Available online at www.sciencedirect.com

SCIENCE@DIHECT@ GAMES ar].d
Economic
ACADEMIC Behavior
PRESS Games and Economic Behavior 45 (2003) 181-221

www.elsevier.com/locate/geb

Multi-agent influence diagrams
for representing and solving games
Daphne Kollef* and Brian Milch?
& ganford University, Computer Science Department, Gates Bldg. 1A, Sanford, CA 94305-9010, USA

b University of California Berkeley, USA
Received 26 April 2001

Abstract

The traditional representations of games using the extensive form or the strategic form obscure
much of the structure of real-world games. In this paper, we propose a graphical representation
for noncooperative gamesmdlti-agent influence diagrams (MAIDs). The basic elements in the
MAID representation areariables, allowing an explicit representation of dependence, or relevance,
relationships among variables. We define a decision varifblasstrategically relevant to D if, to
optimize the decision rule @b, the decision maker needs to consider the decision rulg’ awe
provide a sound and complete graphical criterion for determining strategic relevance. We then show
how strategic relevance can be used to decompose large games into a set of interacting smaller games,
which can be solved in sequence. We show that this decomposition can lead to substantial savings in
the computational cost of finding Nash equilibria in these games.
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1. Introduction

Game theory provides a mathematical framework for determining what behavior is
rational for agents interacting with each other in a partially observable environment.
However, the standard game representations, both the normal (matrix) form and the
extensive (game tree) form, obscure certain important structure that is often present in real-
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world scenarios—the decomposition of the situation into chance and degsiiatles,

and the dependence relationships between these variables. In this paper, we provide a
representation that captures this type of structure. We also show that capturing this structure
explicitly has several advantages, both in our ability to analyze the game in novel ways,
and in our ability to compute Nash equilibria efficiently.

Our representation is based on the frameworngrobabilistic graphical models (Pearl,

1988), used in many disciplines, including statistics and artificial intelligence. Probabilistic
graphical models represent the world via a sevariables, that take on values in some
(discrete or continuous) space. For example, in a simple economic model, we might have
a continuous variable for each of several possible goods, indicating its supply at a given
time. We might also have a discrete variable representing the amount of rainfall in a region
over the last year (e.g., taking the values “drought,” “low,” “normal,” or “high”). Each
possible state (or trajectory) of the world is then an assignment of values to these variables.
By representing the world in terms of these variables, we can make statements about
the relationships between them. For example, we might know that the supply of oranges
depends on the rainfall variable, whereas the supply of oil does not. The graphical model
represents this structure using a directed graph structure, where the nodes represent the
variables, and the edges represent the direct dependence of one variable on another. As we
discuss in Section 2, these graphs, caBagesian networks or probabilistic networks, have

clear and formal semantics as a representation of a probability distribution over the state
space defined by the variables. Furthermore, the graph structure itself makes explicit certain
important aspects of the probability distribution, such as the conditional independence
properties of the variables in the distribution.

Influence diagrams (Howard and Matheson, 1984) extend Bayesian networks to the
decision-theoretic setting, where an agent has to make decisions in accordance with his
preferences. In addition to chance variables, influence diagrams cdetesion variables,
which are variables whose value the agent selects as part of his strategytiland
variables, which represent the agent’s preferences.

In this paper, we definenulti-agent influence diagrams (MAIDs), which represent
decision problems involving multiple agents. We show that MAIDs have clearly defined
semantics as noncooperative games, and can be reduced to an equivalent sequence form or
normal form game, albeit at the cost of obscuring the variable-level interaction structure
that the MAID makes explicit. MAIDs allow us to represent complex games in a natural
way, whose size is no larger than that of the extensive form, but which can be exponentially
more compact.

We show that MAIDs allow us to define a qualitative notion of dependence between
decision variables. We define a notion arategic relevance: a decision variableD
strategically relies on another decision varialBle when, to optimize the decision rule
at D, the decision-making agent needs to take into consideration the decision e at
This notion provides new insight about the relationships between the agents’ decisions in
a strategic interaction. We provide a graph-based criterion, which wes-cgdchability,
for determining strategic relevance based purely on the graph structure. We also provide
a polynomial time algorithm, which considers only the graph structure, for computing
s-reachability.
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The notion of strategic relevance allows us to define a data structure that we call
the relevance graph—a directed graph that indicates when one decision variable in the
MAID relies on another. We show that this data structure can be used to provide a
natural decomposition of a complex game into interacting fragments, and provide an
algorithm that finds equilibria for these subgames in a way that is guaranteed to produce
a global equilibrium for the entire game. As a special case, the algorithm generalizes
the standard backward induction algorithm for game trees, showing a general subclass
of games where backward induction can be applied, even in some games that are not
perfect information. We show that our algorithm can be exponentially more efficient than
an application of standard game-theoretic solution algorithms, including the more efficient
solution algorithms of Romanovskii (1962) and Koller et al. (1994) that work directly on
the game tree.

The remainder of this paper is structured as follows. In Section 2, we review some of the
key concepts in the framework of probabilistic graphical models that underlie our work. In
Section 3, we present the framework of multi-agent influence diagrams, and in Section 4,
we relate it to standard game-theoretic concepts. In Section 5, we define the notion of
strategic relevance, and provide a criterion for determining strategic relevance from the
graph structure. In Section 6 we show how to exploit strategic relevance to break up a
game into smaller games, and compute equilibria more effectively. We discuss related work
in Section 7. In Section 8, we conclude with a discussion of some extensions, including
additional structure that can be induced from the MAID representation.

2. Bayesian networks

Our work builds on the framework dayesian networks (also known as probabilistic
networks or belief networks) (Pearl, 1988) and on its decision-theoretic extension,
influence diagrams (Howard and Matheson, 1984). In this section, we briefly review
the Bayesian network framework, setting up much of the necessary foundation for the
remainder of this paper.

2.1. Representation

A Bayesian network is a graphical representation of a distribution over the joint
probability space defined by a set of variables. More precisely, consider a set of variables
X1, ..., X,, where eachX; takes on values in some finite sgédm(X;). Together, the
variables define a cross-product spacg ;dom(X;). Our goal is to represent a joint
distribution over this joint space. We ugeé to refer to the set of variableX, ..., X,,
anddom(X) to refer to their joint domain.

Example2.1. Consider a scenario where we are trying to reason about an alarm installed in

a house. The alarm can go off either because of a burglary or because of a minor earthquake.
If there is an alarm, then a neighbor might call. If there is an earthquake, the local radio
station may reportit. There are five variables in this domain, all of which are binary valued:
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A (alarm); B (burglary); E (earthquake)C (phone call);R (radio report). Thus, the joint
distribution has 32 entries.

As we can see, the number of states in the joint distribution grows exponentially with
the number of variables: If we hawevariables that take on binary values, the total number
of states is 2. Even for fairly smalln, the representation of this distribution as a list of
numbers, one for each state, is impractical.

A Bayesian network (BN) represents the distribution using a graph, whose nodes
represent the random variables and whose edges represent (in a very formal sense) direct
influence of one variable on another. More precisely, we have the following definition for
the Bayesian network representation:

Definition 2.1. A Bayesian network B over the variables(y, ..., X, is a pair(G, Pr).
G is a directed acyclic graph with nodes, also labeledy, ..., X,,. For a nodeX, we
usePa(X) to denote thgarents of X in the graph, i.e., those nod&ssuch that there is a
directed edge fronk to X. Pr is a mapping that associates with each ndaeconditional
probability distribution (CPD) Pr(X | Pa(X)), which specifies a probability distribution
Pr(X | pa) over the values oX for each instantiatiopa of Pa(X).

The graphG for our Alarm example is shown in Fig. 1. This BN can be viewed as a
compact representation of the symmetric probability tree in Fig. 2. The tree has 32 paths,
each with five binary splits, one for each variable. Most simply, the splits occur in an order
which is consistent with the order of nodes in the BN, eR).E, A, C, R. Each branch
from a split node is labeled with the probability that the branch is taken. For example, the
B =1 branch is labeled with PB = 1) = 0.01, and theB = 0 branch with 9. Note
that the tree has a lot of duplication over the BN. For example, there are eight branches
in the tree all labeled with the same probabilitf Re= 0| E = 1) = 0.65 (one for each
assignmentta, A, C).

Pr(E) Pr(B)
ev f‘" ho I)"
0.995| 0.005 0.99 1 0.01
Pr(A | B,E)
a’ al
PR E) 0.999 | 0.001
i ,-.‘
0.7 0.3
¢’ 0.99999 | 0.00001
0.2 0.8
el 0.65 0.35
0.05 0.95

a'l 0.3 0.7

Fig. 1. Alarm BN; for these binary variables, we use the notatibas shorthand for the eveft= 1 andx? for
the eventX =0.
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0.99999 R
0.95-C=0 <R 0
0,999 A=0 0.00007~R=1
- 0.99999 R=0

0.05 C=1%
E=0 0.00007~R=1
0.99 0.999 =
03 _C=0 %R 0
0.001\ _, < .00007 —~R=1
0.99999 -R=0

0.7 ~C=1 %
B=0 .00007 ~R=1
0.99 0.95_C=0 %R:O
A=0 035 ~R=1
0.7 0.6 R=0

0.005 0.05 C=1 <
E=1 035 ~R=1
03_-C=0 &R:O
03N, o35—R=1
0.65 —R=0

07 C=1 {
035 —~R=1
0.99999 R
0.95_C=0 <R 0
R=1

s A0 ST

} R=0

0.05 C=1<
E=0 .00007 ~R=1
0.99 0.999 =
0.3_C=0 %R 0
08 A=1< .00007—~R=1
0.99999 ~R=0

001 07 C=1<
B=1 .00007 —~R=1
0.95_C=0 %R:O
R=1

0.0 A=0< 0.35

0.65 —R=0

0.003 0.05~C=1 <
E=1 0.35 —~R=1
0.95 A=1 0.35—~R=1
0. R=0

0.7 ~C=1 {

035 ~R=1

Fig. 2. Probability tree for th@larm example.

The graph structure encodes our intuition about the way the world works, and thus lets
us avoid writing the same probabilities many times:

e There either is or is not a burglary, but that event does not depend on any of the other
variables in the model.

o Similarly, an earthquake either happens or does not happen, separately from everything
else.

e The alarm can be set off either by a burglary or by an earthquake, and therefore it
depends on both.

e Whether the neighbor calls depends only on whether the alarm went off: we can
determine the probabilities of th€ = 0 and C = 1 branches at a node in the
probability tree just by looking at the value af

e The radio report depends only on whether there was an earthquake.
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The CPDs associated with the nodes represent the local probability models for the
different variables. One such model—By—specifies the prior probability of a burglary,
i.e., it specifies the prior probabilities of the evets= 1 and B = 0. Similarly, P(E)
specifies the prior probability of a minor earthquake. The probability of the alarm going
off is a conditional probability distribution P{A | B, E); it specifies the probability of
the alarm going off in any of the relevant circumstances: a burglary and an earthquake
(B=1,FE = 1), a burglary and no earthquak® & 1, E = 0), no burglary and an
earthquake® = 0, E = 1), and no burglary and no earthquale=£ 0, E = 0). The other
models are similar. One possible choice of CPDs for this domain is shown in Fig. 1.

2.2. Semantics
The semantics of a BN is as a joint distribution odem(X):

Definition 2.2. A BN B = (G, Pr) over X1,..., X, defines a joint distribution over
X1, ..., X, via thechain rule for Bayesian networks:

P(X1,...,Xn) = HPr(X,- | Pa(X))). (1)
i=1

The chain rule gives us the ability to compute the probability of any stadienm.X).
For example:

PB=1E=0,A=1C=1R=0)
—P(B=1)PKE=0PA=1|B=1E=0P(C=1|A=1)
x PI(R =0| E = 0) = 0.01- 0.995. 0.8 - 0.7 - 0.99999= 0.005566428

Thus, a BN is a full representation of a joint distribution. As such, it can be used to
answer any query that can be answered with a joint distribution. In particular, we can assess
the probability distribution over any variable conditioned on any assignment of values to a
subset of others. For example, the prior probability that our neighbor call®568. The
probability that he calls in case of a burglary®€ = 1| B = 1)—is 0.57. Conversely, the
probability of a burglary given that the neighbor calle@B = 1| C = 1)—is 0.1. Now,
assume that we turn on the radio and hear a report of an earthquake in our neighborhood.
The probability of an earthquake goes up substantialyE=1|C =1, R=1) =0.999
ascomparedt®(E =1| C = 1) =0.021. More interestingly, the probability of a burglary
goesdown—P(B=1|C =1, R=1)=0.027. Note that burglary and earthquake are not
mutually exclusive; indeed, they occur independently. Hence, there is nothing about the
increased probability of an earthquake that, by itself, reduces our beliefs in a burglary.
Rather, the earthquake provides an explanation for the neighbor’s phone call; therefore,
our basis for believing the alternative explanation (namely the burglary) is no longer as
active.

1 Our choice of probabilities is somewhat unrealistic, as the probabilities of various unlikely events (e.g., an
earthquake) are higher than is plausible.
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These are examples of conclusions that we can extract from the joint distribution. Of
course, explicitly enumerating the joint distribution is a computationally expensive oper-
ation, except for the smallest networks. Fortunately, there are algorithms (e.g., Lauritzen
and Spiegelhalter, 1988) that exploit the sparsity of the network structure to perform this
type of reasoning without enumerating the joint distribution explicitly. These algorithms
can work effectively even for very large networks, as long as there are not too many direct
connections between the variables in the network (more precisely, as long as it is possi-
ble to construct a junction tree for the network that has small cligues—see (Lauritzen and
Spiegelhalter, 1988) for details).

2.3. Independence

The BN structure induces a set of independence assumptions about the variables
X1,..., X,. These are assumptions that are a direct consequence of the definition of
the joint distribution using the chain rule. They hold for any parameterization Pr of the
graphG. These independencies are critical to our analysis, so we review them here.

We first define the basic notion obnditional independence of random variables.

Definition 2.3. Let P be a distribution ove#r’, and letX, Y, and Z be three pairwise
disjoint subsets oft. We say thatX is conditionally independent of Y given Z in P,
denotedP = I(X;Y | Z), if, for any z € dom(Z) such thatP(z) > 0, and for any
x € dom(X), y e dom(Y), we have that

Px |y, z2)=Px|2),

or, equivalently, that
P(y|x,z2)=P(y|2), Px,y|lz)=Px|z)-P(y|2).

This notion of conditional independence is quite strong, as it implies conditional
independence for every assignment of values to the variables involved. Conversely, note
that conditional independence is very different from the more standard notion of marginal
independence. For example, in the distribution represented by Fig. 1, we have ithat
conditionally independent @t given A—once we know whether the alarm sounded or not,
knowledge about a possible burglary no longer gives us any information about the chances
of a phone call. This independence is very natural; it reflects our intuition that the neighbor
decides whether to call based only on hearing the alarm; he has no direct knowledge of the
burglary. HoweverB and C arenot marginally independent: the presence of a burglary
makes the phone call more likely.

It turns out that we can use the graph structure to provide a qualitative criterion for
determining independence properties of the distribution associated with the graph. At an
intuitive level, we can show that probabilistic influence between the variables “flows” along
paths in the graph, but can be “blocked” somewhere along the path. In our example above,
influence can flow fronB to C, but can be blocked if we condition ot

The basic notion in this analysis is that of agtive path, i.e., one along which influence
can “flow.” It helps to first analyze the simplest case, where one odan influence
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anotherY via a third nodeZ. As we discussed, this depends on what our evidence is, i.e.,
what we are conditioning on. L&t be the set of variables on which we are conditioning;

i.e.

, assume that our evidencelis= e for some assignmet and we are trying to analyze

the independencies in the distributidghconditioned onE = e. There are four cases to
consider:

1)

)
3)

4

The path has the forrx — Z — Y. This case is the same as our example>

A — C. Inthis case, we say that the patraddiveif Z is not observed, i.eZ ¢ E. If

Z € E, we say that the path [docked.

The path has the forti < Z < Y. As probabilistic dependence is symmetrical, this
case is precisely analogous to the first.

The path has the fortki < Z — Y. This case represents a situation where a common
cause has two effects, for example, the earthquake causing both the alarm and the news
report. It seems fairly intuitive that observing a news report about an earthquake will
change our beliefs about whether the alarm has gone off. However, if we know that
there is an earthquake, the news report gives us no additional information. In light of
this intuition, we say that this path is activedf¢ E and blocked otherwise.

The path has the fornX — Z <« Y. This case, known as estructure, is the

most interesting. An example in our simple network is the path f@®rhrough A

to E. Note that, in the prior distributio®®, B and E are marginally independent.
Hence, whenA is not observed, the path is not active, by contrast to the three
previous cases. More interestingly, consider what happens when we observe that the
alarm sounded. In this casB, and E become correlated. Intuitively, if we observe
that an earthquake occurred, then that provides an explanation for the alarm, and
reduces the probability of a burglary. (It is easy to verify this behavior by examining
the probability distributionP given above.) Thus, the path is activeAfis in E.

A similar phenomenon occurs if we obser¢e These examples lead us to define a
pathX — Z < Y to be active ifZ or one of Z’s descendants in G is in E, and
blocked otherwise.

The definition of active for longer paths is a simple composition of the definition for
the paths of length two. Intuitively, influence flows fra¥nto Y via a long path if it flows
through every intervening node. Thus, following Pearl (1988), we define a general active
path as follows:

Definition 2.4. Let G be a BN structure, andf1—- - -—X,, an undirected path i%. Let
E be a subset of nodes 6f. The pathX;— - - -—X,, is active given evidence if

whenever we have a configuratiof,_1 — X; < X;t1, then X; or one of its
descendantsisif;
no other node along the path is

A path which is not active iblocked. We say thatX andY ared-separated in G given E
if every path between them is blocked.
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In our Alarm example, we have that and B are d-separated, because the v-structure
blocks the only possible path. On the other haR&nd B are not d-separated givéh as
observingC activates the path. BuR andB are d-separated giveR andC, as observing
E blocks the path again. We note that d-separation can be computed in linear time, using,
for example, Shachter’s Bayes-Ball algorithm (Shachter, 1998).

So far, we have defined d-separation based purely on intuitive arguments. However,
these intuitive arguments correspond to provably correct statements about independencies
in the distribution. As shown by Verma and Pearl (1990), d-separatiosousd:
d-separation ir; implies conditional independence for any Bayesian netifosk (G, Pr).

Theorem 2.1 (Verma and Pearl (1990): soundnets).G be a Bayesian network structure,
and let X and Y be nodesin G and E a set of nodes such that X,Y ¢ E. If X and Y
are d-separated in G given E, then for any Bayesian network 5 = (G, Pr), we have that
BEIX;Y|E).

In other words, the independencies that we derive qualitatively from the graph structure
via d-separation hold faavery parameterization of the network structure with CPDs.

The d-separation criterion is alsmmplete, but in a weaker sense. It is not the case
thatif B=1(X;Y | E) then we can necessarily detect that from the network structure. We
might choose parameters that create spurious independencies, simply because two different
probability expressions happen to be equal to each other. However, as shown by Geiger and
Pearl (1990), if an independence does not follow from the d-separation criterion, then there
is at least one counterexample to it.

Theorem 2.2 (Geiger and Pearl (1990): completenedst G be a Bayesian network
structure, and let X and Y benodesin G and E a set of nodessuchthat X, Y ¢ E. If X
and Y arenot d-separatedin G given E, then there exists a Bayesian network B = (G, Pr)
suchthat B I1(X; Y | E).

In fact, Meek (1995) has proved an even stronger versioralimost all Bayesian
networksB = (G, Pr) (i.e., in all except for a set of measure zero), we have gt
I(X;Y | E).

Thus, Bayesian networks provide us with a formal framework for representing
independence structure in a joint distribution. They allow us to exploit this structure in
order to provide a compact representation of complex joint distributions. They also provide
us with a qualitative method for determining the presence and absence of independence
relations in the joint distribution.

3. Multi-agent influence diagrams (M AIDs)

Influence diagrams augment the Bayesian network framework with the notions of
agents that make decisions strategically, to maximize their utility. Influence diagrams were
introduced by Howard (Howard and Matheson, 1984), and have been investigated almost
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entirely in a single-agent setting. In this section, we preseiti-agent influence diagrams
(MAIDs), which extend the influence diagram framework to the multi-agent case.
We will introduce MAIDs using a simple two-agent scenario:

Example 3.1. Alice is considering building a patio behind her house, and the patio would

be more valuable to her if she could get a clear view of the ocean. Unfortunately, there is a
tree in her neighbor Bob’s yard that blocks her view. Being somewhat unscrupulous, Alice
considers poisoning Bob's tree, which would cost her some effort but might cause the tree
to become sick. Bob cannot tell whether Alice has poisoned his tree, but he can tell if the
tree is getting sick, and he has the option of calling in a tree doctor (at some cost). The
attention of a tree doctor reduces the chance that the tree will die during the coming winter.
Meanwhile, Alice must make a decision about building her patio before the weather gets
too cold. When she makes this decision, she knows whether a tree doctor has come, but she
cannot observe the health of the tree directly. A MAID for this scenario is shown in Fig. 3.

To define a MAID more formally, we begin with a set of agents. The world in
which the agents act is represented by theetf chance variables, and a setD, of
decision variables for each agent: € A. Chance variables correspond to decisions of
nature, as in the Bayesian network formalism. They are represented in the diagram as
ovals. The decision variables for agenare variables whose valuegyets to choose, and
are represented as rectangles in the diagram. Weéusedenote J,. 4 D,. The agents’
utility functions are specified usingiility variables: For each agent € A, we have a set
U, of utility variables, represented as diamonds in the diagram. The domain of a utility
variable is always a finite set of real numbers (a chance or decision variable can have any
finite domain). We usef to denotd_J,. 4 U, andV to denote¥ UD UU.

Like a BN, a MAID defines a directed acyclic graph with its variables as the nodes,
where each variabl& is associated with a set of parema(X) ¢ X U D. Note that
utility variables cannot be parents of other variables—they represent components of a
utility function, not actual state variables that can influence other variables or be observed
by agents. For each chance varialllec X', the MAID specifies a CPD X | Pa(X)),
as in a BN. For a decision variable € D,, Pa(D) is the set of variables whose values
agenta knows when he chooses a value fbr Thus, the choice agemnt makes for

Ol [F'N
Poison Tree | Build
Tree Doctor "| Patio

A

Fig. 3. A MAID for the Tree Killer example; Alice’s decision and utility variables are in dark gray and Bob’s in
light gray.
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D can be contingent only on these variables. (See Definition 3.1 below.) Edges into a
decision variable are drawn as dotted lines. For a utility varidblehe MAID also
specifies a CPD RU | pa) for each instantiatiorpa of Pa(U). However, we require
that the value of a utility variable be a deterministic function of the values of its
parents: for eaclpa € dom(Pa(U)), there is one value o/ that has probability 1, and

all other values ofU have probability 0. We usé&/ (pa) to denote the value of node

U that has probability 1 whe®a(U) = pa. The total utility that an agerd derives
from an instantiation ofy is the sum of the values d@f, in this instantiation. Thus,

by breaking an agent’s utility function into several variables, we are simply defining
an additive decomposition of the agent’s utility function (Howard and Matheson, 1984,
Keeney and Raiffa, 1976).

The agents get to select their behavior at each of their decision nodes. An agent's
decision at a variablé® can depend on the variables that the agent observes prior to
making D—D’s parents. The agent’s choice of strategy is specified via a s#gcidion
rules.

Definition 3.1. A decision rule for a decision variableD is a function that maps each
instantiationpa of Pa(D) to a probability distribution ovedom(D). An assignment of
decision rules to every decisidn € D, for a particular agent € A is called astrategy.

Thus, a decision rule may be deterministic, or it may specify that there is some
randomness in the agent’s behavior.

Definition 3.2. A decision rules for D is fully mixed if, for every instantiatiompa of Pa(D)
and everyl e dom(D), we haves(d | pa) > 0.

An assignment of decision rules to every decisidd € D is called astrategy profile.
A partial strategy profile o¢ is an assignment of decision rules to a sulsset D. We will
also usesg to denote the restriction ef to £, ando_g to denote the restriction of to
variables not ir€.

Note that a decision rule has exactly the same form as a CPD. Thus, if we have
a MAID M, then a partial strategy profile that assigns decision rules to a gebf
decision variables induces a new MAIM[o] where the elements &f have become
chance variables. Thatis, eabhe £ corresponds to a chance variableMfio ] with o (D)
as its CPD. Whewr assigns a decision rule to every decision variabldinthe induced
MAID is simply a BN: it has no more decision variables (recall that the utility variables are
just BN variables with domains consisting of real numbers, and with deterministic CPDs).
This BN defines a joint probability distributioRa;,; over all the variables itM.

Definition 3.3. If M is a MAID ando is a strategy profile faM, then thgoint distribution
for M induced by o, denotedP 4,1, is the joint distribution oveV defined by the Bayes
net where:

the set of variables i¥;

for X,Y €V, thereis an edg& — Y if and only if X € Pa(Y);
forall X e X U/, the CPD forX is PrX);

forall D € D, the CPD forD is o (D).
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With this probability distribution, we can now write an equation for the utility that agent
a expects to receive in a MAIDM if the agents play a given strategy profite Suppose
U, ={Us,...,Uy,}. Then:

EUi @)= Y PMioiut, oo ttm) )t (2)
i=1

(u1,...,um)edom,)

wheredom(l4,) is the joint domain of/,. Because the expectation of a sum of random
variables is the same as the sum of the expectations of the individual random variables, we
can also write this equation as:

Eli0)= ) > PumioW=u-u (3)

Ueld, uedom(U)

Having defined the notion of an expected utility, we can now define what it means for
an agent to optimize his decision at one or more of his decision rules, relative to a given
set of decision rules for the other variables.

Definition 3.4. Let & be a subset oD,, and leto be a strategy profile. We say thaf
is optimal for the strategy profile o if, in the induced MAID M[o_¢g], where the only
remaining decisions are thosednthe strategy; is optimal, i.e., for all strategiesé:

EU, ((0-£.0%)) > EVa((0-£.02)).

Note that, in this definition, it does not matter what decision ralesssigns to the
variables inf.

In the game-theoretic framework, we typically consider a strategy profile to represent
rational behavior if it is d&Nash equilibrium (Nash, 1950). Intuitively, a strategy profile is a
Nash equilibrium if no agent has an incentive to deviate from the strategy specified for him
by the profile, as long as the other agents do not deviate from their specified strategies.

Definition 3.5. A strategy profiler is aNash equilibriumfor a MAID M if for all agents
a € A, op, is optimal for the strategy profile.

The task of finding a Nash equilibrium for a game is arguably the most fundamental
task in noncooperative game theory.

4. MAIDsand games

A MAID provides a compact representation of a scenario that can also be represented
as a game in strategic or extensive form. In this section, we discuss how to convert a MAID
into an extensive-form game. We also show how, once we have found an equilibrium
strategy profile for a MAID, we can convert it into a behavior strategy profile for the
extensive form game. The word “node” in this section refers solely to a node in the tree, as
distinguished from the nodes in the MAID.
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There are many ways to convert a MAID into a game tree, all of which are equivalent
from a semantic perspective, but which differ dramatically in their computational costs. To
understand this point, consider a MAID withbinary-valued chance variabl€s, ..., C,,
with C; the sole parent of’; ;1, and a single decisioP whose sole parent i§,. One naive
approach is to generate a symmetric tree where the root is a chance node spliingten
two children are both chance nodes splitting@n etc. Each path down the tree will thus
containn splits (one for each of’, ..., C,), and then have a final split fap, belonging
to the agent. To preserve the information structure, the tree will have two information sets,
one forC, = true and one forC,, = false; thus, all of the 2-1 nodes where&,, = true
would be in the first information set. The advantage of this tree is that the probabilities
associated with the chance-splits are simply extracted from the CPDs in the MAID. The
disadvantage is that the size of the tree grows exponentially with the number of chance
variables in the MAID, even when this blowup is extraneous.

A alternative approach (based on the construction of Pearl (1988, p. 311) is to generate
a tree that has only the minimal set of splits. In our example, we only need a single split for
C,, and then another split fap. The probabilities of the&,, split must now be computed
from the MAID using probabilistic inference; i.e., we want to compBt&,) in the joint
distribution overCy, ..., C, defined by the MAID. Similarly, we must now compute the
expected utilities at the leaves.

More generally, we need to split on a chance variable before its value is observed by
some decision node. Furthermore, we need only split on chance variables that are observed
at some point in the process. Thus, the set of variables included in our game tree is
G =D U Jpep Pa(D). We present the construction below, referring the reader to (Pearl,
1988) for a complete discussion.

We begin by defining a total ordering over G that is consistent with the topological
order of the MAID: if there is a directed path froi to Y, thenX < Y. Our tree7 is
a symmetric tree, with each path containing splits over all the variablgsiinthe order
defined by<. Each node is labeled with a partial instantiatiost(N) of G, in the obvious
way. For each agent, the nodes corresponding to variables= D, are decision nodes
for a; the other nodes are all chance nodes. To define the information sets, consider two
decision noded/ and M’ that correspond to a variable. We placeM and M’ into the
same information set if and onlyiifst(M) andinst(M’) assign the same valuesRa(D).

Our next task is to determine the split probabilities at the chance nodes. Consider a
chance node&v corresponding to a chance varialdle For each value € dom(C), let N,
be the child ofN corresponding to the choiag = c¢. We want to compute the probability
of going from N to N.. The problem, of course, is that a MAID does not define a full
joint probability distribution until decision rules for the agents are selected. It turns out
that we can choose an arbitrary fully mixed strategy preafil®ne where every decision
rule satisfies Definition 3.2) for our MAIDM, and do inference in the BW[o] induced
by this strategy profile. Specifically, we can compute:

Pio (inst(Ne) | inst(N)). (4)

We can do this computation for any instantiatiost (V) that has nonzero probability under
P o1 Sinceo is fully mixed, any instantiation that has zero probability unBgg, will
have zero probability under every other strategy profile as well.
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Lemma 4.1. The value of (4) does not depend on our choice of o.

Proof. We provide only a brief sketch of the proof. Note that if we split on a decision
variable D before C, then the decision rulep does not affect the computation of
Pamo1(inst(Ne) | inst(N)), becausenst(N) includes values foD and all its parents. If
we split onD after C, thenD cannot be an ancestor 6fin the MAID. Also, because the
order of splitting is a topological ordering of the MAIIMst(N) cannot specify evidence
on any ofD’s descendants. Thereforg, cannot affect the computation. Hence, the value
of this expression does not depend on our choice.of O

Hence, the probabilities of the chance nodes are well-defined.
We define the payoffs at the leaves by computing a distribution over the utility nodes,
given an instantiation af. For a leafN, the payoff for agent is:

Z Z Prio) (U = u | inst(N)) - u. (5)

Ueld, uedom(U)
Lemma 4.2. The value of (5) does not depend on our choiceof o.

Proof. The basic idea here is thitst(N) determines the values @f andPa(D) for each
decision variableD. Hence, the agents’ moves and information are all fully determined,
and the probabilities with which different actions are choses are irrelevant. We omit
details. O

The mapping between MAIDs and trees also induces an obvious mapping between
strategy profiles in the different representations. A MAID strategy profile specifies a
probability distribution ovedom(D) for each pair(D, pa), wherepa is an instantiation
of Pa(D). The information sets in the game tree correspond one-to-one with these pairs,
and a behavior strategy in the game tree is a mapping from information sets to probability
distributions. Clearly the two are equivalent.

Based on this construction, we can now state the following equivalence proposition:

Proposition 4.1. Let M be a MAID and 7 be its corresponding game tree. Then for any
strategy profile o, the payoff vector for o in M isthe same asthe payoff vector for o in 7.

The number of nodes iff’ is exponential in the number of decision variables, and in
the number of chance variables that are observed during the course of the game. While
this blowup is unavoidable in a tree representation, it can be quite significant in certain
games. As we now show, a MAID can be exponentially smaller than the extensive game it
corresponds to.

Example4.1. Suppose a road is being built from north to south through undeveloped land,
andn agents have purchased plots of land along the road. As the road reaches each agent’s
plot, the agent needs to choose what to build on his land. His utility depends on what he
builds, on some private information about the suitability of his land for various purposes,
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Building
1w

Fig. 4. A MAID for the Road example withn = 6.

and on what is built north, south, and across the road from his land. The agent can observe
what has already been builtimmediately to the north of his land (on both sides of the road),
but he cannot observe further north; nor can he observe what will be built across from his
land or south of it.

The MAID representation, shown in Fig. 4 far= 6, is very compact. There are
chance nodes, corresponding to the private information about each agentis thewision
variables; and: utility variables. The chance nodes have no parents, and each utility
variable has at most five parents: the agent’s private information, the agent’s own decision,
and the decisions of the agents north, south, and across the road from this agent. Thus,
the size of the MAID—including CPDs for the chance and utility nodes—is linear. in
Conversely, any game tree for this situation must split on each of tfence nodes and
each of then decisions, leading to a representation that is exponential fDoncretely,
suppose the chance and decision variables each have three possible values, corresponding
to three types of buildings. Then the game tree corresponding RdixeMAID has 3
leaves.

A MAID representation is not always more compact. If the game tree is naturally
asymmetric, a naive MAID representation can be exponentially larger than the tree.

Example 4.2. Consider, for example, a standard centipede game, a perfect information
two-player game. The agents take turns moving, each move consisting of either “right” or
“down”; the game ends as soon as any agent decides to move “down.” An agent’s utility
is equal to the number of times he moved right, plus 2 points if he moved down. We
can view the agents’ decisions as variabi®s. .., D,, each of which takes one of two
values. An agent’s utility depends @»),, but only if none ofD4, ..., D,,_1 have the value
“down.” Thus, there must be a utility node with all &f, ..., D, as parents. So a naive
representation of the MAID (with its CPDs) grows exponentially in this example, despite
the fact that the tree only hasdecisions, and can be represented very compactly.
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It is possible to avoid this problem by representing CPDs and decision rules more
compactly (Boutilier et al., 1996; Poole, 1997). Rather than representing CPDs as tables,
we can represent them as trees, only considering combinations of parents that represent
achievable paths in the game. Using ideas along these lines, it is fairly straightforward to
provide a transformation from game trees to MAIDs which causes no blowup, i.e., so that
the size of the MAID is the same as that of the game tree. The transformation is somewhat
technical, and brings no real insight into MAIDs, so we omit it from this paper. However,
it has the following important consequence: We can state that the MAID representation
of a decision-making situation is no larger than the extensive form representation, and is
exponentially smaller in many cases.

5. Strategicrelevance

To take advantage of the independence structure in a MAID, we would like to find a
global equilibrium through a series of relatively simple local computations. The difficulty
is that, in order to determine the optimal decision rule for a single decision variable,
we usually need to know the decision rules for some other variables. In Example 3.1,
when Alice is deciding whether to poison Bob's tree, she needs to compare the expected
utilities of her two alternatives. The expected utility of poisoning the tree depends on the
probability of the tree dying, given that it has been poisoned. However, this probability
depends on the probability of Bob calling a tree doctor if he observes that the tree is sick.
Thus, we need to know the decision rule ToeeDoctor to determine the optimal decision
rule for PoisonTree. In such situations, we will say thBbisonTree (strategically) relies on
TreeDoctor, or thatTreeDoctor is relevant to PoisonTree. On the other handireeDoctor
does not rely orPoisonTree. The cost of hiring a tree doctor does not depend on whether
the tree was poisoned, and if we know whether the tree is sick, the probability of it dying
is independent of whether it was poisoned. So Bob does not need to know the probability
of poisoning to compute the expected utilities of his choices, given that he can observe
TreeSck.

5.1. Definition of strategic relevance

We will now formalize this intuitive discussion of strategic relevance. Suppose we have
a strategy profiler, and we would like to find a decision rubefor a single decision
variable D € D, that maximizesu's expected utility, assuming the rest of the strategy
profile remains fixed.

Recall that in Definition 3.4, to determine whetldes optimal foro, we construct the
induced MAID where all decision nodes excdptre turned into chance nodes, with their
CPDs specified by . The decision rulé is optimal foro if it maximizesa’s expected
utility in this single-decision MAID. The key question that motivates our definition of
strategic relevance is the following: Which decision rules iare relevant for optimizing
the decision rule ab? We begin with a draft definition of strategic relevance, then explain
why it needs to be refined somewhat.
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Draft Definition 5.1. Let D and D’ be decision nodes in a MAIDM. D strategically
relies on D’ if there exist two strategy profiles ando’ and a decision rulé for D such
that:

e § is optimal foro;
o o' differs fromo only atD’;

but$ is not optimal foro”'.

In other words, if a decision rulgfor D is optimal for a strategy profile, and D does
not rely onD’, then§ is also optimal for any strategy profit¢ that differs fromos only
atD’.

The reason why this definition is insufficient is one that arises in many other places in
game theory—the problem of suboptimal decisions in response to probability zero moves
by the other agent.

Example 5.1. Consider a very simple scenario in which Alice chooses whether to go
north or south, and then Bob gets to observe her action and choose whether he will go
north or south. Both agents receive positive utility if they end up in the same place, and
negative utility otherwise. We can model this scenario with the MADshown in Fig. 5.
Intuitively, Bob’s decisionD does not rely on Alice’s decisioP’: regardless of Alice’s
decision rule, it is optimal for Bob to adopt a decision rule that says, “go north if Alice
goes north; go south if she goes south.” But suppoea strategy profile in which Alice
goes north with probability 1, antlis a decision rule foD that has Bob go north regardless

of Alice’s action. Thers is optimal foro: even though going north would be a suboptimal
action for Bob if Alice ever went south, Bob does not have an incentive to deviate to any
other decision rule ioM[o ] because the probability of Alice going south is zero. However,

if o’ has Alice go south with probability.B, thens is not optimal fore’. So, by our draft
definition, D relies onD’.

Intuitively, we do not wantD to rely on D’. We now revise our definition of strategic
relevance to exclude cases such as this one.

Definition 5.1. Let D and D’ be decision nodes in a MAID. D strategically relies on
D' if there exist two strategy profiles ando’ and a decision rulé for D such that:

Fig. 5. A MAID in which Bob can observe Alice’s actiaR’ when he makes his decisian.
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e § is optimal foro;
o o' differs fromo only atD’;

but no decision rulé* that agrees witl$ on all parent instantiationga € dom(Pa(D))
wherePyj,1(pa) > 0 is optimal foro”.

Continuing our example, we can construct a decision 8titeor D that differs froms
only on the parent instantiatioD’ = south, and thiss* will be optimal foro’. So under
the revised definition)> does not rely orD’.

5.2. Sreachability

Relevance is a numeric criterion that depends on the specific probabilities and utilities
in the MAID. It is not obvious how we would check for strategic relevance without testing
all possible pairs of strategy profilesando’. We would like to find a qualitative criterion,
which can help us determine strategic relevance purely from the structure of the graph.
In other words, we would like to find a criterion which is analogous to the d-separation
criterion for determining conditional independence in Bayesian networks.

To begin with, suppose we have a strategy prafiléor a MAID M, and consider
finding a decision rule foD that is optimal foro. The following lemma specifies the
maximization problems we must solve to find this optimal decision rule.

Lemma 5.1. Let § be a decision rule for a decision variable D € D, in a MAID M,
and let o be a strategy profile for M. Then § is optimal for o if and only if for
every instantiation pa, of Pa(D) where Pyq,1(pap) > 0, the probability distribution
3(D | pap) isa solution to the maximization problem:

argmax Z P*(d) Z Z Pmio1(u | d, pap) -u (6)
P*  jedom(D) U eldp uedom(U)

where Up isthe set of utility nodesin 4, that are descendants of D inthe MAID.

Proof. By Definition 3.4,§ is optimal foro if and only if § maximizes agent’s expected
utility in M[o_p]. Soé is optimal foro if and only if § is a solution for:

argmaxEU q(o_p, 8%).
8*

By (3), this is equivalent to:

argmaXZ Z PM[((T_D,S*)](U =u)-u.
8" Ueld, uedom(U)

The events(U = u, D = d, Pa(D) = pap) for d € dom(D), pap € dom(Pa(D)) form

a partition of the evenlU = u, so we can expresBu(_,,s+)](U = u) as the sum of

the probabilities of these more specific events. Then breaking up the joint probability
expression yields:
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Ppi_p.s (U =u)

= Z PMio_p,s%1(Pap)
pay, edom(Pa(D))

X > PMi_p.s1(d | Pap) PAio_p.s(U =u | d, pap).
dedom(D)
The CPD for a node in a Bayesian network has no effect on the prior distribution over
its parents, sPaq_p.54](PAp) = Parie1(PAp)- AlSO, Prqis_p.54)1(d | pap) is simply
8*(d | pap). And Prqio_p.s(U = u | d,pap) = Ppms1(U = u | d, pap), because a
distribution does not depend on the CPD forgiven values forD and its parents. So
we find that:

Pmio_p.s (U =u) = Z Pris1(Pap)
pa,edom(Pa(D))

x Y 8"(d|pap) P (U =uld, pap).
dedom(D)

Thus,s is optimal foro if and only if it is a solution for:

argmax >y > Pumisi(Pap)

U el, uedom(U) pay, edom(Pa(D))

x Y 8%(d|pap) Pmio(U=uld. pap)-u.
dedom(D)

Rearranging the summations, we get:

argmax > Puyoy(Pap) Y. 8(d|pap)
8 papedom(Pa(D)) dedom(D)

x Z Z Ppo1(U =u | d, pap) - u.
Ueld, uedom(U)

Because we can s&t(D | pap) separately for eacpa,,, it is clear that we have a separate
maximization problem for eacpay. If Ppqs1(pap) = 0, the maximization problem
is trivial: all distributions§*(D | pay,) yield a value of zero. Thus, it is necessary and
sufficient that for allpa, such thatPaqj(pap) > 0, the distributions(D | pap) be

a solution of the following maximization problem:

argmax Z P*(d)z Z Prmio)(U =u | d, pap) -u.

P* Jedom(D) U eld, uedom(U)

Now, letldp be the utility nodes id4, that are descendants B, and lett/y = U, — Up.

Since a node in a BN is independent of its nondescendants given its parents, we know that
for U e Uy, Pmio)(U =u | d, pap) = Papis)(U =u | pap). Thus, we can split up the
summation ovet/, into two summations, then move the summation @¥groutside the
summation ovedom(D). The resulting maximization problem is:
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argm (( > 2 PM[U](U=u|paD)-u>

P Ueld uedom(U)

+( YooPd) Y. Y PugU=uld, paD)-u>>.

dedom(D) Ueldp uedom(U)
The summation over; is irrelevant to the maximization, so we can remove it, yielding:

argmax Z P*(d) Z Z Pmio\(U =uld, pap) - u,

P 4edom(D) U eldp uedom(U)
which is precisely (6), as requiredO

So, to be optimal for a strategy profite a decision ruléd only has to satisfy (6). If
the expression being maximized in (6) is independent of the decision rule tesigns to
another decision variable’, thenD does not rely orD’.

Consider, for example, th&eeDoctor decision variable in our example. To find an
optimal decision rule for this variable, we only need to evaluate two probabilistic queries:
Pro1(Tree | TreeSick, TreeDoctor) and Py ,1(Cost | TreeSick, TreeDoctor). The second
query is obviously trivial sinc8reeDoctor is the sole parent o€ost; the first can be
evaluated without referring to the decision rules RorsonTree or BuildPatio (because of
the independence relations in the MAID). Thus, if we chamde another strategy profile
o’ that assigns different decision rulesRoisonTree or BuildPatio, § will still be optimal
foro’.

The problem of determining which nodes’ CPDs might affect the evaluation of
a probabilistic query is a standard one in the Bayesian network literature, so that we can
build on a graphical criterion already defined for Bayesian networks, thatrejuisite
probability node:

Definition 5.2. Let G be a BN structure, and I&X andY be sets of variables in the BN.
Then a nodeZ is arequisite probability node for the queryP (X | Y) if there exist two
Bayesian network#; and B> over G, that are identical except in the CPD they assign
to Z, but Pg, (X | Y) # P,(X | Y).

As we will see, the decision rule &’ is only relevant taD if D’ (viewed as a chance
node) is a requisite probability node féri/p | D, Pa(D)).

Geiger et al. (1990) provide a graphical criterion for testing whether a tiea
requisite probability node for a que®(X | Y). We add toZ a new “dummy” parean
whose values correspond to CPDs frselected from some set of possible CPDs. Then
Z is a requisite probability node faP (X | Y) if and only if Z can influenceX givenY.
More formally:

Lemma 5.2 (Geiger et al., 1990).et 31 and 32> be two Bayesian networks over the same
set of variables, that are identical except in the CPDs they assign to a set of nodes Z. Let
X and Y bearbitrary sets of nodesin these networks. Supposethereisno Z € Z such that
if a new parent Z were added to Z, there would be an active path from ZtoX givenY.
Then P, (X | Y) = Pg,(X | Y).
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Based on this lemma and (6), we can defsr@achability, a graphical criterion for
detecting strategic relevance. Note that unlike d-separation in Bayesian networks, s-reach-
ability is not necessarily a symmetric relation.

Definition 5.3. A node D' is s-reachable from a nodeD in a MAID M if there is some
utility node U € Up such that if a new parend” were added td’, there would be an
active path inM from D’ to U givenPa(D) U { D}, where a path is active in a MAID if it
is active in the same graph, viewed as a BN.

As we now show, s-reachability is sound and complete for strategic relevance (almost)
in the same sense that d-separation is sound and complete for independence in Bayesian
networks. As for d-separation, the soundness result is very strong: without s-reachability,
one decision cannot be relevant to another.

Theorem 5.1 (Soundness)f D and D’ are two decision nodesin a MAID M and D’ is
not s-reachable from D in M, then D does not strategically rely on D’.

Proof. Let o be a strategy profile foM, and let§ be a decision rule foD that is
optimal foro. By Lemma 5.1, for everpa;, € dom(Pa(D)) such thatPq,(pap) > 0,
the distributions (D | pap) must be a solution of the maximization problem:

argmax Z P*(d)z Z Puioy(u | d, pap) -u. 7)

P* " jedom(D) Ueldp uedom(U)

Now, let ¢’ be any strategy profile foAM that differs fromo only at D’. We must
construct a decision rul&* for D that agrees witld on all pa, where P4 (pap) > 0,
and that is optimal fos’. By Lemma 5.1, it suffices to show that for everg;, where
Pnro(Pap) > 0,8%(D | pap) is a solution of:

argmax Z P*(d) Z Z Puion(u | d, pap) - u. (8)

P* Jedom(D) U eldp uedom(U)

If Parqi01(Pap) = 0, then our choice af* (D | pap) is unconstrained; we can simply select
a distribution that satisfies (8). For othea,, we must le6*(D | pap) =38(D | pap), but

we knows (D | pay) is a solution of (7). Assume for contradiction th&D | pay,) is not
also a solution of8). Then the two optimization problems must be different. Specifically,
there must be somée dom(D), U € Up, andu € dom(U) such that:

Pyioi(u | d, pap) # Pyon(u | d, pap).

But the induced MAIDsM([o] and M[c’] are Bayesian networks that differ only in
the CPD that they assign tb’. BecauseD’ is not s-reachable fronD, we know there
would not be an active path from a new parﬁtof D’ to U given D andPa(D). So by
Lemma5.2

Pyio1(u | d, pap) = Py (uld, pap)

and we have a contradiction. 36 must be optimal fors’, and thusD does not rely
onD'. O
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As for BNs, the result is not as strong in the other direction: s-reachability does not
imply relevance irevery MAID. We can choose the probabilities and utilities in the MAID
in such a way that the influence of one decision rule on another does not manifest itself.
However, s-reachability is the most precise graphical criterion we can use: it will not
identify a strategic relevance unless that relevance actually exists in some MAID that has
the given graph structure. We say that two MAIDs have the same graph structure when the
two MAIDs have the same sets of variables and agents, each variable has the same parents
in the two MAIDs, and the assignment of decision and utility variables to agents is the
same in both MAIDs. The chance and decision variables must have the same domains in
both MAIDs, but we allow the actual utility values of the utility variables (their domains)
to vary. The CPDs in the two MAIDS may also be different.

Theorem 5.2 (Completeness)f a node D’ is s-reachable from a node D in a MAID, then
there is some MAID with the same graph structure in which D relieson D'.

Proof. Our goal is to construct a set of parameters for this MAID structure wiiere
relies onD’. In other words, we want a construction of a MAID, and two strategy profiles
differing only at D’, such that the optimal decision rule Btwill be different in the two
cases. We begin by assuming that all nonutility variables are binary (@it as their
domains); we show at the end that this assumption is easy to relax.

SinceD' is s-reachable frond, we know that there is a path from an imaginary parent
D’ of D’ to some utility nodeU that is a descendant @, and this path is active given
D andPa(D). Let Yo, ..., Y,+1 be this active path fromD’ to U, with Yp = D’ and
Ymi1=U. Let Y} be the first node on this path such thatis not a descendant ap
but Yi1 is a descendant ab. SinceYy = D’ has no parents, it cannot be a descendant
of D; converselyl is, by assumption, a descendant/af Hence, such a nodg, has to
exist. We will refer to the directed path fromto Y; 11 asXo= D, . Xg, Xoy1=Yis1.

We first prove that the patt, ..., Y,,+1 is also a directed patﬁk — -+ — Yp11. By
contradiction, assume other\lee, andilee the first place in the path whng;,l is nota
child of ¥;. Then, we have a triple of nod&s_1 — Y; < Y;1, fori > k. For the path from
Yo to Y,,+1 to be active in a given context; or one of its descendants must be observed
in that context. In other wordg; or one of its descendants must be in theBét Pa(D).

But note that, ag1 is a descendant ab, and all edges on the path fror to Y; are
downstream edge$; is also a descendant @f. Hence, we concludg; is a descendant
of D, but it or one of its descendants is eitlizior a parent oD, violating the assumption
that the graph is acyclic, and reaching the desired contradiction.

As a consequence, we conclude thaimust be a descendant &f. Therefore, there
exists a path fronD to U of the form

Xo=D,....X¢, Xev1=Yr11, Y2, ..., Y1 =U

with one of the two segments potentially empty. We split the remainder of the proof into
three cases, based on the valué ofhe three cases are illustrated in Fig. 6.

In all cases, we construct a parameterization of the MAIDand two strategy profiles
o1 ando, that differ only atD’. We always set the CPDs for the nodes along the paths
Xo,..., Xg andYi42, ..., Y, to copy the values of their parents along the path. That is,
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Gy

Case (1) Case (2)

Fig. 6. The three cases of the completeness proof.

fori e {1,...,¢}, X; = X;_1 with probability 1, and fori e (k + 1,...,m}, ¥; =Y;_1
with probability 1. These CPDs are specified by for chance nodes, and oy ando?
for decision nodes. The CPD fa%1 will vary from case to case. We also set the utility
functions in M so that if the agent who control3 is a, all utility nodes inf, — {U} take
on the value zero given all instantiations of their parents.

We will constructo; ando? so that there is some instantiatipa,, of Pa(D) such that
Puis;1(pap) > 0 for bothi =1 andi = 2. We can apply Lemma 5.1 to conclude that the
optimal distribution forD givenpa,, in the context of the strategy profite, must be

argmax Z P*(d) Z Z Puio)(U' =u| D =d, pap) - u.
P* Jedom(D) U'elp uedom(U’)

As the other utility variables except fdv are identically zero, the second summation
disappears. Now, consider the utility value for a particular decigifor D, and recall that
the chain fromD to X, has the effect of copyin@®’s value. Thus, we get that:

Z Puio)(U=u|D=d, pap)-u

uedom(U)
= Z Puiog(U=u|X¢=d, D=d, pap)-u
uedom(U)
= Y PupaPay | X¢=d. D=d, pay)U(pay).
pay; edom(Pa(U))

Case(1). k =0, thatis,Yy+1 = D’. We letoy specify a decision rul&; for D’ such thatD’
depends only oiX, (ignoring any other parents), as follows:

$1(D'=1|X,=1)=0.75  81(D' =1| X, =0)=0.25,

All the remaining CPDs il ando are set arbitrarily. The utility function &f depends
only onY,,, as follows:

UYn=1=1, UYn=0)=0.

So the expected utility for an actiehat D givenpa, becomes:
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Y. Puiog(Pay | Xe=d, D=d, pap)U(pay)
pay edom(Pa(U))
= PMioi|(Ym = 1| X¢=d, D =d, pap)
= PM[Ji](D/ =1|X,=d, D=d, pap)
= Ppmo (D' =1 X, =d).

In the steps above, we can eliminate the summation bec&iy¥g = 0) = 0 and
U(Y,, = 1) =1. Then we can replacg, with D’ = ¥;,1 because of the way the CPDs
are defined along the paifa11, . .., Y, . Finally, we can simplify the probability statement
becausd’ is independent ob andPa(D) given X,. Given this equation, itis clear that in
Mo1], the expected utility oD = 1 givenpay, is 0.75, while the expected utility @ =0
given pa,, is 0.25. So the optimal decision rule is to chod3e= 1 with probability 1.
However, if we leto, assign the following decision rule tB':

82(D'=1|X,=1)=025 8D =1|X,=0)=0.75

then the expected utilities are exactly reversedifio2]. So the unique optimal decision
rule is to chooseD = 0 with probability 1. Since these decision rules differ on parent
instantiations that have positive probabilityM[o ], D relies onD’.

Next, we consider the cases whebg is not a descendant db. Let V' be the set
consisting of all of the chance and decision nodes in the MAID excepDf@nd its
descendants. This set is a “prefix” of the graphXi€ V' then so ar&X’s parents. Lef3 be
a Bayesian network which duplicates the structure of the MAID d¥eand includes the
dummy parenﬁ’ of D’. Itis easy to see that the path frab to Yy is an active path iB
givenPa(D): the sef)’ contains all of the nodes in the path, and all of the ancestors of any
observed nodes (onKa(D) are observed). Hence, by the completeness result of Geiger
et al. (1990), there must be a parameterization of the CPBsamd some assignmepg,
to Pa(D), such thatPg(pa,) > 0, and:

Ps(Yi | pap, D' =e1) # Pg(Ye | pap, D' =e2)

wheree; ande; are two possible values @ Since these two distributions are different,
we can choose to be some particular value &f such that

P(Yi =y | Pa(D) =pay, D' =e1) = p1,
P3(Yi =y | Pa(D) =pap, D' =e2) = p2

andpi > p». Let p* be some value betwegn andpo.

We use the CPDs df to specify the CPDs and decision rules of all of the node&fn
that are not descendants bf For any chance node except, we simply copy the CPDs
from B to M. For any decision node except, we simply use its CPD i8 (where we
viewed it as a chance node) as a decision rule./Foiwe introduce two decision rules:
81, which is the CPD oD’ conditioned on the contex?’ = e1, andsz, which is the same
CPD conditioned on the contert = ¢,. Leto1(D’) =81 andoa(D’) = 8o.

Case (2). k = m, that is, the only node in the palh, ..., Y,,11 that is a descendant &
is the utility nodeY,,+1 = U. In this case, the parents bfincludeY,, and X, (the parent
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of Yx41 in the chainD, ..., Yx41). We set the utility function aU to ignore all parents
exceptX, andY,,, and for those variables, to take the following values:

UXe=1 Yyu=1=p" UXe=0,Yn=1=1,

Using the equations above, we find that the expected utility of choekiigen pay, in
Mol is:

> Pumion(Ym=y| Xe=d, D=d, pap)U(Xe=d, Y =y)
y=0,1

=Y PMio(Ym =y | pap)U(Xy =d, Y =)
y=0,1

=Y PeVn=y|D =¢;. pap)UX;=d, Y =y)
y=0,1

where the first equality follows from the fact that, is independent ofD and X,
given Pa(D), and the last from the definition of the MAID using the BN. Note that, as
k+1=m+ 1, thenm = k. So for the case where= 1, we get an expected value pf,

and for the case wher# = 0 we obtain an expected value pf. Sincep; < p* < p2,

we have that the optimal decision rule fDrrelative to the strategy profik; must have
8(D | pap) be 1 with probability 1, whereas the optimal decision ruleforelative to the
strategy profilers must haves (D | pap) be 0 with probability 1. Sincpa,, has positive
probability in M[o], we have shown tha strategically relies o’.

Case(3). 1 < k < m, that is, the two paths from» to U and fromD’ to U intersect in the
middle. This case is only slightly more complicated. In this c&se; has botht; and X,

as parents. We define the CPD far.1 as follows:Y,1 depends only on the two parents
Xy andYy; its dependence on these two parents is as follows:

Pr(Yiy1=1|X, =1 Yi=1) =p*, Pr(Yi+1=1|X,=0, i =1 =1,

PriYir1=1|X,=1, ¥, =0)=p*, Pr(Yiy1=1|X,=0, Y, =0)=0.
The utility nodeU now depends only on its pareh,. We have

UYn,=1=1, U(Y,=0)=0.

A straightforward analysis, similar to the one above, shows that, in the cquagxand
relative to the strategy profilg, the expected utility of the decisiahis p* for d =1 and
p; for d = 0. Hence, we again conclude thatstrategically relies o’.

At the beginning of the proof, we assumed that all the variables are binary. To extend
the proof to variables with arbitrary domains, we simply choose one value in the domain
of each variable and label it “1.” Then, we replace all references in the prof+o0
(whereX is some variable) witlk # 1. The probability mass assignedXo# 1 in a CPD
is uniformly distributed over the values @dom(X) — {1}. It is easy to check that the proof
still holds. O
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5.3. Therelevance graph

Since s-reachability is a binary relation, we can represent it as a directed graph. As we
show below, this graph turns out to be extremely useful.

Definition 5.4. Therelevancegraph for a MAID M is a directed graph whose nodes are the
decision nodes oM, and which contains an edd® — D if and only if D’ is s-reachable
from D.2

The relevance graph for thieee Killer example is shown in Fig. 8(a). By Theorem 5.1,
if D relies onD’, thenD’ is a parent ofD in the graph.

To construct the graph for a given MAID, we need to determine, for each decision
node D, the set of node®’ that are s-reachable fro®. Using an algorithm such as
Shachter’s Bayes-Ball (Shachter, 1998), we can find this set for any givertime linear
in the number of nodes in the MAID. By repeating the algorithm for eactve can derive
the relevance graph in time quadratic in the number of MAID nodes.

Recall our original statement that a decision ndstrategically relies on a decision
node D’ if one needs to know the decision rule f@& in order to evaluate possible
decision rules foiD. Although we now have a graph-theoretic characterization of strategic
relevance, it will be helpful to develop some intuition by examining some simple MAIDs,
and seeing when one decision node relies on another. In the five examples shown in Fig. 7,
the decision nod® belongs to agent, andD’ belongs to agerit. Example (a) represents
a perfect-information game. Since agérdan observe the value éf, he does not need to
know the decision rule fob in order to evaluate his options. Thug, does not rely orD.

On the other hand, ageatcannot observed’ when she makes decisian, and D’ is
relevant toa’s utility, so D relies onD’. Example (b) represents a game where the agents

D} [D] R
o] | <O [O]
<> [ <>

<>
(a) (b) ©

Fig. 7. Five simple MAIDs (top), and their relevance graphs (bottom). A two-color diamond represents a pair of
utility nodes, one for each agent, with the same parents.

2 The edges in this definition are the reverse of those in (Koller and Milch, 2001); the definition was changed
to make the parent relationship more analogous to the parent relationship in BNs.
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do not have perfect information: agehtcannot observédd when making decisiorD’.
However, the information is “perfect enough”: the utility fordoes not depend oP
directly, but only on the chance node, whigltan observe. Hence’ does not rely orD.
Examples (c) and (d) represent scenarios where the agents move simultaneously, and
thus neither can observe the other’s move. In (c), each agent’s utility node is influenced
by both decisions, s® relies onD’ and D’ relies onD. Thus, the relevance graph is
cyclic. In (d), however, the relevance graph is acyclic despite the fact that the agents move
simultaneously. The difference here is that agemio longer cares what agehtdoes,
because her utility is not influenced b3s decision. In graphical terms, there is no active
path fromD’ to a’s utility node givenD.
One might conclude that a decision noBé never relies on a decision nodz when
D is observed byD’, but the situation is more subtle. Consider example (e), which repre-
sents a simple card game: agemtbserves a card, and decides whether to bgtégenth
observes only agent's bet, and decides whether to b&'§; the utility of both depends
on their bets and the value of the card. Even though alyetiserves the actual decision
in D, he needs to know the decision rule f@rin order to know what the value d@b tells
him about the chance node. Thu, relies onD; indeed, wherD is observed, there is an
active path fromD (a hypothetical parent ab) that runs through the chance node to the
utility node.

6. Computing equilibria using divide and conquer

The computation of a Nash equilibrium for a game is arguably the key computational
task in game theory. In this section, we show how the structure of the MAID can be
exploited to provide efficient algorithms for finding equilibria in certain games.

The key insight behind our algorithms is the use of the relevance graph to break up
the task of finding an equilibrium into a series of subtasks, each over a much smaller
game. Since algorithms for finding equilibria in general games have complexity that is
superlinear in the number of levels in the game tree, breaking the game into smaller games
will significantly improve the complexity of finding a global equilibrium. We begin by
discussing the relatively simple case where the relevance graph is acyclic, then we extend
our algorithm to handle MAIDs with cyclic relevance graphs.

6.1. Backward induction and acyclic relevance graphs

Our algorithm for acyclic relevance graphs is a generalization of existing backward
induction algorithms for decision trees and perfect information games (Zermelo, 1913) and
for influence diagrams (Cooper, 1988; Shachter, 1990; Shenoy, 1992; Jensen et al., 1994).
The basic idea is as follows: in order to optimize the decision ruléforve need to know
the decision rule for all decision®’ that are relevant foD. For example, the relevance
graph for theTree Killer example (Fig. 8(a)) shows that to optimi2eisonTree, we must
first decide on the decision rules féuildPatio andTreeDoctor. However, we can optimize
TreeDoctor without knowing the decision rules for either of the other decision variables.
Having decided on the decision rule fineeDoctor, we can now optimiz&uildPatio and
then finallyPoisonTree.
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Doctor

Fig. 8. Relevance graphs for (a) thee Killer example; (b) th&Road example withn = 6.

In any acyclic relevance graph, we can construct a topological ordering of the decision
nodes: an orderin@s, ..., D, such that ifD; is s-reachable fronD;, theni < j. For
instance, the relevance graph for tiee Killer example has only one topological ordering:
TreeDoctor, BuildPatio, PoisonTree. Then we can iterate over the decision nodes in this
order, deriving an optimal decision rule for each node in turn. Each dedisjorlies only
on the decisions that precede it in the order, and these will have already been processed by
the time we have to select the decision rulefor. The formal description of the algorithm
is as follows:

Algorithm 6.1.
Given a MAID M with an acyclic relevance graph, a topological ordering Dy, ..., D, of
the relevance graph for M.
Let 09 be an arbitrary fully mixed strategy profile for M.
For i = 1 through n:
Let § bea decision rulefor D; that isoptimal for o1,
Leto! = (0. 8).
Output " as an equilibrium of M.

ok wbdhpE

All the individual steps in this algorithm are trivial except for step 3: finding a decision
rule s for D; that is optimal forr' 1. By Lemma 5.1, it is sufficient to find &such that for
every instantiatiopay, of Pa(D;) whereP,,,i-1,(pap,) > 0, the probability distribution
8(D; | pap,) is a solution of:

argmax Y P*d) Y. > Pyiy(ld. pap)-u.
P* " Jedom(D;) Ueldp, uedom(U)

It is clear that in order to maximize the expression, it is sufficient to find a wéfue
dom(D;) that maximizes:

Z Z PM[J"*l](M |d, paD’,)'M.
Uelp,; uedom(U)

Then we letP* assign probability 1 te/* and O to the other possible valuesf. This
analysis also shows that the resulting strategy prefilés always a pure strategy profile.
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To perform this computation, we can use BN inference to obtain the distribution over the
parents of each utility nod& given each combination of a parent instantiatpa), and
a valued € dom(D;). From that, we can easily compute the expected utility.

To prove that this algorithm is correct, we must show that regardless of the fully mixed
strategy profiler we start with, the final strategy profite® is a Nash equilibrium foi\1.

We begin with a lemma. Consider a MAID with just three decision nodes, where the
topological ordering of the nodes in the relevance grapPiisD2, D3. Supposes is a
decision rule forD; that is optimal foro®. By our construction of the ordering, neither
D> nor D3 is s-reachable fronD;. So changing° at eitherD» or D3 will not affect the
optimality of 8. But one might worry that changing® atboth D, and D3 (as we do when
we derivecs” in Algorithm 6.1) might causé to lose optimality. The following lemma
shows that such a thing cannot happen: if we have a set of decisions none of which are
individually relevant, then the entire set is not relevant.

Lemma 6.1. Let o be a drategy profile, D be a decision node, and § be a decision
rule for D that is optimal for o. Let o’ be another strategy profile such that whenever
o'(D’) # o (D), then D’ is not s-reachable from D. Then there is some decision rule §*
for D such that §* agrees with § on all pa € dom(Pa(D)) where Pp,; > 0, and §* is
optimal for o”.

The proof of this lemma involves a straightforward modification of the proof of
Theorem 5.1. Instead of considering a single decision nddeve consider the entire
setZ ={D’: o/(D’) # o(D’)}. Then we take advantage of the fact that Lemma 5.2 can
apply to an entire set of nod&s

Lemma 6.1 does not state thiitself is optimal foro”’; it only asserts the existence of
a 8* that is appropriately similar t6 and is optimal fors’. The shift froms to §* will
become inconvenient. However, the following lemma shows that we can avoid this shift if
o is fully mixed on the nodes where it differs frosi.

Lemma6.2. Let D beadecision nodeina MAID M, § beadecisionrulefor D, and o be
a strategy profile such that § is optimal for o. Let ¢’ be another strategy profile such that
whenever ¢’ (D’) # o (D'), then D’ isnot sreachablefrom D. If o isfully mixed on all D’
whereo’(D’) # o (D’), then § isalso optimal for o”.

Proof. Since no decision node wheseando’ differ is s-reachable fronb, Lemma 6.1
tells us there is some decision réfefor D that differs from$ only on parent instantiations
that have zero probability in[o ], and thiss* is optimal foro’. Sinceo is fully mixed on
every D’ where it differs fromo’, the set ofpa € dom(Pa(D)) such thatP ) (pa) > 0

is a superset of the set ph € dom(Pa(D)) such thatP,;,(pa) > 0. Sos* could only
differ from § on parent instantiations that have zero probability in betfo] and M [o”].

But the distributions oveb conditioned on parent instantiations that have zero probability
in M[o'] cannot affect ElY(c’) for anya. Sinces differs from §* only on these zero-
probability parent instantiations, astlis optimal fore’, § must also be optimalfar’. O
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Note that neither of the preceding results depends on the relevance graph being acyclic.
Indeed, we require acyclicity only to ensure that there exists a topological sort of the
relevance graph that we can provide as input to Algorithm 6.1. At this point, we can finally
prove the correctness of this algorithm.

It is easy, using Lemma 6.2, to show that each individual decision rule derived in the
algorithm is optimal for the final strategy profi& . That is, no agent can gain by deviating
from o on a single decision node. However, to guarantee the Nash equilibrium property,
we must show that the agent cannot gain by deviating at any combination of his decision
nodes simultaneously. In olree Killer example, we know that Alice cannot improve her
decision rule aBuildPatio, nor can she improve her decision ruleRaisonTree given
her decision rule a@BuildPatio, but we need to show that she cannot improve her utility by
deviating at both decisions simultaneously. This is what we prove in the following theorem.

Theorem 6.1. Let M be a MAID whose relevance graph is acyclic, and let Dy, ..., D,
be a topological ordering of the relevance graph for M. Then the strategy profile o
produced by running Algorithm 6.1 with M and the ordering D1, ..., D, as inputsis
a Nash equilibriumfor M.

Proof. To show that" is a Nash equilibrium, we must show that for all agents.A and
all other strategies, for a:

EUq(0") = EU,((0”,. 04)).

Consider any agent. We proceed by induction on the numheof decisions where,
ando, differ. If k =0, theno = o/, so obviously EY(c") = EU,((c”,,0))). As an
inductive hypothesis, suppose that whenewgrdiffers from ¢ on k or fewer nodes,
EU.(6") > EUu((0”,, 0))).

Now suppose;, differs fromo)! onk+ 1 nodes. Lejj be the smallestindex i1, ..., n}
such thato/(D;) # ¢/(D;). Let § = ¢/ (D;). By construction in Algorithm 6.1§ is
optimal for o/=. Note thato/~1 differs from (¢",,5,) only on D;, ..., D,. None of
these nodes are s-reachable frém, because none of the nodes that come afiterin
the ordering are s-reachable frafy, and neither isD; itself. Also, o/~ agrees with
% on Dj,..., Dy, so it is fully mixed on these nodes. Thus, by Lemma 8.2 also
optimal for (¢, o). In particular,$ yields at least as much expected utilityegD ;) in
Mo, (0,)-p;]. SO:

—a’

EUL (0%, (21)_p, . 8) > EUs(0”,. 7).

But the strategf(a{;)_Dj, 8) differs fromo/" at onlyk decision nodes, so by the inductive
hypothesis:

EUq(c") = EU, (0", (U,),D,: 8).

a J
So by transitivity:
EU,(0") > EU,(c”,.0,). O

—a’-a
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Thus, we have shown that our induction process is guaranteed to find a Nash equilib-
rium. It is easy to show that it generalizes the notion of backward induction in perfect
information games.

Definition 6.1. A MAID M is said to haveperfect information relative to an ordering
D1, ..., D, if, forall j andi < j, we have thaD;, Pa(D;) € Pa(D;).

This definition of perfect information does not require that all of the chance variables
are observed, but only that any chance variable that is observed at one point in the game is
also observed at subsequent points.

Lemma 6.3. If D; and D; are two decisions such that D;, Pa(D;) < Pa(D;), then D; is
not s-reachable from D;.

Proof. By Definition 5.3, we must show that if a new paréﬁt were added td);, there
would not be an active path from; to anyU € Up, givenD; andPa(D). By assumption,

D;, Pa(D;) < Pa(Dj). Hence,D; and all its parents are observed. Now consider any path
starting atD;. SinceD; is the only neighbor oD;, the path must continue throudby,
which is observed. Thus, this path can be active only;ifs at the middle of a v-structure.
But the path would need to continue through some nod®@aiD;). These parents are all
observed as well, and thus block the path. Hence, there is no active path staﬁng at
which meandD; is not s-reachable from;. O

Corollary 6.1. If a MAID M has perfect information relative to some ordering
Dy, ..., D,, then the relevance graph for the MAID is acyclic, and D,,..., D1 is
atopological ordering for the graph.

Thus, our backward induction algorithm (“backward” because the topological ordering
of the relevance graph is the reverse of the perfect information ordering) applies to all
perfect information games. However, we obtain acyclic relevance graphs in a wider range
of situations. For example, the relevance graph of Tiee Killer example is acyclic,
although the game does not have perfect information.

6.2. Divide and conquer in cyclic relevance graphs

Although acyclic relevance graphs arise even in games of imperfect information, in
most games we will encounter cycles in the relevance graph. Consider, for example, any
simple two-player simultaneous move game with two decisibnsand Dy, where both
players’ payoffs depend on the decisions at botrand D2, as in Fig. 7(c). In this case, the
optimality of one player’s decision rule is clearly intertwined with the other player’s choice
of decision rule, and the two decision rules must “match” in order to be in equilibrium.
Indeed, as we discussed, the relevance graph in such a situation is cyclic, and Algorithm 6.1
does not apply.

However, we can often utilize relevance structure even in games where the relevance
graph is cyclic.
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Example 6.1. Consider the relevance graph for tRead example, shown in Fig. 8(b)

for n = 6 agents. We can see that we have pairs of interdependent decision variables,
corresponding to the two agents whose lots are across the road from each other. Also, the
decision for a given plot relies on the decision for the plot directly to the south. However,

it does not rely on the decision about the land directly north of it, because this decision is
observed. None of the other decisions affect this agent’s utility directly, and therefore they
are not s-reachable.

Intuitively, although the southernmost pair of nodes in the relevance graph rely on
each other, they rely on nothing else. Hence, we can compute an equilibrium for the pair
together, regardless of any other decision rules. Once we have computed an equilibrium
for this southernmost pair, the decision variables can be treated as chance nodes, and we
can proceed to compute an equilibrium for the next pair.

We can formalize this intuition using the following definition:

Definition 6.2. A setS of nodes in a directed graph isseongly connected component
(SCC) if for every pair of node® # D’ € S, there exists a directed path frobhto D’.
A maximal SCC is an SCC that is not a strict subset of any other SCC.

The maximal SCCs for theoad example are outlined in Fig. 8(b).

We can find the maximal SCCs of a relevance graph in linear time using an algorithm
based on depth-first search (see (Cormen et al., 1990, Section 23.5)). Then we can construct
acomponent graph whose nodes are the maximal SCCs of the relevance graph. There is an
edge from componeigt to component’ in the component graph if and only if there is an
edge in the relevance graph from some elemedttofsome element @’. The component
graph is always acyclic (Cormen et al., 1990). Thus, we can find a topological ordering
C1,...,C, over the maximal SCCs of the relevance graph, such that if some elenm&nt of
is s-reachable from some element’pf theni < ;.

Based on this definition, and our intuition above, we can now provide a divide-and-
conquer algorithm for computing Nash equilibria in general MAIDs.

Algorithm 6.2.
Given a MAID M, atopological ordering Cy, . .., Cy, Of the component graph derived
from the relevance graph for M.

Let o be an arbitrary fully mixed strategy profile.

For i = 1 through m:
Let r bea partial strategy profile for C; that isa Nash equilibriumin M[afcil].
Letol = (crfcil, 7).

Output ™ as an equilibrium of M.

ok 0w E

The algorithm iterates over the SCC's, finding an equilibrium strategy profile for each
SCCinthe MAID induced by the previously selected decision rules (with arbitrary decision
rules for some decisions that are not relevant for this SCC). Finding the equilibrium in this
induced MAID requires the use of a subroutine for finding equilibria in games. We simply
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convert the induced MAID into a game tree, as described in Section 4, and use a standard
game-solving algorithm (McKelvey and McLennan, 1996) as a subroutine. We assume in
our correctness proofs that the game solution subroutine returns an exact equilibrium to
the subgame.

It is important to understand exactly why the game trees passed to the game solver in
step 3 of Algorithm 6.2 may be smaller than a game tree for the entire MAID. The induced
MAID M[ffi_c,.l] is the same as the original MAID, except that all decision nodes outside
of C; have been converted to chance nodes. Recall from Section 4 that when we construct
the game tree for a MAID, we only need to include the decision nodes and any chance
nodes that are observed at those decisions. So the game ttMe[aﬁdrc ] splits only on
the decision variables i@; and their parents. In computing the probab|I|t|es of nature’s
moves and the payoffs at the leaves, we sum out the variables that are not included in the
tree. Standard Bayesian network inference algorithms allow us to do these computations
efficiently, as illustrated by our experimental results in Section 6.3.

Now we begin to prove the correctness of Algorithm 6.2. Inithdteration of the main
loop in this algorithm, the game solution subroutine gives us a partial strategy prédile
C; that is a Nash equilibrium ia\/l[ai‘cil]. Thus, for each agent, the restriction ofr to

C; N D, (which we will call z,) is optimal for(crial, 7). Is 7, also optimal for the final
strategy profilex"? We can conclude from Lemma 6.2 that each individual decision rule
in 7, is still optimal forc™. But so far, our lemmas about how optimality is preserved
when strategy profiles change have only dealt with the optimality of a single decision rule.
Might the change fronta" Cl, 7) to o™ give agentz an incentive to deviate from, on
several decision nodes 5|multaneously’)

We can answer this question in the negative if we assume that for eachaagbst
relevance graph restricted @, (agenta’s decision nodes) is acyclic. This condition
is implied by the standard assumption mrfect recall—that agents never forget their
previous actions or observations. More formally:

Definition 6.3. An agenta hasperfect recall with respect to a total orddbpy, ..., D, over
D, ifforall D;, Dj € D,, i < j implies thatD; € Pa(D;) andPa(D;) C Pa(D;).

From Lemma 6.3, we can conclude the following:

Corollary 6.2. If an agent « has perfect recall with respect to anordering D1, ..., D,, then
the relevance graph restricted to D, isacyclic, and D,,, ..., D1 isatopological ordering
of the relevance graph restricted to D,,.

We now consider a sé€}, of decision nodes belonging to a single agent. We show that if
none of the decision nodes in another&are s-reachable from any of the nodeg jnthen
changing the decision rules fércannot give the agent an incentive to change her decision
rules on any set of nodes ©@,. The difference between this result and Theorem 6.1 is
subtle. In Theorem 6.1, we showed that Algorithm 6.1 yields a strat¢dpr each agent
a such that: has no incentive to deviate on any set of decision nodes. The following lemma
is not about generating such strategies, but about how their optimality is preserved when
irrelevant decision rules are changed.
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Lemma 6.4. Let o be a strategy profile for a MAID M, and let T be a strategy for a set C,
of decision nodes belonging to a single agent a in M, such that z is optimal for o. Assume
that the relevance graph of M restricted to D, isacyclic. Let o’ be another strategy profile
for M that differs from o only on a set of nodes £ and possibly on C, itsalf. If o is fully
mixed on each node in £, and no nodein £ is s-reachable from any node in C,, then t is
also optimal for o”.

Proof. We begin by dispensing with the question of whetbédiffers fromo on some
nodes inC,. Leta be a strategy profile that agrees witheverywhere except ofy,, and

agrees witfy onC,. Then the partial strategy profite.c, is the same as’ . . So to show
thatz is optimal in/\/l[a/_ca], it suffices to show that is optimal inM([o_¢, 1. So we have
reduced our task to showing that the lemma is true whemdo’ differ only on &, and

agree orC,.

We proceed by induction on the number of decision nodés, irf |C,| = 1, then the
lemma reduces to Lemma 6.2. For larger SCCs, we cannot simply use Lemma 6.2, as we
have no guarantee that the strategy profile withjris fully mixed. We therefore need a
somewhat more elaborate inductive proof.

As an inductive hypothesis, assume the lemma hold$’fdr= m, and we will prove
that it holds for|C,| = m + 1. Because the relevance graph restricte®fas acyclic, it
has a topological ordering; 11, ..., D,,+1 be the restriction of this topological ordering
to C,. We must show that for any strategyover D1, ..., Dy+1:

EUs(0 ¢ . T) 2 EUy(ol . 7). 9)

Consider the decision rul® thatt assigns toD;. Sincer is optimal foro, we know
81 is optimal for (o_¢,, t). Note that(alca, ') may differ from (o_¢,, v) on £ and on
any of Dy, ..., D,,4+1. But becauseDy, ..., D,,4+1 is part of a topological ordering of
the relevance graph, none of the subsequent decision dagdes, D,, 1 are s-reachable
from D;. Also, by hypothesis, no node ifi is s-reachable fronD1. So by Lemma 6.1,
there is some decision ruég for D that agrees witld; on all pa € dom(Pa(D1)) where
PM(o_c,.n1(P > 0, and thiss} is optimal for(crica, /).

Let C,=1{D>, ..., Dypi1}. Let T and?’ be the restrictions of andt’, respectively,
to C,. Sinceé] differs from§; only on parent instantiations that have zero probability in
Mlo_c,, 71, it follows that:

EU.(0_¢,.7,87) =EU4(0_¢,.T,81) =EU,(0_¢,, 7). (10)
Also, sinceo is fully mixed on all nodes where it differs from’, the set of parent

instantiations oD, that have nonzero probability ifM[o_c,, T] is a superset of the set of
parent instantiations that have nonzero probabilitx)v’[rﬁolca, t]. S0é7 agrees witts; on

all parent instantiations that have nonzero probabiliWrﬁaLCa, 7]. Therefore:
EU, (cr/_ca, r) =EU, (oLCa ,T, 51) =EU, (cr/_ca .7, 8I). (11)

This is the first step toward proving (9).
For the next step, we must show thais optimal for(o_p, , 7). To see this, recall that
7 is optimal foro, which implies:

EU, (Ufc(, ,7) = EU, (0—76’“ s 77, 5;)
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for any strateg” overC,. Using the equality in (10), we find that for a@/:
EU, (G,ca T, 5;) > EU, (O’,Ca T, 5;)

So7 is indeed optimal foto_p, , 87).

Note thatC, contains onlyn variables. Hence, by the inductive hypothegiss also
optimal for (aLDl, 87). In particular,T provides no worse an expected utility farin
M[a’_Dl, 871than?’. Thatis:

EU, (aLca ,T,81) 2 EU, (aLCa .7, 8%).

Now we finally use the fact tha is optimal for(crica, 7’), which tells us:
EU, (U,—Ca’?,’ 8?) > EU, (O’LCH, t’).

Applying transitivity to the last two inequalities, we can conclude that:
EUd (Uicﬂ s CE, 8;) 2 EUa (O’LCH s T/).

Then applying (11) to the left-hand side of this inequality yields the desired inequality
in(9). O

Given this lemma, we can prove the correctness of Algorithm 6.2. The proof follows
the same lines as the proof of Theorem 6.1.

Theorem 6.2. Let M be a MAID where every agent has perfect recall, and let Cq, ..., Cy,
be a topological ordering of the SCCs in the relevance graph for M. Then the strategy
profile o™ produced by running Algorithm6.2with M and Cy, ..., Cy asinputsisa Nash
equilibriumfor M.

Proof. We must show that for any agent and any alternative strategy, for D,,
EU,(c™) > EU, (0", 0)). The difference between what we must prove here and what
we proved in Lemma 6.4 is that here an agent could deviate on several SCCs at once. We
proceed by induction on the number of SCCs whefeandos,, differ. The base case is
where they differ on zero SCCs; thefi = ¢/ and EU,(¢™) = EU,(¢™, 5).

As an inductive hypothesis, suppose that wheneyediffers from ¢* on k SCCs,
EU,(c™) > EU,(c™,, 0)). Now suppose, differs fromo " 0nk+1SCCs LeC; be the
first SCC in the ordering wherg, ands” are different. Let be the restriction cxfr'" toC;.

This partlal strategy profile for C; is chosen in Algorithm 6.2 to be a Nash equmbnum
in M[o’ ] LetC; . =C; ND, be the set of agents decisions irC;, and letr, be agent
a’'s strategy mC] a i.e., the restriction ot to C; ,. It follows by Definition 3 5 thatr,

is optimal for(o’ c ,r) Since the next step in the algorithm is to det = (U 'L’) we
know z, is optimal foro/ .

By construction in the algorithny™ agrees with/ onCy, ..., C;. Also, becausé€;
is the first SCC where, differs from o,, we know that(c™,, o/) agrees witho™ on
Ci,....,Cj_1. Although(cr_a,cr ) differs fromo™ onC; 4, it agrees witho™ on the rest
of C; (which consists of nodes controlled by other agents).d.etC;.1,...,Cy, so that
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(o™, o) differs fromo/ only on& andC; .. By the properties of the topological ordering
of SCCs in the relevance graph, none of the nodes are s-reachable from any node
in Cjq. Also, o/ agrees witho® on &, so it is fully mixed on these nodes. Thus, by
Lemmas 6.2 and 6.4, is also optimal for¢”,, o).
In particular,z, yields at least as much expected utility as the restrictiar, @b C; , in

Mlo™,, (cra’),(;/.ya]. So:

EU, (a'_"a, (G‘;)_Cj,a’ Ta) > EU, (a'_"a, cra’).
But, ast, is the restriction ob" to C;, the strategy(o,)_¢
only k SCCs. Hence, by the inductive hypothesis:

EUu(6™) > EU, (0, (6’)_CM, Ta).

a

1,) differs froma)" on

J.a’

So by transitivity:
EU,(6™) > EU, (0™, 0,)

—a’-a

which is the desired result.00

Thus, we have shown that we can find a Nash equilibrium for a complex game by
breaking it up into a set of interacting smaller games. Each subgame can be solved in
sequence, relying on the solution to the previous games.

Our algorithm finds a single Nash equilibrium; if the game-solving subroutine finds
multiple Nash equilibria for an induced MAID\/l[aiEil], our algorithm selects one
arbitrarily. If it selected a different equilibrium for this small game, we would obtain a
global equilibrium with different decision rules fa; and (possibly) for all subsequent
SCCs. We can visualize the choices of equilibria for the induced MAIDs as generating a
tree of possible executions of the algorithm, with global equilibria at the leaves. Of course,
since a game may have an infinite number of equilibria, we generally cannot construct this
tree in practice.

Also, a MAID may have some equilibria that our algorithm cannot produce, no matter
how it chooses equilibria for the induced MAIDs. For instance, the leader-follower MAID
in Example 5.1 has an equilibrium in which Alice goes north with probability 1, and Bob
goes north with probability 1 regardless of where he sees Alice go. Applying Algorithm 6.2
to this MAID, we find thatC; consists of Bob’s decision, aidil consists of Alice’s decision
(we could also solve this MAID with Algorithm 6.1). The algorithm starts with a fully-
mixed strategy profile: in particulas,® assigns Alice a fully-mixed decision rule. So in
M["Bcl]' the only Nash equilibrium (optimal strategy) is for Bob to go north if Alice goes
north, and south if she goes south. Thus, our algorithm cannot find the nonsubgame-perfect
equilibrium where Bob goes north regardless of Alice’s action.

6.3. Experimental results
To demonstrate the potential savings resulting from our algorithm, we tried it on the

Road example, for different numbers of agenisNote that the model we used differs
slightly from that shown in Fig. 4: In our experiments, each agent had not just one utility
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node, but a separate utility node for each neighboring plot of land, and an additional node
that depends on the suitability of the plot for different purposes. The agent’s decision node
is a parent of all these utility nodes. The idea is that an agent gets some base payoff for the
building he builds, and then the neighboring plots and the suitability node apply additive
bonuses and penalties to his payoff. Thus, instead of having one utility node3wit243

parent instantiations, we have 4 utility nodes with=39 parent instantiations each. This
change has no effect on the structure of the relevance graph, which is showsa iin

Fig. 8(b). The SCCsin the relevance graph all have size 2; as we discussed, they correspond
to pairs of decisions about plots that are across the road from each other.

Even for small values of, it is infeasible to solve th®oad example with standard
game-solving algorithms. As we discussed, the game tree for the MAID #ds@/es,
whereas the MAID representation is linearinThe normal form adds another exponential
factor. Since each agent (except the first two) can observe three ternary variables, he has
27 information sets. Hence, the number of possible pure (deterministic) strategies for each
agentis 87, and the number of pure strategy profiles foraplayers is(327)"=2 . (33)2,

In the simplest interesting case, where- 4, we obtain a game tree with 6561 terminal
nodes, and standard solution algorithms, that very often use the normal form, would need
to operate on a strategic-form game matrix with abotit410?’ entries (one for each pure
strategy profile).

Solving theRoad game either in its extensive form or in the normal form is infeasible
even forn = 4. By contrast, Fig. 9 shows the computational cost of our divide-and-conquer
algorithm as: grows: the time required grows approximately linearly withFor example,
we can solve &oad MAID with 40 agents (corresponding to a game tree withtdrminal
nodes) in 8 minutes 40 seconds. Our algorithm ends up generating a sequerzemill
games, each with two decision variables. We convert each of the induced MAIDs into a
small game tree, and use the game solver Gambit (2000) to solve it. Computing the payoffs
in one of the small game trees requires Bayesian network inference, but the observed linear
performance of our algorithm implies that in tRead MAID, the time needed to construct
a single game tree remains constant éscreases.

600

500 |

400 |

300

200 |

Solution Time (s)

100

. Divide and Conquer Algorithm ——
0 5 10 15 20 25 30 35 40
Number of Plots of Land

0

Fig. 9. Performance results for tRead example.
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7. Related work

Although the possibility of extending influence diagrams to multi-agent scenarios was
recognized at least fifteen years ago (Shachter, 1986), the idea seems to have been dormant
for some time. Brown (1999) suggests the use of influence diagrams for modeling various
game-theoretic and economic scenarios, but does not discuss either the formal foundations
or the algorithmic issues. Zhang et al. (1992, 1994) and Nilsson and Lauritzen (2000, 2001)
discuss IDs where the perfect recall assumption does not hold, although there is only one
agent (or all the agents share a common utility function). Both series of papers propose
graphical criteria for determining whether the optimal decision rule for a given node
depends on the decision rules for any other nodes—in our terminology, whether the given
node strategically relies on any other nodes. These criteria are similar to s-reachability, but
are not complete in the sense of Theorem 5.2. The papers then derive algorithms similar
to our Algorithm 6.1. However, they do not deal with multiple competing agents, nor with
cyclic relevance graphs.

Several other papers use ID-like representations for multi-agent scenarios. Poole’s
(1997) independent choice logic can represent the same conditional independence
assumptions as a MAID, and also allows compact representations of CPDs and decision
rules. Suryadi and Gmytrasiewicz (1999) use influence diagrams as a framework for
learning in multi-agent systems. The models used by Milch and Koller (2000) for reasoning
about agents’ beliefs and decisions are really MAIDs, although they do not use that term.
Penalva et al. (2002) introduce influence opportunity diagrams (IODs), which are MAIDs
without utility nodes. They show that if the IODs for two games satisfy a certain graphical
equivalence condition, then the two gameseamgirically equivalent in the sense that it is
impossible to tell which game is being played just by observing the probability distribution
over outcomes. However, none of these papers deal with algorithms for finding Nash
equilibria.

LaMura has proposed such algorithms in his work on game networks (LaMura, 2000),
which are like MAIDs except that they represent multiplicative rather than additive
decompositions of the agents’ utility functions. LaMura defines a notion of strategic
independence, and also uses it to break up the game into separate components. However,
his notion of strategic independence is an undirected one, and thus does not allow as fine-
grained a decomposition as the directed relevance graph used in this paper. Also, it does not
allow a backward induction process for decisions that are not mutually independent. An
interesting aspect of LaMura’s algorithm is that, to find equilibria for a part of the game, it
searches for solutions to equations constructed directly from the game network. We should
be able to apply a similar technique to the induced MAIDs constructed in Algorithm 6.2,
avoiding the use of game trees as an intermediate representation.

Other work on finding Nash equilibria efficiently uses theaphical games model
introduced by Kearns et al. (2001) and Littman et al. (2001). They deal with games where
each agent makes only a single binary-valued decision, and there are no observations. The
game is represented as an undirected graph with a node for each agent: an agent’s utility is
determined by his own decision and the decisions of his neighbors in the graph. Graphical
games are essentially MAIDs with a single decision and utility node for each agent, and
no information edges. Each agent’s utility depends on his own decision, and on that of his
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neighbors in the graph. The relevance graph for such a scenario has two edges (one in each
direction) between each pair of neighboring decisions, and thus consists of one large SCC.
So our divide-and-conquer algorithm is not helpful in such scenarios. However, Kearns
et al. (2001) propose several exact and approximate algorithms for finding Nash equilibria
efficiently when the graphical game is a tree, and Vickrey and Koller (2002) describe a
set of approximate algorithms for general graphical games. It is an open question whether
these algorithms can be extended to more general MAIDs, where agents have observations
and make multiple decisions.

8. Discussion and futurework

We have introduced a new formalism, multi-agent influence diagrams (MAIDs), for
modeling multi-agent scenarios with imperfect information. MAIDs use a representation
where variables are the basic unit, and allow the dependencies between these variables to
be represented explicitly, in a graphical form. They therefore reveal important qualitative
structure in a game, which can be useful both for understanding the game and as the basis
for algorithms that find equilibria efficiently. In particular, we have shown that our divide-
and-conquer algorithm for finding equilibria provides exponential savings over existing
solution algorithms in some cases, such asRbad example, where the maximal size of
an SCC in the relevance graph is much smaller than the total number of decision variables.
In the worst case, the relevance graph forms a single large SCC, and our algorithm simply
solves the game in its entirety, with no computational benefits.

This work opens the door to a variety of possible extensions. One obvious direction is
to relate MAIDs to existing concepts in game theory, particularly equilibrium refinements.

It is fairly straightforward to show that the solution found by our algorithm in the case of
acyclic relevance graphs isperfect Bayesian equilibrium (Fudenberg and Tirole, 1991);
it would be interesting to show an analogous result for the more general case.

Another direction relates to additional structure that is revealed by the notion of strategic
relevance. In particular, even if the relevance graph is cyclic, it might not be a fully
connected subgraph; for example, we might have a situation wherelies onD2, which
relies onD3, which relies onD;. Clearly, this type of structure tells us something about the
interaction between the decisions in the game. An important open question is to analyze
the meaning of these types of structures, and to see whether they can be exploited for
computation gain.

Finally, the notion of strategic relevance is not the only type of insight that we can
obtain from the MAID representation. We can use a similar type of path-based analysis in
the MAID graph to determine which of the variables that an agent can observe before
making a decision actually provide relevant information for that decision. In complex
scenarios, especially those that are extended over time, agents tend to accumulate a great
many observations. The amount of space needed to specify a decision rule for the current
decision increases exponentially with the number of observed variables. Thus, there has
been considerable work on identifying irrelevant parents of decision nodes in single-agent
influence diagrams (Howard and Matheson, 1984; Shachter, 1990, 1998). In this case, we
can use d-separation to identify irrelevant parents of a given decision node in time linear
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in the number of variables. We can use a similar technique in MAIDs, allowing us to
eliminate some parents of the decision node. At the level of the associated game tree, this
process results in collapsing of several information sets into one (a procesieflikEdn

in (Dalkey, 1953; Okada, 1987)). The structure of the MAID allows us to detect cases when
this process can be executed without any loss to the agents.

However, the multi-agent case also raises subtleties that are absent in the single-agent
case. In this case, an observed variable that does not directly influence one agent’s payoff
might nevertheless be relevant, if another agent conditions his behavior on this variable.
Maskin and Tirole (1997) provide a definition of payoff-relevant events in the multi-
agent setting, and defineNarkov perfect equilibrium as a perfect equilibrium in which
each agent’s decision rules are conditioned only on payoff-relevant events. Maskin and
Tirole also provide an algorithm for determining whether an event is payoff-relevant.
This algorithm involves comparing the utilities of all outcomes in two sub-trees of a
game tree, to determine whether the utility functions in the two sub-trees are equivalent.
Thus, in a symmetric tree, it requires examining an exponential number of outcomes. We
have preliminary results indicating that we can determine sets of payoff-relevant events
(variables) in a MAID in polynomial time, using an extension of the standard algorithms
for influence diagrams. We plan to pursue this issue in future work.
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