorities improve the
effectiveness of the mediation process. Because low er pri-
ority agents expect higher priorit y agents to mediate,
they are less likely to be involved in a session when the
mediation request is sent.

3.1.1. Initialization (Figure 1) On startup, the
agents are pro vided with the value (they pick it ran-
domly if one isn’t assigned) and the constraints on
their variable. Initialization proceeds by having each
of the agents send out an “init” message to its neigh-
bors. This initialization message includes the vari-
able’s name (z;), priority (p;), current value(d;), the
agent’s desire to mediate (m;), domain (D;), and con-
straints (C;). The array initList records the names of
the agents that initialization messages have been sent
to, the reason for which will become immediately ap-
parent.

When an agent receiv es an initialization message (ei-
ther during the initialization or through a later link re-
quest), it records the information in its agent_view and
adds the variable to the good_list if it can. An variable is
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procedure choose_solution
select a solution s using a Branch and Bound search that:
1. satisfies the constrain ts betwen agents in the good_list
2. minimizes the violations for agents outside of the session
if —=3s that satisfies the constraints do
broadcast no solution;
for each z; € agent_view do
ifz; € preferencesdo
ifd. € sviolates an z, and z, ¢ agent_view do
send (il’lit, (:vhpi, d;,mi, D, Cl)) to Tg;
add zy, to initList;
end if;
send (accept!, (d;.,xi,pi,di,mi)) toxj;
update agent_view for x;
else
send (ok?, (z;,ps,d;, m;)) to ;3
end if;
end do;
mediate < false;
check_agen tview;
end choose_solution;

Figure 4. The procedure for choosing a solution
during an APO mediation.

variable already in the list. This ensures that the graph
created by the variables in the good_list always remains
connected, which focuses the agent’s internal problem
solving on variables which it knows it has an interde-
pendency with. The initList is then chec kedto see if
this message is a link request or a response to a link re-
quest. If an agent is in the initList, it means that this
message is a response, so the agent removes the name
from the initList and does nothing further. If the agent
is not in the initList then it means this is a request, so
a response “init” is generated and sent.

It is important to note that the agents contained in
the good_list are a subset of the agents contained in the
agent_view. This is done to maintain the integrity of the
good_list and allow links to be bidirectional. To under-
stand this point, consider the case when single agen t
has repeatedly mediated and has extended its local sub-
problem down a long path in the constraint graph. As it
does so, it links with agents that may have a very lim-
ited view and therefore are unaw are of their indirect con-
nection to the mediator. In order for the link to be bidi-
rectional, the receiv erof the link request has to store
the name of the requester, but cannot add them to their
good_list un til a path can be idenified.

3.1.2. Checking the agent view (Figure 2) After
the agents receiv e all of the initialization messages they
are expecting, they execute the chec kagent_view proce-
dure. In this procedure, the current agent_view (which
con tains the assigned, knavn variable values) is checked
to identify conflicts betw een the wriable owned by the
agent and its neighbors. If, during this check, an agent
finds a conflict with one or more of its neighbors and has
not been told by a higher priority agent that they want



when received (evaluate?, (z;,p;)) do
mj < true;

if mediate == true or 3;(p, > p; A my == true)do
send (w ait! (z;,p;));
else

mediate < true;
label eachd € D; with the names of the agents
that w ould be violated ly setting d; + d;
send (ev aluate! (z;,p;,labeled D;));
end if;
end do;

when received (accept!, (d, z;,p;,d;,m;)) do
d; < d;
mediate < false;
send (ok?, (x;,p;,d;, m;)) to all z; in agent_view;
update agent_view with (z;,p;, d;, m;);
chec kagen tview;

end do;

Figure 5. Procedures for receiving a session.

to mediate, it assumes the role of the mediator.

An agent can tell when a higher priority agent wan ts
to mediate because of the m; flag mentioned in the pre-
vious section. Whenever an agent checks its agent_view,
it recomputes the value of this flag based on whether
or not it has existing conflicts with its neighbors. When
this flag is set to true it indicates that the agent wishes
to mediate if it is giv enthe opportunity. This mecha-
nism acts like a tw o-phase commit protocol, commonly
seen in database systems, and ensures that the proto-
col is live-loc k and dead-lok free.

As the mediator, an agent first attempts to rectify
the conflict(s) by changing its own variable. This sim-
ple, but effective tec hnique preven ts sessions from occur-
ring unnecessarily, which stabilizes the system and saves
message and time. If the mediator finds a value that re-
mov es the conflict, it makes the ¢ hange and sends out an
“ok?” message to the agents in its agent_view. If it can-
not find a non-conflicting value, it starts a mediation ses-
sion. An “ok?” message is similar to an “init” message,
in that it contains information about the priorit y cur-
rent value, etc. of a variable.

3.1.3. Mediation (Figures 3, 4, and 5) The most
complex and certainly most interesting part of the pro-
tocol is the mediation. As was previously mentioned in
this section, an agent decides to mediate if it is in con-
flict with one of its neighbors and is not expecting a ses-
sion request from a higher priority agent. The mediation
starts with the mediator sending out “evaluate?” mes-
sages to each of the agents in its good_list. The purpose
of this message is tw o-fold. First, it informs thereceiv-
ing agent that a mediation is about to begin and tries to
obtain a lock from that agent. This lock, referred to as
mediate in the figures, prev ents theagent from engag-
ing in tw o sessions simultaneously or from doing a local
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purpose of the message is to obtain information from the
agent about the effects of making them change their lo-
cal value. This is a key point. By obtaining this infor-
mation, the mediator gains information about variables
and constraints outside of its local view without hav-
ing to directly and immediately link with those agents.
This allows the mediator to understand the greater im-
pact of its decision and is also used to determine how to
extend its view once it makes its final decision.

When an agent receiv es a mediation request, it will re-
spond with either a “wait!” or “evaluate!” message. The
“wait” message indicates to the requester that the agent
is currently involvedin a session or is expecting a re-
quest from a agent of higher priority than the requester.
If the agent is available, it labels eadh of its domain ele-
ments with the names of the agents that it would be in
conflict with if it w ere asled totak e that value. In the
graph coloring domain, the labeled domain can never ex-
ceed O(|D;| + n). This information is returned in the
“ev aluate!” message. It should be noted that the agerts
need not return all of the names if for security reasons
they wish not to. This may effect the completeness of
the algorithm, because, in the worst case, the complete-
ness relies on one or more of the agents eventually cen-
tralizing the entire problem, but does provides some de-
gree of autonomy and privacy to the agents.

When the mediator has receiv edeither a “wait!” or
“ev aluate!” message from all of the agents that it has
sent a request to (which it determines by using the
counter variable), it chooses a solution. Agents that sent
a “wait!” message are dropped from the mediation, but
the mediator attempts to fix whatever problems it can
based on the information it receives from the agents in
the session.

Currently, solutions are generated using a Branch and
Bound search [3] where all of the constraints must be
satisfied and the number of outside conflicts is mini-
mized (like the min-conflict heuristic [7]). The search
is also done using the current value assignments as the
first branch in the search. These heuristics, when com-
bined together, form a lock and key mechanism that si-
multaneously exploits the work that was previously done
by other mediators and acts to minimize the mimber of
changes in those assignments. As will be presented in sec-
tion 4, these simple feed-forward mechanisms, combined
with the limited cen tralization neededto solve satisfia-
bility problems, account for considerable improvements
in the algorithms runtime performance.

When no satisfying assignments are found, the agent
announces that the problem is unsatisfiable and the algo-
rithm terminates. Once the solution is chosen, “accept!”
messages are sent to the agents in the session, who, in
turn, adopt the proposed answer.

The mediator also sends “ok” messages to the agents

&



constraint
o= = P link

-------- violation

constraint
= = P link

........ violation

constraint
== = =P= link

-------- violation

(c) After ND1 Mediates

Figure 6. An example of a 3-coloring problem with
6 nodes and 9 edges.

that are in its agent_view, but for whatever reason
w ere not in the session. This simply leeps those agents’
agent_views up-to-date, which is important for deter-
mining if a solution has been reached. Lastly, using the
information provided to it in the “evaluate!” messages,
the mediator sends “init” messages to any agent that is
outside of its agent_view, but it caused conflict for by
choosing a solution. This “linking” step extends the me-
diators view along paths that are likely to be critical to
solving the problem or iden tifyingan over-constrained
condition. This step also ensures the completeness of the
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3.2. An Example

Consider the 3-coloring problem presented in figure
6(a). In this problem, there are 8 agents, each with a
variable and 12 edges or constraints bet w een them. Be-
cause this is a 3-coloring problem, each variable can only
be assigned one of the three available colors {Black, Red,
or Blue}. The goal is to find an assignment of colors to
the variables such that no tw ovariables, connected by
an edge, have the same color.

In this example, three constraints are in violation:
(NDO,ND1), (ND1,ND3), and (ND6,ND7). Follo wing the
algorithm, upon startup each agent adds itself to its
good_list and sends an “init” message to its neighbors.
Upon receiving these messages, the agents add each of
their neighbors to their good_list because they are able
to identify a shared constraint with themselves.

Once the startup has been completed, each of the
agents checks its agent_view. NDO, ND1, ND3, ND6 and
ND7 find that they have conflicts. NDO (priority 3) waits
for ND1 to mediate (priority 5). ND6 and ND7, both pri-
ority 4, wait for ND3 (priority 5). ND1, having an equal
number of agents in its good_list, but a lower lexico-
graphical order, also waits for ND3 to start a mediation.
ND3, knowing it is higher priority, first chec ks to see if
it can resolve its conflict by changing its value, which in
this case, it cannot. ND3 starts a session that involv es
ND1, ND5, ND6, and ND7. It sends each of them an
“ev aluate?” message.

When each of the agents in the mediation receives the
“ev aluate?” message, they label their domain elements
with the names of the variables that they would be in
conflict with as a result of adopting that value. They
each send ND3 an “ev aluate!” message withthis infor-
mation. The following are the labeled domains for each
of the agents

e ND1 - Black conflicts with ND2; Red conflicts with
NDO and ND3; Blue conflicts with ND4

e ND5 - Black causes no conflicts; Red conflicts with
ND3; Blue causes no conflicts

e NDG6 - Black conflicts with ND7; Red conflicts with
ND3; Blue conflicts with ND4

e ND7 - Black conflicts with ND6; Red conflicts with
ND3; Blue conflicts with ND4

Once all of the responses are received, the mediator,
ND3, conducts a branch and bound search that attempts
to find a satisfying assignment to the problem that min-
imizes the amount of conflict that would be created out-
side of the mediation. If it cannot find at least one sat-
isfying assignment, it broadcasts that a solution cannot
be found. In the example, it chooses change ND5’s color
to Red, ND7’s color to Red, and its own color to Blue.
ND3 cannot solv e the conflict betw een NDO and ND1



by making these changes, so it links with NDO, leav-
ing the problem in the state shown in figure 6(b). Note
that when this happens, ND3 adds NDO to its good_list
and vice versa.

ND1, ND5, ND6 and ND7 inform the agents in their
agent_view of their new values, then check for conflicts.
This time, NDO and ND1 notice that their values are in
conflict. ND1, have a higher priority, becomes the medi-
ator and mediates a session with NDO, ND2, ND3, and
ND4. Following the protocol, ND1 sends out the “eval-
uate?” messages and the receiving agents label and re-
spond. The following are the labeled domains that are
returned:

e NDO - Black conflicts with ND2; Red conflicts with
ND1; Blue causes no conflicts

e ND2 - Black cause no conflicts; Recbnflicts
NDO and ND1; Blue conflicts with ND4

e ND3 - Black conflicts with ND6; Red conflicts with
ND1, ND5, and ND7; Blue causes no conflicts

e ND4 - Black conflicts with ND2 and ND6; Red con-
flicts with ND1 and ND7; Blue causes no conflicts

ND1, after receiving these messages, conducts its search
and a solution that solve its subproblem. It chooses to
change the color of NDO to Blue. NDO, ND1, ND2, ND3,
and ND4 check their agent_view and find no conflicts,
so the problem is solved (see figure 6(c)).

with

3.3. Soundness and Completeness

The proofs of APO’s soundness and completeness are
quite lengthy, so for simplicity, we refer the reader to [6]
for their full details. Below are the main ideas that are
used in them.

e If at anytime an agent iden tifiesa constraint sub-
graph that is not satisfiable, it announces that the
problem cannot be solved. Half of the soundness.

e If a constraint violation exists, someone will try to
fix it. The protocol is dead-lock free. The other half
of the soundness.

e Eventually jn the w orstcase, one or more of the
agents will cen tralize the entire problem and will

deriv e a solution, or report that no solution exists.

This ensures completeness.

4. Evaluation

T o test the APO algorithm, ve implemented the AWC
and APO algorithms and conducted experiments in the
distributed 3-coloring domain. The particular AWC &
gorithm w eimplemented can be found in [11] which
includes the resolv en tnogood learning mechanism de-
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Figure 7. Cycles and messages needed to solve sat-
isfiable, low-density 3-coloring problems by AWC
and APO.

In the first set of experiments, following the ex-
perimental setup presented in [11], w e created solv-
able graph instances with m = 2.0n (low-density) and
m = 2.7n (high-density) according to the method pre-
sented in [7]. We generated 10 random graph for n =
15,30,45,60, 75,90 and for each instance generated 10
initial variable assignments. For each combination of n
and m, w e ran 100 trials making a total of 1800 trials.
During this series, we measured the number of messages
and cycles used by the algorithms. During a cycle, in-
coming messages are deliv ered,the agent is allo w edto
process the information, and any messages that were cre-
ated during the processing are added to the outgoing
queue to be delivered at the beginning of the next cy-
cle. The actual execution time given to one agent during
a cycle varies according to the amount of work needed to
process all of the incoming messages. The results from
this experiment can be seen in figures 7 and 8.

In the second set of experiments, w ecreated com-
pletely random 60 node graphs of various densities from
1.8n to 2.9n. This was done to test the completeness of
the algorithms and to verify the correctness of their im-
plementations. For each density value, we generated 200
random graphs each with a single set of initial values.
Again, we measured the number of cycles and the num-
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Figure 8. Cycles and messages needed to solve sat-
isfiable, high-density 3-coloring problems by AWC
and APO.

1400 graphs were generated and tested. We stopped the
execution of the algorithms at 1000 cycles for the sake of
time. The results of these experiments are shown in fig-
ures 9(a) and 9(b).

In the third set of experiments, w e directly com-
pared the serial run timeperformance of A WC against
APO. For these experiments, w eagain generated ran-
dom graphs, this time varying theize and the densit y
of the graph. We generated 25 graphs for the values of
n = 15,30, 45,60 and the densities of d = 2.0, 2.3, 2.7, for
a total of 300 test cases. To sho w that the performance
difference in APO and AWC was not caused by the speed
of the central solver, we ran a centralized backtracking
algorithm on the same graph instances. Although, APO
uses the branch and bound algorithm, the bac ktrac k-
ing algorithm used in this test provides a best case lower
bound on the runtime of APQ’s internal solver.

Each of the programs used in this test was run on an

identical 2.4GHz Pen tium 4 with 768 Mbytes of RAM.

These machines where entirely dedicated to the tests so

there was a minimal amount of interference by compet-

ing processes. In addition, no computational cost was as-

signed to message passing because the simulator passes
messages betw een cycles. The algorithms vere, how ewer,
penalized for the amount of time they took to process
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Figure 9. Cycles and messages used to solve ran-
dom, 60 variable problems with AWC and APO.

mentation of an algorithm can greatly effect its runtime
performance, every possible effort was made to optimize
the AWC implementation used for these experiments in
an effort to be fair.

F orsatisfiable graph instances, you can see that on
low-density satisfiable graphs A WC and APO perform
almost identically in terms of cycles to completion. When
the density of the graphs increase to 2.7 ho w esr, the
difference become mappearen t. APO begins to scale
more efficiently than A WC. This can be attributed to
the abilit y of APO to rapidly iden tifystrong interde-
pendencies betw een v ariables and to derevsolutions to
them using a centralized search of the partial subprob-
lem. We should mention that the results of the testing on
A WC obtained from these experiments agree with those
reported in [4] verifying the correctness of our implemen-
tation.

On random, 60 variable instances, APO significantly
outperforms A WC on all but the simplest of problems
(see figure 9(a)). The most direct cause of this is AWC’s
poor performance on unsatisfiable problem instances as
previously reported in [2].

In the serial runtime tests, presented in figures 10(a),
10(b), and 10(c), w ealso see that APO outperforms
A WC. You should note that the scale used for these
graphs is logarithmic. In fact, APO actually outperforms
the cen tralized solver on graphs larger than 30 nodes.
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Figure 10. Serial runtime needed to solve random
problems with ANC, APO, and centralized back-
tracking.

This indicates that, in fact, APO’s runtime performance
is not strictly attributable to the speed of cen tralized
solv er that it is using.

The most profound difference in the algorithms can
be seen in the number of messages used by them to solve
problems. In all cases, APO outperform AWC by a sig-
nificant amount. There are tw o primary causes for this.
First, the mediation process creates regions of stability
in the agent environment. So, unlike AWC, APO is able
to avoid thrashing behavior that is caused by the asyn-
chrony d operating in a distributed environment. Sec-
ond, because APO uses partial cen tralization to solv e
problems, it avoids having to use a large number of mes-
sages to disco ver impliedconstraints through trial and
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5. Conclusions

In this paper, w epresented a new method for solv-
ing DCSPs called the Asynchronous Partial Overlay algo-
rithm. The key features of this technique are that agents
mediate over conflicts, the context they use to make lo-
cal decisions overlaps with that of other agents, and as
the problem solving unfolds, the agents gain more con-
text information along the critical paths of the constraint
graph to improv e their decisions. We have shown that the
APO algorithm is both sound and complete and that it
performs better than the AWC algorithm on graph col-
oring problems of various sizes and difficulty.
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