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Abstract

The traditional representations of games using the extensive form or the strategic form o
much of the structure of real-world games. In this paper, we propose a graphical represe
for noncooperative games—multi-agent influence diagrams (MAIDs). The basic elements in th
MAID representation arevariables, allowing an explicit representation of dependence, or releva
relationships among variables. We define a decision variableD′ asstrategically relevant to D if, to
optimize the decision rule atD, the decision maker needs to consider the decision rule atD′. We
provide a sound and complete graphical criterion for determining strategic relevance. We the
how strategic relevance can be used to decompose large games into a set of interacting smalle
which can be solved in sequence. We show that this decomposition can lead to substantial sa
the computational cost of finding Nash equilibria in these games.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Game theory provides a mathematical framework for determining what behav
rational for agents interacting with each other in a partially observable environ
However, the standard game representations, both the normal (matrix) form a
extensive (game tree) form, obscure certain important structure that is often present
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world scenarios—the decomposition of the situation into chance and decisionvariables,
and the dependence relationships between these variables. In this paper, we pr
representation that captures this type of structure. We also show that capturing this st
explicitly has several advantages, both in our ability to analyze the game in novel
and in our ability to compute Nash equilibria efficiently.

Our representation is based on the framework ofprobabilistic graphical models (Pearl,
1988), used in many disciplines, including statistics and artificial intelligence. Probab
graphical models represent the world via a set ofvariables, that take on values in som
(discrete or continuous) space. For example, in a simple economic model, we migh
a continuous variable for each of several possible goods, indicating its supply at a
time. We might also have a discrete variable representing the amount of rainfall in a
over the last year (e.g., taking the values “drought,” “low,” “normal,” or “high”). Ea
possible state (or trajectory) of the world is then an assignment of values to these va
By representing the world in terms of these variables, we can make statements
the relationships between them. For example, we might know that the supply of or
depends on the rainfall variable, whereas the supply of oil does not. The graphical
represents this structure using a directed graph structure, where the nodes repre
variables, and the edges represent the direct dependence of one variable on anothe
discuss in Section 2, these graphs, calledBayesian networks orprobabilistic networks, have
clear and formal semantics as a representation of a probability distribution over th
space defined by the variables. Furthermore, the graph structure itself makes explicit
important aspects of the probability distribution, such as the conditional indepen
properties of the variables in the distribution.

Influence diagrams (Howard and Matheson, 1984) extend Bayesian networks to
decision-theoretic setting, where an agent has to make decisions in accordance w
preferences. In addition to chance variables, influence diagrams containdecision variables,
which are variables whose value the agent selects as part of his strategy, andutility
variables, which represent the agent’s preferences.

In this paper, we definemulti-agent influence diagrams (MAIDs), which represen
decision problems involving multiple agents. We show that MAIDs have clearly de
semantics as noncooperative games, and can be reduced to an equivalent sequenc
normal form game, albeit at the cost of obscuring the variable-level interaction stru
that the MAID makes explicit. MAIDs allow us to represent complex games in a na
way, whose size is no larger than that of the extensive form, but which can be expone
more compact.

We show that MAIDs allow us to define a qualitative notion of dependence bet
decision variables. We define a notion ofstrategic relevance: a decision variableD
strategically relies on another decision variableD′ when, to optimize the decision ru
at D, the decision-making agent needs to take into consideration the decision ruleD′.
This notion provides new insight about the relationships between the agents’ decis
a strategic interaction. We provide a graph-based criterion, which we calls-reachability,
for determining strategic relevance based purely on the graph structure. We also p
a polynomial time algorithm, which considers only the graph structure, for comp
s-reachability.
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The notion of strategic relevance allows us to define a data structure that w
the relevance graph—a directed graph that indicates when one decision variable in
MAID relies on another. We show that this data structure can be used to prov
natural decomposition of a complex game into interacting fragments, and provi
algorithm that finds equilibria for these subgames in a way that is guaranteed to p
a global equilibrium for the entire game. As a special case, the algorithm gener
the standard backward induction algorithm for game trees, showing a general su
of games where backward induction can be applied, even in some games that
perfect information. We show that our algorithm can be exponentially more efficient
an application of standard game-theoretic solution algorithms, including the more ef
solution algorithms of Romanovskii (1962) and Koller et al. (1994) that work directl
the game tree.

The remainder of this paper is structured as follows. In Section 2, we review some
key concepts in the framework of probabilistic graphical models that underlie our wo
Section 3, we present the framework of multi-agent influence diagrams, and in Sec
we relate it to standard game-theoretic concepts. In Section 5, we define the no
strategic relevance, and provide a criterion for determining strategic relevance fro
graph structure. In Section 6 we show how to exploit strategic relevance to break
game into smaller games, and compute equilibria more effectively. We discuss relate
in Section 7. In Section 8, we conclude with a discussion of some extensions, inc
additional structure that can be induced from the MAID representation.

2. Bayesian networks

Our work builds on the framework ofBayesian networks (also known as probabilisti
networks or belief networks) (Pearl, 1988) and on its decision-theoretic exten
influence diagrams (Howard and Matheson, 1984). In this section, we briefly rev
the Bayesian network framework, setting up much of the necessary foundation f
remainder of this paper.

2.1. Representation

A Bayesian network is a graphical representation of a distribution over the
probability space defined by a set of variables. More precisely, consider a set of va
X1, . . . ,Xn, where eachXi takes on values in some finite setdom(Xi). Together, the
variables define a cross-product space×n

i=1dom(Xi). Our goal is to represent a join
distribution over this joint space. We useX to refer to the set of variablesX1, . . . ,Xn,
anddom(X ) to refer to their joint domain.

Example 2.1. Consider a scenario where we are trying to reason about an alarm insta
a house. The alarm can go off either because of a burglary or because of a minor eart
If there is an alarm, then a neighbor might call. If there is an earthquake, the local
station may report it. There are five variables in this domain, all of which are binary va
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A (alarm);B (burglary);E (earthquake);C (phone call);R (radio report). Thus, the join
distribution has 32 entries.

As we can see, the number of states in the joint distribution grows exponentially
the number of variables: If we haven variables that take on binary values, the total num
of states is 2n. Even for fairly smalln, the representation of this distribution as a list
numbers, one for each state, is impractical.

A Bayesian network (BN) represents the distribution using a graph, whose
represent the random variables and whose edges represent (in a very formal sens
influence of one variable on another. More precisely, we have the following definitio
the Bayesian network representation:

Definition 2.1. A Bayesian network B over the variablesX1, . . . ,Xn is a pair(G,Pr).
G is a directed acyclic graph withn nodes, also labeledX1, . . . ,Xn. For a nodeX, we
usePa(X) to denote theparents of X in the graph, i.e., those nodesY such that there is
directed edge fromY to X. Pr is a mapping that associates with each nodeX aconditional
probability distribution (CPD) Pr(X | Pa(X)), which specifies a probability distributio
Pr(X | pa) over the values ofX for each instantiationpa of Pa(X).

The graphG for our Alarm example is shown in Fig. 1. This BN can be viewed a
compact representation of the symmetric probability tree in Fig. 2. The tree has 32
each with five binary splits, one for each variable. Most simply, the splits occur in an
which is consistent with the order of nodes in the BN, e.g.,B,E,A,C,R. Each branch
from a split node is labeled with the probability that the branch is taken. For exampl
B = 1 branch is labeled with Pr(B = 1) = 0.01, and theB = 0 branch with 0.99. Note
that the tree has a lot of duplication over the BN. For example, there are eight bra
in the tree all labeled with the same probability Pr(R = 0 | E = 1) = 0.65 (one for each
assignment toB,A,C).

Fig. 1. Alarm BN; for these binary variables, we use the notationx1 as shorthand for the eventX= 1 andx0 for
the eventX = 0.
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Fig. 2. Probability tree for theAlarm example.

The graph structure encodes our intuition about the way the world works, and thu
us avoid writing the same probabilities many times:

• There either is or is not a burglary, but that event does not depend on any of the
variables in the model.
• Similarly, an earthquake either happens or does not happen, separately from eve

else.
• The alarm can be set off either by a burglary or by an earthquake, and there

depends on both.
• Whether the neighbor calls depends only on whether the alarm went off: w

determine the probabilities of theC = 0 and C = 1 branches at a node in th
probability tree just by looking at the value ofA.
• The radio report depends only on whether there was an earthquake.
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The CPDs associated with the nodes represent the local probability models f
different variables. One such model—Pr(B)—specifies the prior probability of a burglar
i.e., it specifies the prior probabilities of the eventsB = 1 andB = 0. Similarly, Pr(E)

specifies the prior probability of a minor earthquake. The probability of the alarm g
off is a conditional probability distribution Pr(A | B,E); it specifies the probability o
the alarm going off in any of the relevant circumstances: a burglary and an earth
(B = 1,E = 1), a burglary and no earthquake (B = 1,E = 0), no burglary and an
earthquake (B = 0,E = 1), and no burglary and no earthquake (B = 0,E = 0). The other
models are similar. One possible choice of CPDs for this domain is shown in Fig. 1.1

2.2. Semantics

The semantics of a BN is as a joint distribution overdom(X ):

Definition 2.2. A BN B = (G,Pr) over X1, . . . ,Xn defines a joint distribution ove
X1, . . . ,Xn via thechain rule for Bayesian networks:

P(X1, . . . ,Xn)=
n∏

i=1

Pr
(
Xi

∣∣ Pa(Xi)
)
. (1)

The chain rule gives us the ability to compute the probability of any state indom(X ).
For example:

P(B = 1,E = 0,A= 1,C = 1,R = 0)

= Pr(B = 1)Pr(E = 0)Pr(A= 1 | B = 1,E = 0)Pr(C = 1 |A= 1)

×Pr(R = 0 | E = 0)= 0.01· 0.995· 0.8 · 0.7 · 0.99999= 0.005566428.

Thus, a BN is a full representation of a joint distribution. As such, it can be us
answer any query that can be answered with a joint distribution. In particular, we can
the probability distribution over any variable conditioned on any assignment of value
subset of others. For example, the prior probability that our neighbor calls is 0.0568. The
probability that he calls in case of a burglary—P(C = 1 | B = 1)—is 0.57. Conversely, the
probability of a burglary given that the neighbor called—P(B = 1 | C = 1)—is 0.1. Now,
assume that we turn on the radio and hear a report of an earthquake in our neighb
The probability of an earthquake goes up substantially—P(E = 1 | C = 1,R = 1)= 0.999
as compared toP(E = 1 | C = 1)= 0.021. More interestingly, the probability of a burgla
goesdown—P(B = 1 | C = 1,R = 1)= 0.027. Note that burglary and earthquake are
mutually exclusive; indeed, they occur independently. Hence, there is nothing abo
increased probability of an earthquake that, by itself, reduces our beliefs in a bu
Rather, the earthquake provides an explanation for the neighbor’s phone call; the
our basis for believing the alternative explanation (namely the burglary) is no long
active.

1 Our choice of probabilities is somewhat unrealistic, as the probabilities of various unlikely events (e
earthquake) are higher than is plausible.
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These are examples of conclusions that we can extract from the joint distributio
course, explicitly enumerating the joint distribution is a computationally expensive
ation, except for the smallest networks. Fortunately, there are algorithms (e.g., Lau
and Spiegelhalter, 1988) that exploit the sparsity of the network structure to perfor
type of reasoning without enumerating the joint distribution explicitly. These algori
can work effectively even for very large networks, as long as there are not too many
connections between the variables in the network (more precisely, as long as it is
ble to construct a junction tree for the network that has small cliques—see (Lauritze
Spiegelhalter, 1988) for details).

2.3. Independence

The BN structure induces a set of independence assumptions about the va
X1, . . . ,Xn. These are assumptions that are a direct consequence of the definit
the joint distribution using the chain rule. They hold for any parameterization Pr o
graphG. These independencies are critical to our analysis, so we review them here.

We first define the basic notion ofconditional independence of random variables.

Definition 2.3. Let P be a distribution overX , and letX, Y , andZ be three pairwise
disjoint subsets ofX . We say thatX is conditionally independent of Y given Z in P ,
denotedP |= I (X;Y | Z), if, for any z ∈ dom(Z) such thatP(z) > 0, and for any
x ∈ dom(X), y ∈ dom(Y ), we have that

P(x | y,z)= P(x | z),
or, equivalently, that

P(y | x,z)= P(y | z), P (x,y | z)= P(x | z) · P(y | z).

This notion of conditional independence is quite strong, as it implies condit
independence for every assignment of values to the variables involved. Conversel
that conditional independence is very different from the more standard notion of ma
independence. For example, in the distribution represented by Fig. 1, we have thaC is
conditionally independent ofB givenA—once we know whether the alarm sounded or n
knowledge about a possible burglary no longer gives us any information about the c
of a phone call. This independence is very natural; it reflects our intuition that the nei
decides whether to call based only on hearing the alarm; he has no direct knowledg
burglary. However,B andC arenot marginally independent: the presence of a burg
makes the phone call more likely.

It turns out that we can use the graph structure to provide a qualitative criterio
determining independence properties of the distribution associated with the graph
intuitive level, we can show that probabilistic influence between the variables “flows” a
paths in the graph, but can be “blocked” somewhere along the path. In our example
influence can flow fromB to C, but can be blocked if we condition onA.

The basic notion in this analysis is that of anactive path, i.e., one along which influenc
can “flow.” It helps to first analyze the simplest case, where one nodeX can influence
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anotherY via a third nodeZ. As we discussed, this depends on what our evidence is
what we are conditioning on. LetE be the set of variables on which we are conditioni
i.e., assume that our evidence isE = e for some assignmente, and we are trying to analyz
the independencies in the distributionP conditioned onE = e. There are four cases
consider:

(1) The path has the formX→ Z → Y . This case is the same as our exampleB →
A→C. In this case, we say that the path isactive if Z is not observed, i.e.,Z /∈E. If
Z ∈E, we say that the path isblocked.

(2) The path has the formX← Z← Y . As probabilistic dependence is symmetrical, t
case is precisely analogous to the first.

(3) The path has the formX←Z→ Y . This case represents a situation where a com
cause has two effects, for example, the earthquake causing both the alarm and th
report. It seems fairly intuitive that observing a news report about an earthquak
change our beliefs about whether the alarm has gone off. However, if we know
there is an earthquake, the news report gives us no additional information. In li
this intuition, we say that this path is active ifZ /∈E and blocked otherwise.

(4) The path has the formX → Z ← Y . This case, known as av-structure, is the
most interesting. An example in our simple network is the path fromB throughA
to E. Note that, in the prior distributionP , B andE are marginally independen
Hence, whenA is not observed, the path is not active, by contrast to the t
previous cases. More interestingly, consider what happens when we observe t
alarm sounded. In this case,B andE become correlated. Intuitively, if we obser
that an earthquake occurred, then that provides an explanation for the alarm
reduces the probability of a burglary. (It is easy to verify this behavior by exam
the probability distributionP given above.) Thus, the path is active ifA is in E.
A similar phenomenon occurs if we observeC. These examples lead us to defin
pathX→ Z← Y to be active ifZ or one of Z’s descendants in G is in E, and
blocked otherwise.

The definition of active for longer paths is a simple composition of the definition
the paths of length two. Intuitively, influence flows fromX to Y via a long path if it flows
through every intervening node. Thus, following Pearl (1988), we define a general
path as follows:

Definition 2.4. Let G be a BN structure, andX1— · · ·—Xn an undirected path inG. Let
E be a subset of nodes ofG. The pathX1— · · ·—Xn is active given evidenceE if

• whenever we have a configurationXi−1 → Xi ← Xi+1, then Xi or one of its
descendants is inE;
• no other node along the path is inE.

A path which is not active isblocked. We say thatX andY ared-separated in G givenE

if every path between them is blocked.
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In our Alarm example, we have thatR andB are d-separated, because the v-struc
blocks the only possible path. On the other hand,R andB are not d-separated givenC, as
observingC activates the path. But,R andB are d-separated givenE andC, as observing
E blocks the path again. We note that d-separation can be computed in linear time,
for example, Shachter’s Bayes-Ball algorithm (Shachter, 1998).

So far, we have defined d-separation based purely on intuitive arguments. Ho
these intuitive arguments correspond to provably correct statements about indepen
in the distribution. As shown by Verma and Pearl (1990), d-separation issound:
d-separation inG implies conditional independence for any Bayesian networkB = (G,Pr).

Theorem 2.1 (Verma and Pearl (1990): soundness).Let G be a Bayesian network structure,
and let X and Y be nodes in G and E a set of nodes such that X,Y /∈ E. If X and Y

are d-separated in G given E, then for any Bayesian network B = (G,Pr), we have that
B |= I (X;Y |E).

In other words, the independencies that we derive qualitatively from the graph str
via d-separation hold forevery parameterization of the network structure with CPDs.

The d-separation criterion is alsocomplete, but in a weaker sense. It is not the ca
that ifB |= I (X;Y |E) then we can necessarily detect that from the network structure
might choose parameters that create spurious independencies, simply because two
probability expressions happen to be equal to each other. However, as shown by Gei
Pearl (1990), if an independence does not follow from the d-separation criterion, then
is at least one counterexample to it.

Theorem 2.2 (Geiger and Pearl (1990): completeness).Let G be a Bayesian network
structure, and let X and Y be nodes in G and E a set of nodes such that X,Y /∈ E. If X
and Y are not d-separated in G given E, then there exists a Bayesian network B = (G,Pr)
such that B �|= I (X;Y |E).

In fact, Meek (1995) has proved an even stronger version: inalmost all Bayesian
networksB = (G,Pr) (i.e., in all except for a set of measure zero), we have thatB �|=
I (X;Y |E).

Thus, Bayesian networks provide us with a formal framework for represe
independence structure in a joint distribution. They allow us to exploit this structu
order to provide a compact representation of complex joint distributions. They also pr
us with a qualitative method for determining the presence and absence of indepe
relations in the joint distribution.

3. Multi-agent influence diagrams (MAIDs)

Influence diagrams augment the Bayesian network framework with the notions
agents that make decisions strategically, to maximize their utility. Influence diagrams
introduced by Howard (Howard and Matheson, 1984), and have been investigated
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entirely in a single-agent setting. In this section, we presentmulti-agent influence diagrams
(MAIDs), which extend the influence diagram framework to the multi-agent case.

We will introduce MAIDs using a simple two-agent scenario:

Example 3.1. Alice is considering building a patio behind her house, and the patio w
be more valuable to her if she could get a clear view of the ocean. Unfortunately, the
tree in her neighbor Bob’s yard that blocks her view. Being somewhat unscrupulous
considers poisoning Bob’s tree, which would cost her some effort but might cause th
to become sick. Bob cannot tell whether Alice has poisoned his tree, but he can tel
tree is getting sick, and he has the option of calling in a tree doctor (at some cost
attention of a tree doctor reduces the chance that the tree will die during the coming
Meanwhile, Alice must make a decision about building her patio before the weathe
too cold. When she makes this decision, she knows whether a tree doctor has come
cannot observe the health of the tree directly. A MAID for this scenario is shown in F

To define a MAID more formally, we begin with a setA of agents. The world in
which the agents act is represented by the setX of chance variables, and a setDa of
decision variables for each agenta ∈ A. Chance variables correspond to decisions
nature, as in the Bayesian network formalism. They are represented in the diag
ovals. The decision variables for agenta are variables whose valuesa gets to choose, an
are represented as rectangles in the diagram. We useD to denote

⋃
a∈ADa . The agents

utility functions are specified usingutility variables: For each agenta ∈A, we have a se
Ua of utility variables, represented as diamonds in the diagram. The domain of a
variable is always a finite set of real numbers (a chance or decision variable can ha
finite domain). We useU to denote

⋃
a∈AUa , andV to denoteX ∪D ∪ U .

Like a BN, a MAID defines a directed acyclic graph with its variables as the no
where each variableX is associated with a set of parentsPa(X) ⊂ X ∪ D. Note that
utility variables cannot be parents of other variables—they represent componen
utility function, not actual state variables that can influence other variables or be ob
by agents. For each chance variableX ∈ X , the MAID specifies a CPD Pr(X | Pa(X)),
as in a BN. For a decision variableD ∈ Da , Pa(D) is the set of variables whose valu
agenta knows when he chooses a value forD. Thus, the choice agenta makes for

Fig. 3. A MAID for the Tree Killer example; Alice’s decision and utility variables are in dark gray and Bob
light gray.
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D can be contingent only on these variables. (See Definition 3.1 below.) Edges
decision variable are drawn as dotted lines. For a utility variableU , the MAID also
specifies a CPD Pr(U | pa) for each instantiationpa of Pa(U). However, we require
that the value of a utility variable be a deterministic function of the values o
parents: for eachpa ∈ dom(Pa(U)), there is one value ofU that has probability 1, an
all other values ofU have probability 0. We useU(pa) to denote the value of nod
U that has probability 1 whenPa(U) = pa. The total utility that an agenta derives
from an instantiation ofV is the sum of the values ofUa in this instantiation. Thus
by breaking an agent’s utility function into several variables, we are simply defi
an additive decomposition of the agent’s utility function (Howard and Matheson, 1
Keeney and Raiffa, 1976).

The agents get to select their behavior at each of their decision nodes. An a
decision at a variableD can depend on the variables that the agent observes pr
makingD—D’s parents. The agent’s choice of strategy is specified via a set ofdecision
rules.

Definition 3.1. A decision rule for a decision variableD is a function that maps eac
instantiationpa of Pa(D) to a probability distribution overdom(D). An assignment o
decision rules to every decisionD ∈Da for a particular agenta ∈A is called astrategy.

Thus, a decision rule may be deterministic, or it may specify that there is
randomness in the agent’s behavior.

Definition 3.2. A decision ruleδ for D is fully mixed if, for every instantiationpa of Pa(D)

and everyd ∈ dom(D), we haveδ(d | pa) > 0.

An assignmentσ of decision rules to every decisionD ∈D is called astrategy profile.
A partial strategy profile σE is an assignment of decision rules to a subsetE of D. We will
also useσE to denote the restriction ofσ to E , andσ−E to denote the restriction ofσ to
variables not inE .

Note that a decision rule has exactly the same form as a CPD. Thus, if we
a MAID M, then a partial strategy profileσ that assigns decision rules to a setE of
decision variables induces a new MAIDM[σ ] where the elements ofE have become
chance variables. That is, eachD ∈ E corresponds to a chance variable inM[σ ]with σ(D)

as its CPD. Whenσ assigns a decision rule to every decision variable inM, the induced
MAID is simply a BN: it has no more decision variables (recall that the utility variables
just BN variables with domains consisting of real numbers, and with deterministic C
This BN defines a joint probability distributionPM[σ ] over all the variables inM.

Definition 3.3. If M is a MAID andσ is a strategy profile forM, then thejoint distribution
for M induced by σ , denotedPM[σ ], is the joint distribution overV defined by the Baye
net where:

• the set of variables isV ;
• for X,Y ∈ V , there is an edgeX→ Y if and only if X ∈ Pa(Y );
• for all X ∈ X ∪ U , the CPD forX is Pr(X);
• for all D ∈D, the CPD forD is σ(D).
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With this probability distribution, we can now write an equation for the utility that ag
a expects to receive in a MAIDM if the agents play a given strategy profileσ . Suppose
Ua = {U1, . . . ,Um}. Then:

EUa(σ )=
∑

(u1,...,um)∈dom(Ua)

PM[σ ](u1, . . . , um)

m∑
i=1

ui (2)

wheredom(Ua) is the joint domain ofUa . Because the expectation of a sum of rand
variables is the same as the sum of the expectations of the individual random variab
can also write this equation as:

EUa(σ )=
∑
U∈Ua

∑
u∈dom(U)

PM[σ ](U = u) · u. (3)

Having defined the notion of an expected utility, we can now define what it mean
an agent to optimize his decision at one or more of his decision rules, relative to a
set of decision rules for the other variables.

Definition 3.4. Let E be a subset ofDa , and letσ be a strategy profile. We say thatσ ∗E
is optimal for the strategy profile σ if, in the induced MAIDM[σ−E ], where the only
remaining decisions are those inE , the strategyσ ∗E is optimal, i.e., for all strategiesσ ′E :

EUa

((
σ−E , σ ∗E

))
� EUa

((
σ−E , σ ′E

))
.

Note that, in this definition, it does not matter what decision rulesσ assigns to the
variables inE .

In the game-theoretic framework, we typically consider a strategy profile to repr
rational behavior if it is aNash equilibrium (Nash, 1950). Intuitively, a strategy profile is
Nash equilibrium if no agent has an incentive to deviate from the strategy specified fo
by the profile, as long as the other agents do not deviate from their specified strateg

Definition 3.5. A strategy profileσ is aNash equilibrium for a MAID M if for all agents
a ∈A, σDa

is optimal for the strategy profileσ .

The task of finding a Nash equilibrium for a game is arguably the most fundam
task in noncooperative game theory.

4. MAIDs and games

A MAID provides a compact representation of a scenario that can also be repre
as a game in strategic or extensive form. In this section, we discuss how to convert a
into an extensive-form game. We also show how, once we have found an equili
strategy profile for a MAID, we can convert it into a behavior strategy profile for
extensive form game. The word “node” in this section refers solely to a node in the tr
distinguished from the nodes in the MAID.
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There are many ways to convert a MAID into a game tree, all of which are equiv
from a semantic perspective, but which differ dramatically in their computational cos
understand this point, consider a MAID withn binary-valued chance variablesC1, . . . ,Cn,
with Ci the sole parent ofCi+1, and a single decisionD whose sole parent isCn. One naive
approach is to generate a symmetric tree where the root is a chance node splitting onC1; its
two children are both chance nodes splitting onC2; etc. Each path down the tree will thu
containn splits (one for each ofC1, . . . ,Cn), and then have a final split forD, belonging
to the agent. To preserve the information structure, the tree will have two information
one forCn = true and one forCn = false; thus, all of the 2n−1 nodes whereCn = true
would be in the first information set. The advantage of this tree is that the probab
associated with the chance-splits are simply extracted from the CPDs in the MAID
disadvantage is that the size of the tree grows exponentially with the number of c
variables in the MAID, even when this blowup is extraneous.

A alternative approach (based on the construction of Pearl (1988, p. 311) is to ge
a tree that has only the minimal set of splits. In our example, we only need a single sp
Cn, and then another split forD. The probabilities of theCn split must now be compute
from the MAID using probabilistic inference; i.e., we want to computeP(Cn) in the joint
distribution overC1, . . . ,Cn defined by the MAID. Similarly, we must now compute t
expected utilities at the leaves.

More generally, we need to split on a chance variable before its value is observ
some decision node. Furthermore, we need only split on chance variables that are o
at some point in the process. Thus, the set of variables included in our game
G = D ∪⋃

D∈D Pa(D). We present the construction below, referring the reader to (P
1988) for a complete discussion.

We begin by defining a total ordering≺ overG that is consistent with the topologic
order of the MAID: if there is a directed path fromX to Y , thenX ≺ Y . Our treeT is
a symmetric tree, with each path containing splits over all the variables inG in the order
defined by≺. Each node is labeled with a partial instantiationinst(N) of G, in the obvious
way. For each agenta, the nodes corresponding to variablesD ∈ Da are decision node
for a; the other nodes are all chance nodes. To define the information sets, consid
decision nodesM andM ′ that correspond to a variableD. We placeM andM ′ into the
same information set if and only ifinst(M) andinst(M ′) assign the same values toPa(D).

Our next task is to determine the split probabilities at the chance nodes. Cons
chance nodeN corresponding to a chance variableC. For each valuec ∈ dom(C), let Nc

be the child ofN corresponding to the choiceC = c. We want to compute the probabili
of going fromN to Nc . The problem, of course, is that a MAID does not define a
joint probability distribution until decision rules for the agents are selected. It turn
that we can choose an arbitrary fully mixed strategy profileσ (one where every decisio
rule satisfies Definition 3.2) for our MAIDM, and do inference in the BNM[σ ] induced
by this strategy profile. Specifically, we can compute:

PM[σ ]
(
inst(Nc)

∣∣ inst(N)
)
. (4)

We can do this computation for any instantiationinst(N) that has nonzero probability und
PM[σ ]. Sinceσ is fully mixed, any instantiation that has zero probability underPM[σ ] will
have zero probability under every other strategy profile as well.
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Lemma 4.1. The value of (4) does not depend on our choice of σ .

Proof. We provide only a brief sketch of the proof. Note that if we split on a deci
variable D before C, then the decision ruleσD does not affect the computation
PM[σ ](inst(Nc) | inst(N)), becauseinst(N) includes values forD and all its parents. I
we split onD afterC, thenD cannot be an ancestor ofC in the MAID. Also, because th
order of splitting is a topological ordering of the MAID,inst(N) cannot specify evidenc
on any ofD’s descendants. Therefore,σD cannot affect the computation. Hence, the va
of this expression does not depend on our choice ofσ . ✷

Hence, the probabilities of the chance nodes are well-defined.
We define the payoffs at the leaves by computing a distribution over the utility n

given an instantiation ofG. For a leafN , the payoff for agenta is:∑
U∈Ua

∑
u∈dom(U)

PM[σ ]
(
U = u

∣∣ inst(N)
) · u. (5)

Lemma 4.2. The value of (5) does not depend on our choice of σ .

Proof. The basic idea here is thatinst(N) determines the values ofD andPa(D) for each
decision variableD. Hence, the agents’ moves and information are all fully determi
and the probabilities with which different actions are chosen inσ are irrelevant. We omi
details. ✷

The mapping between MAIDs and trees also induces an obvious mapping be
strategy profiles in the different representations. A MAID strategy profile specifi
probability distribution overdom(D) for each pair(D,pa), wherepa is an instantiation
of Pa(D). The information sets in the game tree correspond one-to-one with these
and a behavior strategy in the game tree is a mapping from information sets to prob
distributions. Clearly the two are equivalent.

Based on this construction, we can now state the following equivalence propositi

Proposition 4.1. Let M be a MAID and T be its corresponding game tree. Then for any
strategy profile σ , the payoff vector for σ in M is the same as the payoff vector for σ in T .

The number of nodes inT is exponential in the number of decision variables, an
the number of chance variables that are observed during the course of the game
this blowup is unavoidable in a tree representation, it can be quite significant in c
games. As we now show, a MAID can be exponentially smaller than the extensive g
corresponds to.

Example 4.1. Suppose a road is being built from north to south through undeveloped
andn agents have purchased plots of land along the road. As the road reaches each
plot, the agent needs to choose what to build on his land. His utility depends on w
builds, on some private information about the suitability of his land for various purp



D. Koller, B. Milch / Games and Economic Behavior 45 (2003) 181–221 195

bserve
road),
m his

utility
cision,
t. Thus,
n
d

sponding

rally

ation
ht” or
utility
. We
o

e
spite
Fig. 4. A MAID for the Road example withn= 6.

and on what is built north, south, and across the road from his land. The agent can o
what has already been built immediately to the north of his land (on both sides of the
but he cannot observe further north; nor can he observe what will be built across fro
land or south of it.

The MAID representation, shown in Fig. 4 forn = 6, is very compact. There aren
chance nodes, corresponding to the private information about each agent’s land;n decision
variables; andn utility variables. The chance nodes have no parents, and each
variable has at most five parents: the agent’s private information, the agent’s own de
and the decisions of the agents north, south, and across the road from this agen
the size of the MAID—including CPDs for the chance and utility nodes—is linear in.
Conversely, any game tree for this situation must split on each of then chance nodes an
each of then decisions, leading to a representation that is exponential inn. Concretely,
suppose the chance and decision variables each have three possible values, corre
to three types of buildings. Then the game tree corresponding to theRoad MAID has 32n

leaves.

A MAID representation is not always more compact. If the game tree is natu
asymmetric, a naive MAID representation can be exponentially larger than the tree.

Example 4.2. Consider, for example, a standard centipede game, a perfect inform
two-player game. The agents take turns moving, each move consisting of either “rig
“down”; the game ends as soon as any agent decides to move “down.” An agent’s
is equal to the number of times he moved right, plus 2 points if he moved down
can view the agents’ decisions as variablesD1, . . . ,Dn, each of which takes one of tw
values. An agent’s utility depends onDn, but only if none ofD1, . . . ,Dn−1 have the value
“down.” Thus, there must be a utility node with all ofD1, . . . ,Dn as parents. So a naiv
representation of the MAID (with its CPDs) grows exponentially in this example, de
the fact that the tree only hasn decisions, and can be represented very compactly.
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It is possible to avoid this problem by representing CPDs and decision rules
compactly (Boutilier et al., 1996; Poole, 1997). Rather than representing CPDs as
we can represent them as trees, only considering combinations of parents that re
achievable paths in the game. Using ideas along these lines, it is fairly straightforw
provide a transformation from game trees to MAIDs which causes no blowup, i.e., s
the size of the MAID is the same as that of the game tree. The transformation is som
technical, and brings no real insight into MAIDs, so we omit it from this paper. Howe
it has the following important consequence: We can state that the MAID represen
of a decision-making situation is no larger than the extensive form representation,
exponentially smaller in many cases.

5. Strategic relevance

To take advantage of the independence structure in a MAID, we would like to fi
global equilibrium through a series of relatively simple local computations. The diffic
is that, in order to determine the optimal decision rule for a single decision var
we usually need to know the decision rules for some other variables. In Exampl
when Alice is deciding whether to poison Bob’s tree, she needs to compare the ex
utilities of her two alternatives. The expected utility of poisoning the tree depends o
probability of the tree dying, given that it has been poisoned. However, this proba
depends on the probability of Bob calling a tree doctor if he observes that the tree i
Thus, we need to know the decision rule forTreeDoctor to determine the optimal decisio
rule forPoisonTree. In such situations, we will say thatPoisonTree (strategically) relies on
TreeDoctor, or thatTreeDoctor is relevant to PoisonTree. On the other hand,TreeDoctor
does not rely onPoisonTree. The cost of hiring a tree doctor does not depend on whe
the tree was poisoned, and if we know whether the tree is sick, the probability of it
is independent of whether it was poisoned. So Bob does not need to know the prob
of poisoning to compute the expected utilities of his choices, given that he can ob
TreeSick.

5.1. Definition of strategic relevance

We will now formalize this intuitive discussion of strategic relevance. Suppose we
a strategy profileσ , and we would like to find a decision ruleδ for a single decision
variableD ∈ Da that maximizesa’s expected utility, assuming the rest of the strate
profile remains fixed.

Recall that in Definition 3.4, to determine whetherδ is optimal forσ , we construct the
induced MAID where all decision nodes exceptD are turned into chance nodes, with th
CPDs specified byσ . The decision ruleδ is optimal forσ if it maximizesa’s expected
utility in this single-decision MAID. The key question that motivates our definition
strategic relevance is the following: Which decision rules inσ are relevant for optimizing
the decision rule atD? We begin with a draft definition of strategic relevance, then exp
why it needs to be refined somewhat.



D. Koller, B. Milch / Games and Economic Behavior 45 (2003) 181–221 197

es in
moves

o go
will go
, and

lice

ss
al

o any
ver,

ic
Draft Definition 5.1. Let D andD′ be decision nodes in a MAIDM. D strategically
relies on D′ if there exist two strategy profilesσ andσ ′ and a decision ruleδ for D such
that:

• δ is optimal forσ ;
• σ ′ differs fromσ only atD′;

but δ is not optimal forσ ′.

In other words, if a decision ruleδ for D is optimal for a strategy profileσ , andD does
not rely onD′, thenδ is also optimal for any strategy profileσ ′ that differs fromσ only
atD′.

The reason why this definition is insufficient is one that arises in many other plac
game theory—the problem of suboptimal decisions in response to probability zero
by the other agent.

Example 5.1. Consider a very simple scenario in which Alice chooses whether t
north or south, and then Bob gets to observe her action and choose whether he
north or south. Both agents receive positive utility if they end up in the same place
negative utility otherwise. We can model this scenario with the MAIDM shown in Fig. 5.
Intuitively, Bob’s decisionD does not rely on Alice’s decisionD′: regardless of Alice’s
decision rule, it is optimal for Bob to adopt a decision rule that says, “go north if A
goes north; go south if she goes south.” But supposeσ is a strategy profile in which Alice
goes north with probability 1, andδ is a decision rule forD that has Bob go north regardle
of Alice’s action. Thenδ is optimal forσ : even though going north would be a suboptim
action for Bob if Alice ever went south, Bob does not have an incentive to deviate t
other decision rule inM[σ ] because the probability of Alice going south is zero. Howe
if σ ′ has Alice go south with probability 0.5, thenδ is not optimal forσ ′. So, by our draft
definition,D relies onD′.

Intuitively, we do not wantD to rely onD′. We now revise our definition of strateg
relevance to exclude cases such as this one.

Definition 5.1. Let D andD′ be decision nodes in a MAIDM. D strategically relies on
D′ if there exist two strategy profilesσ andσ ′ and a decision ruleδ for D such that:

Fig. 5. A MAID in which Bob can observe Alice’s actionD′ when he makes his decisionD.
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• δ is optimal forσ ;
• σ ′ differs fromσ only atD′;

but no decision ruleδ∗ that agrees withδ on all parent instantiationspa ∈ dom(Pa(D))

wherePM[σ ](pa) > 0 is optimal forσ ′.

Continuing our example, we can construct a decision ruleδ∗ for D that differs fromδ

only on the parent instantiationD′ = south, and thisδ∗ will be optimal forσ ′. So under
the revised definition,D does not rely onD′.

5.2. S-reachability

Relevance is a numeric criterion that depends on the specific probabilities and u
in the MAID. It is not obvious how we would check for strategic relevance without tes
all possible pairs of strategy profilesσ andσ ′. We would like to find a qualitative criterion
which can help us determine strategic relevance purely from the structure of the
In other words, we would like to find a criterion which is analogous to the d-separ
criterion for determining conditional independence in Bayesian networks.

To begin with, suppose we have a strategy profileσ for a MAID M, and conside
finding a decision rule forD that is optimal forσ . The following lemma specifies th
maximization problems we must solve to find this optimal decision rule.

Lemma 5.1. Let δ be a decision rule for a decision variable D ∈ Da in a MAID M,
and let σ be a strategy profile for M. Then δ is optimal for σ if and only if for
every instantiation paD of Pa(D) where PM[σ ](paD) > 0, the probability distribution
δ(D | paD) is a solution to the maximization problem:

argmax
P ∗

∑
d∈dom(D)

P ∗(d)
∑

U∈UD

∑
u∈dom(U)

PM[σ ](u | d, paD) · u (6)

where UD is the set of utility nodes in Ua that are descendants of D in the MAID.

Proof. By Definition 3.4,δ is optimal forσ if and only if δ maximizes agenta’s expected
utility in M[σ−D]. Soδ is optimal forσ if and only if δ is a solution for:

argmax
δ∗

EUM(σ−D, δ∗).

By (3), this is equivalent to:

argmax
δ∗

∑
U∈Ua

∑
u∈dom(U)

PM[(σ−D,δ∗)](U = u) · u.

The events(U = u,D = d,Pa(D) = paD) for d ∈ dom(D), paD ∈ dom(Pa(D)) form
a partition of the eventU = u, so we can expressPM[(σ−D,δ∗)](U = u) as the sum o
the probabilities of these more specific events. Then breaking up the joint proba
expression yields:
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PM[(σ−D,δ∗)](U = u)

=
∑

paD∈dom(Pa(D))

PM[(σ−D,δ∗)](paD)

×
∑

d∈dom(D)

PM[(σ−D,δ∗)](d | paD)PM[(σ−D,δ∗)](U = u | d, paD).

The CPD for a node in a Bayesian network has no effect on the prior distribution
its parents, soPM[(σ−D,δ∗)](paD) = PM[σ ](paD). Also, PM[(σ−D,δ∗)](d | paD) is simply
δ∗(d | paD). And PM[(σ−D,δ∗)](U = u | d,paD) = PM[σ ](U = u | d,paD), because a
distribution does not depend on the CPD forD given values forD and its parents. S
we find that:

PM[σ−D,δ∗](U = u)=
∑

paD∈dom(Pa(D))

PM[σ ](paD)

×
∑

d∈dom(D)

δ∗(d | paD)PM[σ ](U = u | d, paD).

Thus,δ is optimal forσ if and only if it is a solution for:

argmax
δ∗

∑
U∈Ua

∑
u∈dom(U)

∑
paD∈dom(Pa(D))

PM[σ ](paD)

×
∑

d∈dom(D)

δ∗(d | paD)PM[σ ](U = u | d, paD) · u.

Rearranging the summations, we get:

argmax
δ∗

∑
paD∈dom(Pa(D))

PM[σ ](paD)
∑

d∈dom(D)

δ∗(d | paD)

×
∑
U∈Ua

∑
u∈dom(U)

PM[σ ](U = u | d, paD) · u.

Because we can setδ∗(D | paD) separately for eachpaD , it is clear that we have a separa
maximization problem for eachpaD . If PM[σ ](paD) = 0, the maximization problem
is trivial: all distributionsδ∗(D | paD) yield a value of zero. Thus, it is necessary a
sufficient that for allpaD such thatPM[σ ](paD) > 0, the distributionδ(D | paD) be
a solution of the following maximization problem:

argmax
P ∗

∑
d∈dom(D)

P ∗(d)
∑
U∈Ua

∑
u∈dom(U)

PM[σ ](U = u | d, paD) · u.

Now, letUD be the utility nodes inUa that are descendants ofD, and letUD̃ = Ua − UD .
Since a node in a BN is independent of its nondescendants given its parents, we kn
for U ∈ UD̃ , PM[σ ](U = u | d, paD) = PM[σ ](U = u | paD). Thus, we can split up th
summation overUa into two summations, then move the summation overUD̃ outside the
summation overdom(D). The resulting maximization problem is:
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argmax
P ∗

(( ∑
U∈UD̃

∑
u∈dom(U)

PM[σ ](U = u | paD) · u
)

+
( ∑

d∈dom(D)

P ∗(d)
∑

U∈UD

∑
u∈dom(U)

PM[σ ](U = u | d, paD) · u
))

.

The summation overUD̃ is irrelevant to the maximization, so we can remove it, yieldin

argmax
P ∗

∑
d∈dom(D)

P ∗(d)
∑

U∈UD

∑
u∈dom(U)

PM[σ ](U = u | d, paD) · u,

which is precisely (6), as required.✷
So, to be optimal for a strategy profileσ , a decision ruleδ only has to satisfy (6). I

the expression being maximized in (6) is independent of the decision rule thatσ assigns to
another decision variableD′, thenD does not rely onD′.

Consider, for example, theTreeDoctor decision variable in our example. To find
optimal decision rule for this variable, we only need to evaluate two probabilistic qu
PM[σ ](Tree | TreeSick,TreeDoctor) andPM[σ ](Cost | TreeSick,TreeDoctor). The second
query is obviously trivial sinceTreeDoctor is the sole parent ofCost; the first can be
evaluated without referring to the decision rules forPoisonTree or BuildPatio (because o
the independence relations in the MAID). Thus, if we changeσ to another strategy profil
σ ′ that assigns different decision rules toPoisonTree or BuildPatio, δ will still be optimal
for σ ′.

The problem of determining which nodes’ CPDs might affect the evaluatio
a probabilistic query is a standard one in the Bayesian network literature, so that w
build on a graphical criterion already defined for Bayesian networks, that of arequisite
probability node:

Definition 5.2. Let G be a BN structure, and letX andY be sets of variables in the BN
Then a nodeZ is a requisite probability node for the queryP(X | Y ) if there exist two
Bayesian networksB1 andB2 overG, that are identical except in the CPD they ass
to Z, butPB1(X | Y ) �= PB2(X | Y ).

As we will see, the decision rule atD′ is only relevant toD if D′ (viewed as a chanc
node) is a requisite probability node forP(UD |D,Pa(D)).

Geiger et al. (1990) provide a graphical criterion for testing whether a nodeZ is a
requisite probability node for a queryP(X | Y ). We add toZ a new “dummy” parent̂Z
whose values correspond to CPDs forZ, selected from some set of possible CPDs. T
Z is a requisite probability node forP(X | Y ) if and only if Ẑ can influenceX givenY .
More formally:

Lemma 5.2 (Geiger et al., 1990).Let B1 and B2 be two Bayesian networks over the same
set of variables, that are identical except in the CPDs they assign to a set of nodes Z. Let
X and Y be arbitrary sets of nodes in these networks. Suppose there is no Z ∈ Z such that
if a new parent Ẑ were added to Z, there would be an active path from Ẑ to X given Y .
Then PB (X | Y )= PB (X | Y ).
1 2
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Based on this lemma and (6), we can defines-reachability, a graphical criterion fo
detecting strategic relevance. Note that unlike d-separation in Bayesian networks, s
ability is not necessarily a symmetric relation.

Definition 5.3. A nodeD′ is s-reachable from a nodeD in a MAID M if there is some
utility nodeU ∈ UD such that if a new parent̂D′ were added toD′, there would be an
active path inM from D̂′ to U givenPa(D) ∪ {D}, where a path is active in a MAID if i
is active in the same graph, viewed as a BN.

As we now show, s-reachability is sound and complete for strategic relevance (a
in the same sense that d-separation is sound and complete for independence in B
networks. As for d-separation, the soundness result is very strong: without s-reach
one decision cannot be relevant to another.

Theorem 5.1 (Soundness).If D and D′ are two decision nodes in a MAID M and D′ is
not s-reachable from D in M, then D does not strategically rely on D′.

Proof. Let σ be a strategy profile forM, and letδ be a decision rule forD that is
optimal forσ . By Lemma 5.1, for everypaD ∈ dom(Pa(D)) such thatPM[σ ](paD) > 0,
the distributionδ(D | paD) must be a solution of the maximization problem:

argmax
P ∗

∑
d∈dom(D)

P ∗(d)
∑

U∈UD

∑
u∈dom(U)

PM[σ ](u | d, paD) · u. (7)

Now, let σ ′ be any strategy profile forM that differs fromσ only at D′. We must
construct a decision ruleδ∗ for D that agrees withδ on all paD wherePM[σ ](paD) > 0,
and that is optimal forσ ′. By Lemma 5.1, it suffices to show that for everypaD where
PM[σ ′](paD) > 0, δ∗(D | paD) is a solution of:

argmax
P ∗

∑
d∈dom(D)

P ∗(d)
∑

U∈UD

∑
u∈dom(U)

PM[σ ′](u | d, paD) · u. (8)

If PM[σ ](paD)= 0, then our choice ofδ∗(D | paD) is unconstrained; we can simply sele
a distribution that satisfies (8). For otherpaD , we must letδ∗(D | paD)= δ(D | paD), but
we knowδ(D | paD) is a solution of (7). Assume for contradiction thatδ(D | paD) is not
also a solution of(8). Then the two optimization problems must be different. Specific
there must be somed ∈ dom(D), U ∈ UD , andu ∈ dom(U) such that:

PM[σ ](u | d, paD) �= PM[σ ′](u | d, paD).

But the induced MAIDsM[σ ] and M[σ ′] are Bayesian networks that differ only
the CPD that they assign toD′. BecauseD′ is not s-reachable fromD, we know there
would not be an active path from a new parentD̂′ of D′ to U givenD andPa(D). So by
Lemma 5.2

PM[σ ](u | d, paD)= PM[σ ′](u | d, paD)

and we have a contradiction. Soδ∗ must be optimal forσ ′, and thusD does not rely
onD′. ✷
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As for BNs, the result is not as strong in the other direction: s-reachability doe
imply relevance inevery MAID. We can choose the probabilities and utilities in the MA
in such a way that the influence of one decision rule on another does not manifes
However, s-reachability is the most precise graphical criterion we can use: it wi
identify a strategic relevance unless that relevance actually exists in some MAID th
the given graph structure. We say that two MAIDs have the same graph structure wh
two MAIDs have the same sets of variables and agents, each variable has the same
in the two MAIDs, and the assignment of decision and utility variables to agents
same in both MAIDs. The chance and decision variables must have the same dom
both MAIDs, but we allow the actual utility values of the utility variables (their doma
to vary. The CPDs in the two MAIDS may also be different.

Theorem 5.2 (Completeness).If a node D′ is s-reachable from a node D in a MAID, then
there is some MAID with the same graph structure in which D relies on D′.

Proof. Our goal is to construct a set of parameters for this MAID structure wherD

relies onD′. In other words, we want a construction of a MAID, and two strategy pro
differing only atD′, such that the optimal decision rule atD will be different in the two
cases. We begin by assuming that all nonutility variables are binary (with{0,1} as their
domains); we show at the end that this assumption is easy to relax.

SinceD′ is s-reachable fromD, we know that there is a path from an imaginary par
D̂′ of D′ to some utility nodeU that is a descendant ofD, and this path is active give
D and Pa(D). Let Y0, . . . , Ym+1 be this active path from̂D′ to U , with Y0 = D̂′ and
Ym+1 = U . Let Yk be the first node on this path such thatYk is not a descendant ofD
but Yk+1 is a descendant ofD. SinceY0 = D̂′ has no parents, it cannot be a descend
of D; conversely,U is, by assumption, a descendant ofD. Hence, such a nodeYk has to
exist. We will refer to the directed path fromD to Yk+1 asX0=D, . . . ,X!,X!+1= Yk+1.

We first prove that the pathYk, . . . , Ym+1 is also a directed pathYk→ ·· ·→ Ym+1. By
contradiction, assume otherwise, and leti be the first place in the path whereYi+1 is not a
child ofYi . Then, we have a triple of nodesYi−1→ Yi← Yi+1, for i � k. For the path from
Y0 to Ym+1 to be active in a given context,Yi or one of its descendants must be obser
in that context. In other words,Yi or one of its descendants must be in the setD ∪ Pa(D).
But note that, asYk+1 is a descendant ofD, and all edges on the path fromYk to Yi are
downstream edges,Yi is also a descendant ofD. Hence, we concludeYi is a descendan
of D, but it or one of its descendants is eitherD or a parent ofD, violating the assumptio
that the graph is acyclic, and reaching the desired contradiction.

As a consequence, we conclude thatU must be a descendant ofYk . Therefore, there
exists a path fromD to U of the form

X0=D, . . . ,X!,X!+1= Yk+1, Yk+2, . . . , Ym+1=U

with one of the two segments potentially empty. We split the remainder of the proo
three cases, based on the value ofk. The three cases are illustrated in Fig. 6.

In all cases, we construct a parameterization of the MAIDM and two strategy profile
σ1 andσ2 that differ only atD′. We always set the CPDs for the nodes along the p
X0, . . . ,X! andYk+2, . . . , Ym to copy the values of their parents along the path. Tha
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Fig. 6. The three cases of the completeness proof.

for i ∈ {1, . . . , !}, Xi = Xi−1 with probability 1, and fori ∈ {k + 1, . . . ,m}, Yi = Yi−1
with probability 1. These CPDs are specified byM for chance nodes, and byσ1 andσ2

for decision nodes. The CPD forYk+1 will vary from case to case. We also set the util
functions inM so that if the agent who controlsD is a, all utility nodes inUa − {U} take
on the value zero given all instantiations of their parents.

We will constructσ1 andσ2 so that there is some instantiationpaD of Pa(D) such that
PM[σi ](paD) > 0 for bothi = 1 andi = 2. We can apply Lemma 5.1 to conclude that
optimal distribution forD givenpaD , in the context of the strategy profileσi , must be

argmax
P ∗

∑
d∈dom(D)

P ∗(d)
∑

U ′∈UD

∑
u∈dom(U ′)

PM[σi ](U ′ = u |D = d, paD) · u.

As the other utility variables except forU are identically zero, the second summat
disappears. Now, consider the utility value for a particular decisiond for D, and recall tha
the chain fromD to X! has the effect of copyingD’s value. Thus, we get that:∑

u∈dom(U)

PM[σi ](U = u |D = d, paD) · u

=
∑

u∈dom(U)

PM[σi ](U = u |X! = d, D = d, paD) · u

=
∑

paU∈dom(Pa(U))

PM[σi ](paU |X! = d, D = d, paD)U(paU).

Case (1). k = 0, that is,Yk+1=D′. We letσ1 specify a decision ruleδ1 for D′ such thatD′
depends only onX! (ignoring any other parents), as follows:

δ1(D
′ = 1 |X! = 1)= 0.75, δ1(D

′ = 1 |X! = 0)= 0.25.

All the remaining CPDs inM andσ1 are set arbitrarily. The utility function atU depends
only onYm, as follows:

U(Ym = 1)= 1, U(Ym = 0)= 0.

So the expected utility for an actiond atD givenpaD becomes:
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∑
paU∈dom(Pa(U))

PM[σi ](paU |X! = d, D = d, paD)U(paU)

= PM[σi ](Ym = 1 |X! = d, D = d, paD)

= PM[σi ](D
′ = 1 |X! = d, D = d, paD)

= PM[σi ](D
′ = 1 |X! = d).

In the steps above, we can eliminate the summation becauseU(Ym = 0) = 0 and
U(Ym = 1)= 1. Then we can replaceYm with D′ = Yk+1 because of the way the CPD
are defined along the pathYk+1, . . . , Ym. Finally, we can simplify the probability stateme
becauseD′ is independent ofD andPa(D) givenX!. Given this equation, it is clear that
M[σ1], the expected utility ofD = 1 givenpaD is 0.75, while the expected utility ofD = 0
given paD is 0.25. So the optimal decision rule is to chooseD = 1 with probability 1.
However, if we letσ2 assign the following decision rule toD′:

δ2(D
′ = 1 |X! = 1)= 0.25, δ2(D

′ = 1 |X! = 0)= 0.75

then the expected utilities are exactly reversed inM[σ2]. So the unique optimal decisio
rule is to chooseD = 0 with probability 1. Since these decision rules differ on par
instantiations that have positive probability inM[σ ], D relies onD′.

Next, we consider the cases whereD′ is not a descendant ofD. Let V ′ be the set
consisting of all of the chance and decision nodes in the MAID except forD and its
descendants. This set is a “prefix” of the graph—ifX ∈ V ′ then so areX’s parents. LetB be
a Bayesian network which duplicates the structure of the MAID overV ′, and includes the
dummy parent̂D′ of D′. It is easy to see that the path from̂D′ to Yk is an active path inB
givenPa(D): the setV ′ contains all of the nodes in the path, and all of the ancestors o
observed nodes (onlyPa(D) are observed). Hence, by the completeness result of G
et al. (1990), there must be a parameterization of the CPDs inB, and some assignmentpaD

to Pa(D), such thatPB(paD) > 0, and:

PB
(
Yk

∣∣ paD, D̂′ = e1
) �= PB

(
Yk

∣∣ paD, D̂′ = e2
)

wheree1 ande2 are two possible values of̂D′. Since these two distributions are differe
we can choosey to be some particular value ofYk such that

PB
(
Yk = y

∣∣ Pa(D)= paD, D̂′ = e1
)= p1,

PB
(
Yk = y

∣∣ Pa(D)= paD, D̂′ = e2
)= p2

andp1 >p2. Letp∗ be some value betweenp1 andp2.
We use the CPDs ofB to specify the CPDs and decision rules of all of the nodes inM

that are not descendants ofD. For any chance node exceptD′, we simply copy the CPD
from B to M. For any decision node exceptD′, we simply use its CPD inB (where we
viewed it as a chance node) as a decision rule. ForD′, we introduce two decision rule
δ1, which is the CPD ofD′ conditioned on the context̂D′ = e1, andδ2, which is the same
CPD conditioned on the context̂D′ = e2. Let σ1(D

′)= δ1 andσ2(D
′)= δ2.

Case (2). k =m, that is, the only node in the pathY0, . . . , Ym+1 that is a descendant ofD
is the utility nodeYm+1= U . In this case, the parents ofU includeYm andX! (the parent
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of Yk+1 in the chainD, . . . , Yk+1). We set the utility function atU to ignore all parents
exceptX! andYm, and for those variables, to take the following values:

U(X! = 1, Ym = 1)= p∗, U(X! = 0, Ym = 1)= 1,

U(X! = 1, Ym = 0)= p∗, U(X! = 0, Ym = 0)= 0.

Using the equations above, we find that the expected utility of choosingd given paD in
M[σi] is:∑

y=0,1

PM[σi ](Ym = y |X! = d, D = d, paD)U(X! = d, Ym = y)

=
∑
y=0,1

PM[σi ](Ym = y | paD)U(X! = d, Ym = y)

=
∑
y=0,1

PB(Ym = y | D̂′ = ei, paD)U(X! = d, Ym = y)

where the first equality follows from the fact thatYm is independent ofD and X!

given Pa(D), and the last from the definition of the MAID using the BN. Note that
k + 1=m+ 1, thenm= k. So for the case whered = 1, we get an expected value ofp∗,
and for the case whered = 0 we obtain an expected value ofpi . Sincep1 < p∗ < p2,
we have that the optimal decision rule forD relative to the strategy profileσ1 must have
δ(D | paD) be 1 with probability 1, whereas the optimal decision rule forD relative to the
strategy profileσ2 must haveδ(D | paD) be 0 with probability 1. SincepaD has positive
probability inM[σ ], we have shown thatD strategically relies onD′.

Case (3). 1< k <m, that is, the two paths fromD to U and fromD̂′ to U intersect in the
middle. This case is only slightly more complicated. In this case,Yk+1 has bothYk andX!

as parents. We define the CPD forYk+1 as follows:Yk+1 depends only on the two paren
X! andYk ; its dependence on these two parents is as follows:

Pr(Yk+1= 1 |X! = 1, Yk = 1)= p∗, Pr(Yk+1= 1 |X! = 0, Yk = 1)= 1,

Pr(Yk+1= 1 |X! = 1, Yk = 0)= p∗, Pr(Yk+1= 1 |X! = 0, Yk = 0)= 0.

The utility nodeU now depends only on its parentYm. We have

U(Ym = 1)= 1, U(Ym = 0)= 0.

A straightforward analysis, similar to the one above, shows that, in the contextpaD and
relative to the strategy profileσi , the expected utility of the decisiond is p∗ for d = 1 and
pi for d = 0. Hence, we again conclude thatD strategically relies onD′.

At the beginning of the proof, we assumed that all the variables are binary. To e
the proof to variables with arbitrary domains, we simply choose one value in the do
of each variable and label it “1.” Then, we replace all references in the proof toX = 0
(whereX is some variable) withX �= 1. The probability mass assigned toX �= 1 in a CPD
is uniformly distributed over the values indom(X)− {1}. It is easy to check that the pro
still holds. ✷
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5.3. The relevance graph

Since s-reachability is a binary relation, we can represent it as a directed graph.
show below, this graph turns out to be extremely useful.

Definition 5.4. Therelevance graph for a MAID M is a directed graph whose nodes are
decision nodes ofM, and which contains an edgeD′ →D if and only ifD′ is s-reachable
from D.2

The relevance graph for theTree Killer example is shown in Fig. 8(a). By Theorem 5
if D relies onD′, thenD′ is a parent ofD in the graph.

To construct the graph for a given MAID, we need to determine, for each dec
nodeD, the set of nodesD′ that are s-reachable fromD. Using an algorithm such a
Shachter’s Bayes-Ball (Shachter, 1998), we can find this set for any givenD in time linear
in the number of nodes in the MAID. By repeating the algorithm for eachD, we can derive
the relevance graph in time quadratic in the number of MAID nodes.

Recall our original statement that a decision nodeD strategically relies on a decisio
nodeD′ if one needs to know the decision rule forD′ in order to evaluate possib
decision rules forD. Although we now have a graph-theoretic characterization of stra
relevance, it will be helpful to develop some intuition by examining some simple MA
and seeing when one decision node relies on another. In the five examples shown in
the decision nodeD belongs to agenta, andD′ belongs to agentb. Example (a) represen
a perfect-information game. Since agentb can observe the value ofD, he does not need t
know the decision rule forD in order to evaluate his options. Thus,D′ does not rely onD.
On the other hand, agenta cannot observeD′ when she makes decisionD, andD′ is
relevant toa’s utility, so D relies onD′. Example (b) represents a game where the ag

Fig. 7. Five simple MAIDs (top), and their relevance graphs (bottom). A two-color diamond represents a
utility nodes, one for each agent, with the same parents.

2 The edges in this definition are the reverse of those in (Koller and Milch, 2001); the definition was ch
to make the parent relationship more analogous to the parent relationship in BNs.
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do not have perfect information: agentb cannot observeD when making decisionD′.
However, the information is “perfect enough”: the utility forb does not depend onD
directly, but only on the chance node, whichb can observe. HenceD′ does not rely onD.

Examples (c) and (d) represent scenarios where the agents move simultaneou
thus neither can observe the other’s move. In (c), each agent’s utility node is influ
by both decisions, soD relies onD′ andD′ relies onD. Thus, the relevance graph
cyclic. In (d), however, the relevance graph is acyclic despite the fact that the agents
simultaneously. The difference here is that agenta no longer cares what agentb does,
because her utility is not influenced byb’s decision. In graphical terms, there is no act
path fromD′ to a’s utility node givenD.

One might conclude that a decision nodeD′ never relies on a decision nodeD when
D is observed byD′, but the situation is more subtle. Consider example (e), which re
sents a simple card game: agenta observes a card, and decides whether to bet (D); agentb
observes only agenta’s bet, and decides whether to bet (D′); the utility of both depend
on their bets and the value of the card. Even though agentb observes the actual decisio
in D, he needs to know the decision rule forD in order to know what the value ofD tells
him about the chance node. Thus,D′ relies onD; indeed, whenD is observed, there is a
active path fromD (a hypothetical parent ofD) that runs through the chance node to
utility node.

6. Computing equilibria using divide and conquer

The computation of a Nash equilibrium for a game is arguably the key computa
task in game theory. In this section, we show how the structure of the MAID ca
exploited to provide efficient algorithms for finding equilibria in certain games.

The key insight behind our algorithms is the use of the relevance graph to bre
the task of finding an equilibrium into a series of subtasks, each over a much s
game. Since algorithms for finding equilibria in general games have complexity t
superlinear in the number of levels in the game tree, breaking the game into smaller
will significantly improve the complexity of finding a global equilibrium. We begin
discussing the relatively simple case where the relevance graph is acyclic, then we
our algorithm to handle MAIDs with cyclic relevance graphs.

6.1. Backward induction and acyclic relevance graphs

Our algorithm for acyclic relevance graphs is a generalization of existing back
induction algorithms for decision trees and perfect information games (Zermelo, 191
for influence diagrams (Cooper, 1988; Shachter, 1990; Shenoy, 1992; Jensen et al.
The basic idea is as follows: in order to optimize the decision rule forD, we need to know
the decision rule for all decisionsD′ that are relevant forD. For example, the relevanc
graph for theTree Killer example (Fig. 8(a)) shows that to optimizePoisonTree, we must
first decide on the decision rules forBuildPatio andTreeDoctor. However, we can optimiz
TreeDoctor without knowing the decision rules for either of the other decision variab
Having decided on the decision rule forTreeDoctor, we can now optimizeBuildPatio and
then finallyPoisonTree.
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Fig. 8. Relevance graphs for (a) theTree Killer example; (b) theRoad example withn= 6.

In any acyclic relevance graph, we can construct a topological ordering of the de
nodes: an orderingD1, . . . ,Dn such that ifDi is s-reachable fromDj , then i < j . For
instance, the relevance graph for theTree Killer example has only one topological orderin
TreeDoctor, BuildPatio, PoisonTree. Then we can iterate over the decision nodes in
order, deriving an optimal decision rule for each node in turn. Each decisionDj relies only
on the decisions that precede it in the order, and these will have already been proce
the time we have to select the decision rule forDj . The formal description of the algorithm
is as follows:

Algorithm 6.1.
Given a MAID M with an acyclic relevance graph, a topological ordering D1, . . . ,Dn of

the relevance graph for M.
1. Let σ 0 be an arbitrary fully mixed strategy profile for M.
2. For i = 1 through n:
3. Let δ be a decision rule for Di that is optimal for σ i−1.
4. Let σ i = (σ i−1

−Di
, δ).

5. Output σn as an equilibrium of M.

All the individual steps in this algorithm are trivial except for step 3: finding a deci
ruleδ for Di that is optimal forσ i−1. By Lemma 5.1, it is sufficient to find aδ such that for
every instantiationpaDi

of Pa(Di) wherePM[σ i−1](paDi
) > 0, the probability distribution

δ(Di | paDi
) is a solution of:

argmax
P ∗

∑
d∈dom(Di)

P ∗(d)
∑

U∈UDi

∑
u∈dom(U)

PM[σ i−1](u | d, paDi
) · u.

It is clear that in order to maximize the expression, it is sufficient to find a valued∗ ∈
dom(Di) that maximizes:∑

U∈UDi

∑
u∈dom(U)

PM[σ i−1](u | d, paDi
) · u.

Then we letP ∗ assign probability 1 tod∗ and 0 to the other possible values ofDi . This
analysis also shows that the resulting strategy profileσn is always a pure strategy profil
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To perform this computation, we can use BN inference to obtain the distribution ov
parents of each utility nodeU given each combination of a parent instantiationpaDi

and
a valued ∈ dom(Di). From that, we can easily compute the expected utility.

To prove that this algorithm is correct, we must show that regardless of the fully m
strategy profileσ 0 we start with, the final strategy profileσn is a Nash equilibrium forM.

We begin with a lemma. Consider a MAID with just three decision nodes, wher
topological ordering of the nodes in the relevance graph isD1,D2,D3. Supposeδ is a
decision rule forD1 that is optimal forσ 0. By our construction of the ordering, neith
D2 norD3 is s-reachable fromD1. So changingσ 0 at eitherD2 or D3 will not affect the
optimality of δ. But one might worry that changingσ 0 atboth D2 andD3 (as we do when
we deriveσn in Algorithm 6.1) might causeδ to lose optimality. The following lemm
shows that such a thing cannot happen: if we have a set of decisions none of wh
individually relevant, then the entire set is not relevant.

Lemma 6.1. Let σ be a strategy profile, D be a decision node, and δ be a decision
rule for D that is optimal for σ . Let σ ′ be another strategy profile such that whenever
σ ′(D′) �= σ(D′), then D′ is not s-reachable from D. Then there is some decision rule δ∗
for D such that δ∗ agrees with δ on all pa ∈ dom(Pa(D)) where PM[σ ] > 0, and δ∗ is
optimal for σ ′.

The proof of this lemma involves a straightforward modification of the proo
Theorem 5.1. Instead of considering a single decision nodeD′, we consider the entir
setZ = {D′: σ ′(D′) �= σ(D′)}. Then we take advantage of the fact that Lemma 5.2
apply to an entire set of nodesZ.

Lemma 6.1 does not state thatδ itself is optimal forσ ′; it only asserts the existence
a δ∗ that is appropriately similar toδ and is optimal forσ ′. The shift fromδ to δ∗ will
become inconvenient. However, the following lemma shows that we can avoid this s
σ is fully mixed on the nodes where it differs fromσ ′.

Lemma 6.2. Let D be a decision node in a MAID M, δ be a decision rule for D, and σ be
a strategy profile such that δ is optimal for σ . Let σ ′ be another strategy profile such that
whenever σ ′(D′) �= σ(D′), then D′ is not s-reachable from D. If σ is fully mixed on all D′
where σ ′(D′) �= σ(D′), then δ is also optimal for σ ′.

Proof. Since no decision node whereσ andσ ′ differ is s-reachable fromD, Lemma 6.1
tells us there is some decision ruleδ∗ for D that differs fromδ only on parent instantiation
that have zero probability inM[σ ], and thisδ∗ is optimal forσ ′. Sinceσ is fully mixed on
everyD′ where it differs fromσ ′, the set ofpa ∈ dom(Pa(D)) such thatPM[σ ](pa) > 0
is a superset of the set ofpa ∈ dom(Pa(D)) such thatPM[σ ′](pa) > 0. Soδ∗ could only
differ from δ on parent instantiations that have zero probability in bothM[σ ] andM[σ ′].
But the distributions overD conditioned on parent instantiations that have zero probab
in M[σ ′] cannot affect EUa(σ ′) for any a. Sinceδ differs from δ∗ only on these zero
probability parent instantiations, andδ∗ is optimal forσ ′, δ must also be optimal forσ ′. ✷
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Note that neither of the preceding results depends on the relevance graph being
Indeed, we require acyclicity only to ensure that there exists a topological sort o
relevance graph that we can provide as input to Algorithm 6.1. At this point, we can fi
prove the correctness of this algorithm.

It is easy, using Lemma 6.2, to show that each individual decision rule derived
algorithm is optimal for the final strategy profileσn. That is, no agent can gain by deviati
from σn on a single decision node. However, to guarantee the Nash equilibrium pro
we must show that the agent cannot gain by deviating at any combination of his de
nodes simultaneously. In ourTree Killer example, we know that Alice cannot improve h
decision rule atBuildPatio, nor can she improve her decision rule atPoisonTree given
her decision rule atBuildPatio, but we need to show that she cannot improve her utility
deviating at both decisions simultaneously. This is what we prove in the following the

Theorem 6.1. Let M be a MAID whose relevance graph is acyclic, and let D1, . . . ,Dn

be a topological ordering of the relevance graph for M. Then the strategy profile σn

produced by running Algorithm 6.1 with M and the ordering D1, . . . ,Dn as inputs is
a Nash equilibrium for M.

Proof. To show thatσn is a Nash equilibrium, we must show that for all agentsa ∈A and
all other strategiesσ ′a for a:

EUa(σ
n) � EUa

((
σn−a, σ ′a

))
.

Consider any agenta. We proceed by induction on the numberk of decisions whereσa
andσ ′a differ. If k = 0, thenσn

a = σ ′a , so obviously EUa(σn) = EUa((σ
n−a, σ ′a)). As an

inductive hypothesis, suppose that wheneverσ ′a differs from σn
a on k or fewer nodes

EUa(σ
n) � EUa((σ

n−a, σ ′a)).
Now supposeσ ′a differs fromσn

a onk+1 nodes. Letj be the smallest index in{1, . . . , n}
such thatσ ′a(Dj ) �= σn

a (Dj ). Let δ = σn
a (Dj ). By construction in Algorithm 6.1,δ is

optimal for σj−1. Note thatσj−1 differs from (σn−a, σ ′a) only on Dj , . . . ,Dn. None of
these nodes are s-reachable fromDj , because none of the nodes that come afterDj in
the ordering are s-reachable fromDj , and neither isDj itself. Also, σj−1 agrees with
σ 0 on Dj , . . . ,Dn, so it is fully mixed on these nodes. Thus, by Lemma 6.2,δ is also
optimal for(σn−a, σ ′a). In particular,δ yields at least as much expected utility asσ ′a(Dj ) in
M[σn−a, (σ ′a)−Dj ]. So:

EUa

(
σn−a,

(
σ ′a

)
−Dj

, δ
)
� EUa

(
σn−a, σ ′a

)
.

But the strategy((σ ′a)−Dj , δ) differs fromσn
a at onlyk decision nodes, so by the inducti

hypothesis:

EUa(σ
n) � EUa

(
σn−a,

(
σ ′a

)
−Dj

, δ
)
.

So by transitivity:

EUa(σ
n) � EUa

(
σn−a, σ ′a

)
. ✷
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Thus, we have shown that our induction process is guaranteed to find a Nash e
rium. It is easy to show that it generalizes the notion of backward induction in pe
information games.

Definition 6.1. A MAID M is said to haveperfect information relative to an ordering
D1, . . . ,Dn if, for all j andi < j , we have thatDi,Pa(Di)⊆ Pa(Dj ).

This definition of perfect information does not require that all of the chance vari
are observed, but only that any chance variable that is observed at one point in the g
also observed at subsequent points.

Lemma 6.3. If Di and Dj are two decisions such that Di,Pa(Di)⊆ Pa(Dj ), then Di is
not s-reachable from Dj .

Proof. By Definition 5.3, we must show that if a new parent̂Di were added toDi , there
would not be an active path from̂Di to anyU ∈ UDj givenDj andPa(Dj ). By assumption
Di,Pa(Di)⊆ Pa(Dj ). Hence,Di and all its parents are observed. Now consider any
starting atD̂i . SinceDi is the only neighbor of̂Di , the path must continue throughDi ,
which is observed. Thus, this path can be active only ifDi is at the middle of a v-structure
But the path would need to continue through some node inPa(Di). These parents are a
observed as well, and thus block the path. Hence, there is no active path startingD̂i ,
which meansDi is not s-reachable fromDj . ✷
Corollary 6.1. If a MAID M has perfect information relative to some ordering
D1, . . . ,Dn, then the relevance graph for the MAID is acyclic, and Dn, . . . ,D1 is
a topological ordering for the graph.

Thus, our backward induction algorithm (“backward” because the topological ord
of the relevance graph is the reverse of the perfect information ordering) applies
perfect information games. However, we obtain acyclic relevance graphs in a wider
of situations. For example, the relevance graph of theTree Killer example is acyclic
although the game does not have perfect information.

6.2. Divide and conquer in cyclic relevance graphs

Although acyclic relevance graphs arise even in games of imperfect informatio
most games we will encounter cycles in the relevance graph. Consider, for examp
simple two-player simultaneous move game with two decisionsD1 andD2, where both
players’ payoffs depend on the decisions at bothD1 andD2, as in Fig. 7(c). In this case, th
optimality of one player’s decision rule is clearly intertwined with the other player’s ch
of decision rule, and the two decision rules must “match” in order to be in equilibr
Indeed, as we discussed, the relevance graph in such a situation is cyclic, and Algorit
does not apply.

However, we can often utilize relevance structure even in games where the rele
graph is cyclic.
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Example 6.1. Consider the relevance graph for theRoad example, shown in Fig. 8(b
for n = 6 agents. We can see that we have pairs of interdependent decision var
corresponding to the two agents whose lots are across the road from each other. A
decision for a given plot relies on the decision for the plot directly to the south. How
it does not rely on the decision about the land directly north of it, because this decis
observed. None of the other decisions affect this agent’s utility directly, and therefor
are not s-reachable.

Intuitively, although the southernmost pair of nodes in the relevance graph re
each other, they rely on nothing else. Hence, we can compute an equilibrium for th
together, regardless of any other decision rules. Once we have computed an equ
for this southernmost pair, the decision variables can be treated as chance nodes,
can proceed to compute an equilibrium for the next pair.

We can formalize this intuition using the following definition:

Definition 6.2. A setS of nodes in a directed graph is astrongly connected component
(SCC) if for every pair of nodesD �=D′ ∈ S, there exists a directed path fromD to D′.
A maximal SCC is an SCC that is not a strict subset of any other SCC.

The maximal SCCs for theRoad example are outlined in Fig. 8(b).
We can find the maximal SCCs of a relevance graph in linear time using an algo

based on depth-first search (see (Cormen et al., 1990, Section 23.5)). Then we can c
acomponent graph whose nodes are the maximal SCCs of the relevance graph. Ther
edge from componentC to componentC ′ in the component graph if and only if there is
edge in the relevance graph from some element ofC to some element ofC ′. The componen
graph is always acyclic (Cormen et al., 1990). Thus, we can find a topological ord
C1, . . . ,Cm over the maximal SCCs of the relevance graph, such that if some elemenCi
is s-reachable from some element ofCj , theni < j .

Based on this definition, and our intuition above, we can now provide a divide
conquer algorithm for computing Nash equilibria in general MAIDs.

Algorithm 6.2.
Given a MAID M, a topological ordering C1, . . . ,Cm of the component graph derived

from the relevance graph for M.
1. Let σ 0 be an arbitrary fully mixed strategy profile.
2. For i = 1 through m:
3. Let τ be a partial strategy profile for Ci that is a Nash equilibrium in M[σ i−1

−Ci ].
4. Let σ i = (σ i−1

−Ci , τ ).
5. Output σm as an equilibrium of M.

The algorithm iterates over the SCC’s, finding an equilibrium strategy profile for
SCC in the MAID induced by the previously selected decision rules (with arbitrary dec
rules for some decisions that are not relevant for this SCC). Finding the equilibrium i
induced MAID requires the use of a subroutine for finding equilibria in games. We si
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convert the induced MAID into a game tree, as described in Section 4, and use a st
game-solving algorithm (McKelvey and McLennan, 1996) as a subroutine. We assu
our correctness proofs that the game solution subroutine returns an exact equilibr
the subgame.

It is important to understand exactly why the game trees passed to the game so
step 3 of Algorithm 6.2 may be smaller than a game tree for the entire MAID. The ind
MAID M[σ i−1

−Ci ] is the same as the original MAID, except that all decision nodes ou
of Ci have been converted to chance nodes. Recall from Section 4 that when we co
the game tree for a MAID, we only need to include the decision nodes and any c
nodes that are observed at those decisions. So the game tree forM[σ i−1

−Ci ] splits only on
the decision variables inCi and their parents. In computing the probabilities of natu
moves and the payoffs at the leaves, we sum out the variables that are not include
tree. Standard Bayesian network inference algorithms allow us to do these compu
efficiently, as illustrated by our experimental results in Section 6.3.

Now we begin to prove the correctness of Algorithm 6.2. In theith iteration of the main
loop in this algorithm, the game solution subroutine gives us a partial strategy profileτ for
Ci that is a Nash equilibrium inM[σ i−1

−Ci ]. Thus, for each agenta, the restriction ofτ to

Ci ∩ Da (which we will call τa ) is optimal for(σ i−1
−Ci , τ ). Is τa also optimal for the fina

strategy profileσm? We can conclude from Lemma 6.2 that each individual decision
in τa is still optimal for σm. But so far, our lemmas about how optimality is preser
when strategy profiles change have only dealt with the optimality of a single decision
Might the change from(σ i−1

−Ci , τ ) to σm give agenta an incentive to deviate fromτa on
several decision nodes simultaneously?

We can answer this question in the negative if we assume that for each agenta, the
relevance graph restricted toDa (agenta’s decision nodes) is acyclic. This conditio
is implied by the standard assumption ofperfect recall—that agents never forget the
previous actions or observations. More formally:

Definition 6.3. An agenta hasperfect recall with respect to a total orderD1, . . . ,Dn over
Da if for all Di,Dj ∈Da , i < j implies thatDi ∈ Pa(Dj ) andPa(Di)⊂ Pa(Dj ).

From Lemma 6.3, we can conclude the following:

Corollary 6.2. If an agent a has perfect recall with respect to an ordering D1, . . . ,Dn, then
the relevance graph restricted to Da is acyclic, and Dn, . . . ,D1 is a topological ordering
of the relevance graph restricted to Da .

We now consider a setCa of decision nodes belonging to a single agent. We show th
none of the decision nodes in another setE are s-reachable from any of the nodes inCa , then
changing the decision rules forE cannot give the agent an incentive to change her dec
rules on any set of nodes inCa . The difference between this result and Theorem 6.
subtle. In Theorem 6.1, we showed that Algorithm 6.1 yields a strategyσn

a for each agen
a such thata has no incentive to deviate on any set of decision nodes. The following le
is not about generating such strategies, but about how their optimality is preserved
irrelevant decision rules are changed.
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Lemma 6.4. Let σ be a strategy profile for a MAID M, and let τ be a strategy for a set Ca
of decision nodes belonging to a single agent a in M, such that τ is optimal for σ . Assume
that the relevance graph of M restricted to Da is acyclic. Let σ ′ be another strategy profile
for M that differs from σ only on a set of nodes E and possibly on Ca itself. If σ is fully
mixed on each node in E , and no node in E is s-reachable from any node in Ca , then τ is
also optimal for σ ′.

Proof. We begin by dispensing with the question of whetherσ ′ differs fromσ on some
nodes inCa . Let σ̃ be a strategy profile that agrees withσ ′ everywhere except onCa , and
agrees withσ onCa . Then the partial strategy profilẽσ−Ca is the same asσ ′−Ca . So to show
thatτ is optimal inM[σ ′−Ca ], it suffices to show thatτ is optimal inM[̃σ−Ca ]. So we have
reduced our task to showing that the lemma is true whenσ andσ ′ differ only onE , and
agree onCa .

We proceed by induction on the number of decision nodes inCa . If |Ca| = 1, then the
lemma reduces to Lemma 6.2. For larger SCCs, we cannot simply use Lemma 6.2
have no guarantee that the strategy profile withinCa is fully mixed. We therefore need
somewhat more elaborate inductive proof.

As an inductive hypothesis, assume the lemma holds for|Ca| = m, and we will prove
that it holds for|Ca| = m+ 1. Because the relevance graph restricted toDa is acyclic, it
has a topological ordering; letD1, . . . ,Dm+1 be the restriction of this topological orderin
to Ca . We must show that for any strategyτ ′ overD1, . . . ,Dm+1:

EUa(σ
′
−Ca , τ ) � EUa

(
σ ′−Ca , τ

′). (9)

Consider the decision ruleδ1 that τ assigns toD1. Sinceτ is optimal forσ , we know
δ1 is optimal for(σ−Ca , τ ). Note that(σ ′−Ca , τ

′) may differ from(σ−Ca , τ ) on E and on
any of D1, . . . ,Dm+1. But becauseD1, . . . ,Dm+1 is part of a topological ordering o
the relevance graph, none of the subsequent decision nodesD2, ...,Dm+1 are s-reachabl
from D1. Also, by hypothesis, no node inE is s-reachable fromD1. So by Lemma 6.1
there is some decision ruleδ∗1 for D1 that agrees withδ1 on all pa ∈ dom(Pa(D1)) where
PM[(σ−Ca ,τ )](pa) > 0, and thisδ∗1 is optimal for(σ ′−Ca , τ

′).
Let C̃a = {D2, . . . ,Dm+1}. Let τ̃ and τ̃ ′ be the restrictions ofτ and τ ′, respectively,

to C̃a . Sinceδ∗1 differs fromδ1 only on parent instantiations that have zero probability
M[σ−Ca , τ ], it follows that:

EUa

(
σ−Ca , τ̃ , δ∗1

)= EUa(σ−Ca , τ̃ , δ1)= EUa(σ−Ca , τ ). (10)

Also, sinceσ is fully mixed on all nodes where it differs fromσ ′, the set of paren
instantiations ofD1 that have nonzero probability inM[σ−Ca , τ ] is a superset of the set o
parent instantiations that have nonzero probability inM[σ ′−Ca , τ ]. Soδ∗1 agrees withδ1 on
all parent instantiations that have nonzero probability inM[σ ′−Ca , τ ]. Therefore:

EUa

(
σ ′−Ca , τ

)= EUa

(
σ ′−Ca , τ̃ , δ1

)= EUa

(
σ ′−Ca , τ̃ , δ

∗
1

)
. (11)

This is the first step toward proving (9).
For the next step, we must show thatτ̃ is optimal for(σ−D1, δ

∗
1). To see this, recall tha

τ is optimal forσ , which implies:

EUa(σ−Ca , τ ) � EUa

(
σ−Ca , τ̃ ′′, δ∗1

)
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for any strategỹτ ′′ overC̃a . Using the equality in (10), we find that for anỹτ ′′:

EUa

(
σ−Ca , τ̃ , δ∗1

)
� EUa

(
σ−Ca , τ̃ ′′, δ∗1

)
.

So τ̃ is indeed optimal for(σ−D1, δ
∗
1).

Note thatC̃a contains onlym variables. Hence, by the inductive hypothesis,τ̃ is also
optimal for (σ ′−D1

, δ∗1). In particular,τ̃ provides no worse an expected utility fora in
M[σ ′−D1

, δ∗1] thanτ̃ ′. That is:

EUa

(
σ ′−Ca , τ̃ , δ

∗
1

)
� EUa

(
σ ′−Ca , τ̃

′, δ∗1
)
.

Now we finally use the fact thatδ∗1 is optimal for(σ ′−Ca , τ
′), which tells us:

EUa

(
σ ′−Ca , τ̃

′, δ∗1
)
� EUa

(
σ ′−Ca , τ

′).
Applying transitivity to the last two inequalities, we can conclude that:

EUa

(
σ ′−Ca , τ̃ , δ

∗
1

)
� EUa

(
σ ′−Ca , τ

′).
Then applying (11) to the left-hand side of this inequality yields the desired inequ
in (9). ✷

Given this lemma, we can prove the correctness of Algorithm 6.2. The proof fo
the same lines as the proof of Theorem 6.1.

Theorem 6.2. Let M be a MAID where every agent has perfect recall, and let C1, . . . ,Cm
be a topological ordering of the SCCs in the relevance graph for M. Then the strategy
profile σm produced by running Algorithm 6.2with M and C1, . . . ,Cm as inputs is a Nash
equilibrium for M.

Proof. We must show that for any agenta and any alternative strategyσ ′a for Da ,
EUa(σ

m) � EUa(σ
m−a, σ ′a). The difference between what we must prove here and w

we proved in Lemma 6.4 is that here an agent could deviate on several SCCs at on
proceed by induction on the number of SCCs whereσm

a andσ ′a differ. The base case
where they differ on zero SCCs; thenσm

a = σ ′a and EUa(σm)= EUa(σ
m,σ ′a).

As an inductive hypothesis, suppose that wheneverσ ′a differs from σm
a on k SCCs,

EUa(σ
m) � EUa(σ

m−a, σ ′a). Now supposeσ ′a differs fromσm
a onk+1 SCCs. LetCj be the

first SCC in the ordering whereσ ′a andσm
a are different. Letτ be the restriction ofσm toCj .

This partial strategy profileτ for Cj is chosen in Algorithm 6.2 to be a Nash equilibriu

in M[σj−1
−Cj ]. LetCj,a = Cj ∩Da be the set of agenta’s decisions inCj , and letτa be agent

a’s strategy inCj,a , i.e., the restriction ofτ to Cj,a . It follows by Definition 3.5 thatτa
is optimal for(σ j−1

−Cj , τ ). Since the next step in the algorithm is to letσj = (σ
j−1
−Cj , τ ), we

knowτa is optimal forσj .
By construction in the algorithm,σm agrees withσj on C1, . . . ,Cj . Also, becauseCj

is the first SCC whereσ ′a differs from σa , we know that(σm−a, σ ′a) agrees withσm on
C1, . . . ,Cj−1. Although(σm−a, σ ′a) differs fromσm on Cj,a , it agrees withσm on the rest
of Cj (which consists of nodes controlled by other agents). LetE = Cj+1, . . . ,Cm, so that
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(σm−a, σ ′a) differs fromσj only onE andCj,a . By the properties of the topological orderin
of SCCs in the relevance graph, none of the nodes inE are s-reachable from any nod
in Cj,a . Also, σj agrees withσ 0 on E , so it is fully mixed on these nodes. Thus,
Lemmas 6.2 and 6.4,τa is also optimal for(σm−a, σ ′a).

In particular,τa yields at least as much expected utility as the restriction ofσ ′a to Cj,a in
M[σm−a, (σ ′a)−Cj,a ]. So:

EUa

(
σm−a,

(
σ ′a

)
−Cj,a , τa

)
� EUa

(
σm−a, σ ′a

)
.

But, asτa is the restriction ofσm
a to Cj , the strategy((σ ′a)−Cj,a , τa) differs fromσm

a on
only k SCCs. Hence, by the inductive hypothesis:

EUa(σ
m) � EUa

(
σm−a,

(
σ ′a

)
−Cj,a , τa

)
.

So by transitivity:

EUa(σ
m) � EUa

(
σm−a, σ ′a

)
which is the desired result.✷

Thus, we have shown that we can find a Nash equilibrium for a complex gam
breaking it up into a set of interacting smaller games. Each subgame can be so
sequence, relying on the solution to the previous games.

Our algorithm finds a single Nash equilibrium; if the game-solving subroutine
multiple Nash equilibria for an induced MAIDM[σ i−1

−Ci ], our algorithm selects on
arbitrarily. If it selected a different equilibrium for this small game, we would obta
global equilibrium with different decision rules forCi and (possibly) for all subseque
SCCs. We can visualize the choices of equilibria for the induced MAIDs as genera
tree of possible executions of the algorithm, with global equilibria at the leaves. Of co
since a game may have an infinite number of equilibria, we generally cannot constru
tree in practice.

Also, a MAID may have some equilibria that our algorithm cannot produce, no m
how it chooses equilibria for the induced MAIDs. For instance, the leader-follower M
in Example 5.1 has an equilibrium in which Alice goes north with probability 1, and
goes north with probability 1 regardless of where he sees Alice go. Applying Algorithm
to this MAID, we find thatC1 consists of Bob’s decision, andC2 consists of Alice’s decision
(we could also solve this MAID with Algorithm 6.1). The algorithm starts with a fu
mixed strategy profile: in particular,σ 0 assigns Alice a fully-mixed decision rule. So
M[σ 0

−C1
], the only Nash equilibrium (optimal strategy) is for Bob to go north if Alice g

north, and south if she goes south. Thus, our algorithm cannot find the nonsubgame
equilibrium where Bob goes north regardless of Alice’s action.

6.3. Experimental results

To demonstrate the potential savings resulting from our algorithm, we tried it o
Road example, for different numbers of agentsn. Note that the model we used diffe
slightly from that shown in Fig. 4: In our experiments, each agent had not just one
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node, but a separate utility node for each neighboring plot of land, and an additiona
that depends on the suitability of the plot for different purposes. The agent’s decision
is a parent of all these utility nodes. The idea is that an agent gets some base payof
building he builds, and then the neighboring plots and the suitability node apply ad
bonuses and penalties to his payoff. Thus, instead of having one utility node with 35= 243
parent instantiations, we have 4 utility nodes with 32= 9 parent instantiations each. Th
change has no effect on the structure of the relevance graph, which is shown forn= 6 in
Fig. 8(b). The SCCs in the relevance graph all have size 2; as we discussed, they cor
to pairs of decisions about plots that are across the road from each other.

Even for small values ofn, it is infeasible to solve theRoad example with standar
game-solving algorithms. As we discussed, the game tree for the MAID has 32n leaves,
whereas the MAID representation is linear inn. The normal form adds another exponen
factor. Since each agent (except the first two) can observe three ternary variables,
27 information sets. Hence, the number of possible pure (deterministic) strategies fo
agent is 327, and the number of pure strategy profiles for alln players is(327)(n−2) · (33)2.
In the simplest interesting case, wheren = 4, we obtain a game tree with 6561 termin
nodes, and standard solution algorithms, that very often use the normal form, woul
to operate on a strategic-form game matrix with about 4.7×1027 entries (one for each pur
strategy profile).

Solving theRoad game either in its extensive form or in the normal form is infeas
even forn= 4. By contrast, Fig. 9 shows the computational cost of our divide-and-con
algorithm asn grows: the time required grows approximately linearly withn. For example
we can solve aRoad MAID with 40 agents (corresponding to a game tree with 380 terminal
nodes) in 8 minutes 40 seconds. Our algorithm ends up generating a sequence ofn/2 small
games, each with two decision variables. We convert each of the induced MAIDs
small game tree, and use the game solver Gambit (2000) to solve it. Computing the p
in one of the small game trees requires Bayesian network inference, but the observe
performance of our algorithm implies that in theRoad MAID, the time needed to constru
a single game tree remains constant asn increases.

Fig. 9. Performance results for theRoad example.
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7. Related work

Although the possibility of extending influence diagrams to multi-agent scenario
recognized at least fifteen years ago (Shachter, 1986), the idea seems to have been
for some time. Brown (1999) suggests the use of influence diagrams for modeling v
game-theoretic and economic scenarios, but does not discuss either the formal foun
or the algorithmic issues. Zhang et al. (1992, 1994) and Nilsson and Lauritzen (2000,
discuss IDs where the perfect recall assumption does not hold, although there is on
agent (or all the agents share a common utility function). Both series of papers pr
graphical criteria for determining whether the optimal decision rule for a given
depends on the decision rules for any other nodes—in our terminology, whether the
node strategically relies on any other nodes. These criteria are similar to s-reachabi
are not complete in the sense of Theorem 5.2. The papers then derive algorithms
to our Algorithm 6.1. However, they do not deal with multiple competing agents, nor
cyclic relevance graphs.

Several other papers use ID-like representations for multi-agent scenarios. P
(1997) independent choice logic can represent the same conditional indepe
assumptions as a MAID, and also allows compact representations of CPDs and d
rules. Suryadi and Gmytrasiewicz (1999) use influence diagrams as a framewo
learning in multi-agent systems. The models used by Milch and Koller (2000) for reas
about agents’ beliefs and decisions are really MAIDs, although they do not use tha
Penalva et al. (2002) introduce influence opportunity diagrams (IODs), which are M
without utility nodes. They show that if the IODs for two games satisfy a certain grap
equivalence condition, then the two games areempirically equivalent in the sense that it i
impossible to tell which game is being played just by observing the probability distrib
over outcomes. However, none of these papers deal with algorithms for finding
equilibria.

LaMura has proposed such algorithms in his work on game networks (LaMura, 2
which are like MAIDs except that they represent multiplicative rather than add
decompositions of the agents’ utility functions. LaMura defines a notion of stra
independence, and also uses it to break up the game into separate components. H
his notion of strategic independence is an undirected one, and thus does not allow
grained a decomposition as the directed relevance graph used in this paper. Also, it d
allow a backward induction process for decisions that are not mutually independe
interesting aspect of LaMura’s algorithm is that, to find equilibria for a part of the gam
searches for solutions to equations constructed directly from the game network. We
be able to apply a similar technique to the induced MAIDs constructed in Algorithm
avoiding the use of game trees as an intermediate representation.

Other work on finding Nash equilibria efficiently uses thegraphical games model
introduced by Kearns et al. (2001) and Littman et al. (2001). They deal with games
each agent makes only a single binary-valued decision, and there are no observatio
game is represented as an undirected graph with a node for each agent: an agent’s
determined by his own decision and the decisions of his neighbors in the graph. Gra
games are essentially MAIDs with a single decision and utility node for each agen
no information edges. Each agent’s utility depends on his own decision, and on that
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neighbors in the graph. The relevance graph for such a scenario has two edges (one
direction) between each pair of neighboring decisions, and thus consists of one larg
So our divide-and-conquer algorithm is not helpful in such scenarios. However, K
et al. (2001) propose several exact and approximate algorithms for finding Nash equ
efficiently when the graphical game is a tree, and Vickrey and Koller (2002) desc
set of approximate algorithms for general graphical games. It is an open question w
these algorithms can be extended to more general MAIDs, where agents have obse
and make multiple decisions.

8. Discussion and future work

We have introduced a new formalism, multi-agent influence diagrams (MAIDs)
modeling multi-agent scenarios with imperfect information. MAIDs use a represen
where variables are the basic unit, and allow the dependencies between these vari
be represented explicitly, in a graphical form. They therefore reveal important qual
structure in a game, which can be useful both for understanding the game and as th
for algorithms that find equilibria efficiently. In particular, we have shown that our div
and-conquer algorithm for finding equilibria provides exponential savings over ex
solution algorithms in some cases, such as theRoad example, where the maximal size
an SCC in the relevance graph is much smaller than the total number of decision var
In the worst case, the relevance graph forms a single large SCC, and our algorithm
solves the game in its entirety, with no computational benefits.

This work opens the door to a variety of possible extensions. One obvious direc
to relate MAIDs to existing concepts in game theory, particularly equilibrium refinem
It is fairly straightforward to show that the solution found by our algorithm in the cas
acyclic relevance graphs is aperfect Bayesian equilibrium (Fudenberg and Tirole, 1991
it would be interesting to show an analogous result for the more general case.

Another direction relates to additional structure that is revealed by the notion of str
relevance. In particular, even if the relevance graph is cyclic, it might not be a
connected subgraph; for example, we might have a situation whereD1 relies onD2, which
relies onD3, which relies onD1. Clearly, this type of structure tells us something about
interaction between the decisions in the game. An important open question is to a
the meaning of these types of structures, and to see whether they can be explo
computation gain.

Finally, the notion of strategic relevance is not the only type of insight that we
obtain from the MAID representation. We can use a similar type of path-based anal
the MAID graph to determine which of the variables that an agent can observe b
making a decision actually provide relevant information for that decision. In com
scenarios, especially those that are extended over time, agents tend to accumulate
many observations. The amount of space needed to specify a decision rule for the
decision increases exponentially with the number of observed variables. Thus, the
been considerable work on identifying irrelevant parents of decision nodes in single
influence diagrams (Howard and Matheson, 1984; Shachter, 1990, 1998). In this ca
can use d-separation to identify irrelevant parents of a given decision node in time
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tions of
in the number of variables. We can use a similar technique in MAIDs, allowing u
eliminate some parents of the decision node. At the level of the associated game tr
process results in collapsing of several information sets into one (a process calleddeflation
in (Dalkey, 1953; Okada, 1987)). The structure of the MAID allows us to detect cases
this process can be executed without any loss to the agents.

However, the multi-agent case also raises subtleties that are absent in the singl
case. In this case, an observed variable that does not directly influence one agent’s
might nevertheless be relevant, if another agent conditions his behavior on this va
Maskin and Tirole (1997) provide a definition of payoff-relevant events in the m
agent setting, and define aMarkov perfect equilibrium as a perfect equilibrium in whic
each agent’s decision rules are conditioned only on payoff-relevant events. Mask
Tirole also provide an algorithm for determining whether an event is payoff-rele
This algorithm involves comparing the utilities of all outcomes in two sub-trees
game tree, to determine whether the utility functions in the two sub-trees are equiv
Thus, in a symmetric tree, it requires examining an exponential number of outcome
have preliminary results indicating that we can determine sets of payoff-relevant e
(variables) in a MAID in polynomial time, using an extension of the standard algori
for influence diagrams. We plan to pursue this issue in future work.
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