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Summary. Several `smart market' mechanisms have recently appeared in the
literature. These mechanisms combine a computer network that collects bids
from agents with a central computer that selects a schedule of bids to ®ll
based upon maximization of revenue or trading surplus. Potential problems
exist when this optimization involves combinatorial di�culty su�cient to
overwhelm the central computer. This paper explores the use of a compu-
tation procuring clock auction to induce human agents to approximate the
solutions to discrete constrained optimization problems. Economic and
computational properties of the auction are studied through a series of
laboratory experiments. The experiments are designed around a potential
application of the auction as a secondary institution that approximates the
solution to di�cult computational problems that occur within the primary
`smart market', and show that the auction is e�ective and robust in eliciting
and processing suggestions for improved schedules.

JEL Classi®cation Numbers: D44, D83, D82, C92.

Introduction

Advances in computer technology, networking technology, and the under-
standing of decentralized market forces ± driven by both theory and exper-
iment ± create a unique opportunity for economists to apply market
processes to allocation and decision problems in areas where markets were
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not previously practical. The ability of the internet to bring together distant
agents for competition coupled with the application-speci®c market rules
that can be programmed into a computerized system allows the construction
of decentralized processes that before could exist only in theory. Such
markets, called ``smart markets''1 because of their high-tech implementation,
predate the recent growth of online commerce and started being proposed in
the early 1980s. Although not all of the early proposals survived to imple-
mentation, the list of potential applications that has been suggested by the
literature is quite broad and the experimental data has suggested that a
potential for success does exist.

Proposed smart market applications include airport time slot allocation,2

resource planning for space missions,3 project management,4 assignment of
time slots for equipment usage,5 markets for trading and transporting nat-
ural gas and electricity,6 and the allocation of access to railroads.7

The economic philosophy that markets should be more e�cient than
administrative processes has many sources. Hayek (1945) suggested that a
preference for markets should depend on the structure and nature of infor-
mation. He argues that if important information is decentralized, then a
decentralized economic system will be better at processing it than a system
that tries to collect the information to a central location. Hurwicz (1972)
attempted to formalize the idea of decentralized economic systems, and
along with the contributions of numerous others a theory of mechanism
design8 has evolved in the literature.

Just as the early laboratory ®ndings9 of high e�ciencies in classical
market environments prompted researchers to ask whether markets could be
extended to non-classical problems,10 the smart market research creates new

1 The term ``smart market'' for the description of these resource allocation processes seems to

originate with McCabe, Rassenti, and Smith (1988).
2 See Rassenti, Smith and Bul®n (1982) and Grether, Issac, and Plott (1989).
3 See Banks, Ledyard, and Porter (1989) and Plott and Porter (1990, 1996).
4 See Ledyard, Porter, and Rangel (forthcoming).
5 See Olson and Porter (1994).
6 See McCabe, Rassenti, and Smith (1987, 1989), and Rassenti, Reynolds, and Smith (1994).
7 See Brewer and Plott (1996), Brewer (1995), and Nilsson (1991, 1993, 1994).
8 For a survey, see Groves and Ledyard (1987). For a look at the basic concepts of the

mechanism design approach, see Ledyard (1991, 1993).
9 Smith (1962) reports on the e�ciency of experimental markets in a number o f di�erent supply

and demand con®gurations. A brief selection of recent articles related to e�cient information

aggregation in laboratory markets would include Plott and Sunder (1982, 1988), Friedman

(1984), Forsythe, Nelson, Neumann, and Wright (1992) and Cason and Friedman (1996). This

selection covers a variety of economic environments in which information aggregation is

important, and is by no means an exhaustive list.
10 For instance, the airport slots, space mission, and railroad problems all share a common

property in that non-convexity of preferences and indivisibility of resources are present. Also, see

Plott (1994).
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questions that require an answer. Two related questions are explored in this
paper.

The ®rst question involves what one should do when increases in scale of
use combine with the complexities of certain mathematical problems to cause
a runaway failure of a smart market design. The term ``runaway'' is used to
describe a computer program that has not crashed per se. There is no bug or
technical ¯aw. The problem being solved is simply too hard, and the com-
puter takes longer to solve it than practical. Such a failure might be attrib-
uted to a lack of computing power, but computer scientists have identi®ed a
class of NP-complete optimization problems for which computing require-
ments grow so quickly that additional hardware technology is not usually the
answer. Optimization of bid revenue or of trading surplus is a routine cal-
culation in many smart market designs, and such designs can involve com-
putation of NP-complete problems.

The second question poses an unusual response to the ®rst question.
Instead of using a central computer, can a secondary auction be used to
create a decentralized computer that runs the primary market? Equations
would be sent to the auction for solution, agents would compete to provide
solutions, and solutions would be checked before rewarding the agents who
submitted them. In this way, the computing bottleneck might be eliminated
from the smart market design.

Ideally, the computation procuring auction could provide 3 speci®c
bene®ts in correcting runaway smart markets. The ®rst bene®t is that the
auction transfers computational di�culties onto a broader class of agents,
who will compete to solve them. Competition among agents and solution
techniques should yield lower computational costs than solution via a ®xed
algorithm. The second bene®t is that the strategic private information of
agents might be applied to the computational problem, rather than solving it
centrally in the absence of this information. The third bene®t is that a
properly designed auction might force the bene®ts and costs of continued
computation to be assessed, preventing the runaway failure problem that was
possible with centralized computing.

Creating a decentralized computer that can solve any of the mathematical
problems that a centralized electronic computer can solve is a challenging
proposition. The primary goal of this research is not to solve this problem
with a single study. Instead, this research initiates an exploration into exis-
tence. Can the idea be seen in operation? Can an auction procure at low cost,
the intellectual good of solution or approximate solutions to optimizations?
Laboratory experiments can help to provide the answers to these questions.

Limiting the types of problems that the decentralized computer must
solve is crucial to both the success and the applicability of the research. The
problem to be solved will involve an optimization problem from a smart
auction called BICAP. The optimization involves maximizing bid revenue
from a set of known bids relative to a known feasibility constraint. BICAP
stands for Binary Con¯ict Ascending Price auction, and was an auction
constructed for allocating access to railroads. The BICAP application was
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chosen for two reasons: it is easy to describe and understand,11 and it can
involve signi®cant computational complexities at large scales.

The conclusion of this paper will be a demonstration, via experimental
methods, of a particular auction mechanism created in this paper. This
mechanism will be called the ``Computation Procuring Clock Auction'' or
CPCA, and will be shown to be e�ective at solving or approximating the
maximum bid revenue in the BICAP smart auction.

In these experiments, CPCA will be merged with BICAP. The BICAP
rules will continue to apply to the bidding procedures for the trains, but
CPCA will attempt to ®nd the train schedule. The schedule is supposed to be
the set of bids for trains that maximizes bid revenue and satis®es a complex
set of feasibility constraints (basically, no collisions between the trains), but
this requirement will be relaxed somewhat. CPCA will accept any feasible
suggestion, but will enforce an improvement rule and reward agents
according to the level of improvement in their scheduling suggestions.

The experiments are intended to provide a ``proof of concept'' or ``proof
of principle'' and also provide data on the operation of the auction that can
be used to argue design consistency. If the auction is observed to work,
works repeatedly, and works for reasons that are consistent with economic
theory, then we might initially trust the design to function consistently in
similar applications until counterexamples begin to be revealed. In this way,
the domain of applicability of the techniques can be discovered in a process
of future theoretical and laboratory research.

The demonstration problem that CPCA solves is in itself a signi®cant
problem from both an applied and a theoretical perspective. The problem
comes from a question about privatizing access to railroads in Sweden and
whether the BICAP could be scaled up. TheBICAP auction requires a ``market
maker'' to calculate the set of winning bids from a complex set of safety and
other contingency constraints. This calculation will be taken over by CPCA ±
functioning as an auction within an auction.12 In a broader sense the issues
about scaling up are common tomany of application-speci®c, ``smart'' market
mechanisms that have been appearing in the literature since the early 1980s.

The broader applied perspective is that the development of something like
CPCA may broaden the applicability of ``smart'' market techniques by
eliminating the requirement that the market maker choose a scale of com-
puting resources to make available. Typically, a market maker must provide
the computing power for the market to function. He must choose in advance
what kind of computing facilities to provide. This choice becomes a short
run constraint on computing resources that has consequences in terms of

11 Rubinstein (1996) suggests that binary relations are common in natural language (e.g. to the

left of, above, con¯icts with) for exactly such utilitarian reasons.
12 Thus, in the combined BICAP� CPCA process, an agent desiring to run a train submits a

BICAP bid and competes with other bidders. An agent who can compute schedules submits

scheduling suggestions to CPCA and will compete with other agents for cash bonuses that will be

awarded under the CPCA process.
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transaction costs and capacity13 of the market to handle more complex sit-
uations. CPCA could improve the applicability of these new market tech-
niques by decentralizing the operations of the market maker. CPCA could
provide the market maker with access to a broader range of facilities for
problem solving.

The broader theoretical perspective is that di�cult computational bur-
dens can be lightened by integrating strategic information, possessed by
human agents, into attempted solutions of the problem. In a sense the design
of the auction follows Hayek's [1945] lead, in that it insures that information
about ``the peculiar circumstances of time and place'' can compete with
expert technical knowledge. Modern ideas about heterogeneous computing
agents may also play a signi®cant role in understanding the operation of the
process but are beyond the scope of this paper.

The use of the incentive system of an auction to create a kind of ``com-
puter'' that, instead of using a ®xed hardware facility or software algorithm,
uses an auction to determine who solves what pieces of the problem, on what
hardware, and how is an exciting new idea from a computational perspective
as well. Such a ``computer'' should have some interesting properties when
compared to the typical operation of an ordinary electronic computer. Sys-
tems of equations sent to the auction would be publicly solved by agents in
the marketplace, who would be paid for their e�orts at a price level deter-
mined by performance and competitive forces. Least cost agents or tech-
niques would have an advantage in the competition, but other techniques
would also be involved in the competition. This could create a type of ro-
bustness or backup, so that if one solution technique fails another could still
succeed in providing a solution. In addition, such a ``computer'' could use
information that might be unavailable in a traditional, centralized setting.
When privately held strategic information is important to solving a problem,
the auction could give incentives for this private information to be applied,14

reducing solution cost or solution time. The laboratory experiments will
make it possible to demonstrate these ideas in operation.

Creating an e�ective computation-procuring auction is challenging.
There is a ``lemons''15 di�culty with more general approaches, a di�culty
that can be overcome for the limited class of mathematical problems de-
scribed in this paper. The lemons result involves the quality of goods and

13 Thus, one view is to limit smart markets to economic environments that are likely to be

solvable. Rothkopf, Pekec, and Harstad (1995) consider such an approach.
14 Disclosure of the private information might otherwise never occur in these cases. The private

information might remain completely with an agent, who might consider privacy valuable

towards their strategic position.
15 As shown theoretically by Akerlof ± if the quality of goods is costly to the seller, valuable to

the buyer, and unobservable to the buyer before the sale, least cost procurement can result in

acquiring low quality goods. Exact ``solutions'' to mathematical equations di�er in quality by

being either ``right'' or ``wrong'', so an auction could result in an incorrect answer to the system

of equations. Approximate solutions could be inaccurate.
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suggests that quality of solutions submitted to the auction should be moni-
tored. Monitoring for accuracy of solutions could involve considerable
computational e�ort on the part of the buyer and possibly introduce addi-
tional complications in the transaction between the buyer and seller. Keeping
solution quality high, using competition to lower costs, and avoiding large
transactions or monitoring costs are the challenges that the any auction-
based approach at computation must address.

Investigating the performance of CPCA will involve the creation of a new
economic criteria necessary to describe CPCA as a computational process.
This criteria ± to be called ``Computing E�ectiveness'' ± is di�erent from the
social welfare criteria of e�ciency of allocation, which is typically used to
evaluate new kinds of market processes. Constraints on the kinds of data
observable in the experiments motivates analysis in terms of this new criteria.
The current series of experiments will only allow observation of the outcomes
of CPCA and not the internal workings of the human agents involved in the
computation. One can not know how di�erent agents were thinking or what
mental steps they took to solve problems and submit suggestions to the
CPCA process. Because of this di�culty, there will be no way to insure that
the human agents are computing in the most socially e�cient way, and there
are many reasons to believe that some ine�ciencies will occur.16

The current research, as a proof-of-principle, is primarily concerned with
whether a decentralized computing technique can be e�ective at all. Thus, the
data analysis concentrates on particular aspects of CPCA's computational
capabilities, such as accuracy of solutions and costs of incentives paid to
agents, with the question of overall social e�ciency left for future research.

The remainder of the paper will be organized as follows. Section 2
introduces notation and concepts regarding scheduling problems. Both
scheduling in general and railroad scheduling will be addressed. General
computing techniques for optimal scheduling will be discussed, as well as the
implications for agents with limited computational abilities. The Computa-
tion Procuring Clock Auction [CPCA] mechanism is de®ned in section 3 and
it is a simple variation of a well known clock auction mechanism. Section 4
considers how to interface CPCA to the BICAP rail auction. Issues are listed
and an interface between the two processes ± which will run simultaneously ±
is de®ned. An experimental testbed environment is de®ned in section 5.
Human subject experiments are conducted using the economic environment
from section 5. The results of these experiments are reported in section 6. The
®nal section, section 7, contains concluding remarks.

2 Scheduling: Concepts and notation

Management of access to a common facility, such as railroad tracks, a
spacecraft, or a laboratory typically involves feasibility constraints and some

16 For example, there could be duplication of e�ort. CPCA does not attempt to coordinate

agents to work on separate parts of a problem.
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notion of value or priority. Because some uses can be carried on simultaneously
while other uses can not, a manager interested in ®nding the best schedule for
sharing the facility among the several uses and users faces a decision problem
with a particular mathematical structure. This section provides an introduc-
tion to the mathematical notation for such scheduling problems.

2.1 General scheduling environments

A schedule S is a set of uses for a facility. Extensions of this notation where a
schedule could be a function giving a set of uses at various times, a vector, a
matrix, or some other mathematical object are possible but are beyond the
scope of this work. It is useful to assume that the set of schedules is ®nite,17

though perhaps large.
Let s be the set of all schedules, and let F indicate a subset of schedules

that are feasible. Feasibility of a schedule is determined by a function
F � � : s! f0; 1g. This function contains all of the technical, application-
speci®c constraints for determining feasibility of schedules. If F �S� � 1, then
s is a feasible schedule and so S 2F. If F �S� � 0, then S is not a feasible
schedule and so S j2F.

De®ning feasibility via a function18 F � � captures an essential di�erence
between feasibility constraints and the feasible set that will be important later
when considering computational costs and agents with limited abilities. In
certain di�cult optimization problems, it is easy to determine if a particular
schedule is feasible but di�cult to search for and enumerate the set of all
feasible schedules. If computational abilities are quite costly then an agent
can determine F from F �S� and s, but only at a prohibitively high cost.

The value of a schedule is given by a function Q� � : s! <�. Q�S� is a
positive real number giving the value19 of a particular schedule S. The
manager's problem in choosing the best schedule can be described via a triple
�s; F ;Q� which will be called a constrained optimization environment.

17 Although optimization over a continuum involves interesting issues, a number of applied

scheduling problems can be posed as optimizations over a [large] ®nite set. For example, in

scheduling the uses of a facility over time, one could consider only 1 second, 1 minute, or 1 hour

blocks of time as appropriate. If there are a ®nite number of possible uses at any time, and a

®nite number of times, then there are a ®nite number of schedules that can be chosen. The

®neness of such scheduling will depend on details of a particular application. As the purpose of

this section is primarily notational rather than theoretical, there is no reason for the reader to be

burdened with the consideration of technicalities involved with in®nite or dense sets.
18 The use of this notation does not reduce generality. If one begins a problem knowing the

feasible set of schedules F, it is easy to construct a feasibility function F � � that faithfully

generates that feasible set. F �S� � 1 if S is in F ; F �S� � 0 if S is not in F.
19 In this ana lysis, Q� � need not depend on whether S is feasible or not. For example, Q� � might

be an amount of money that could be collected if this schedule were implemented, and this

amount might not depend formally on feasibility. In the analysis that follows, only feasible

schedules can be selected. Values of Q� � outside of the feasible set of schedules will not a�ect the
schedule that is chosen.
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De®nition. A constrained optimization environment E is a triple �s; F ;Q�,
where:

s is a set of elements fS1; S2; . . .g [the solution space]
F �S� : s! f1 � ``feasible''g; 0 � f``not feasible''g [the constraint func-

tion]
Q�S� : s! <� is a positive, real-valued function of S [the criterion func-

tion].

2.2 Example: Railroad scheduling

The initial tests of the techniques developed in this paper will involve a model
scheduling problem involving access to railroad tracks. Auctions for rail
scheduling will be seen to involve computation al issues described by the
general framework de®ned above.

De®nition. A railroad scheduling environment is speci®ed by:
(a) a physical con®guration PC � �R;C�, where

R is a set of train routes
C � R
 R a set of train pairs that con¯ict; AND

(b) an economic con®guration EC � �I ; V �, where
I � f1; 2; 3; . . . ; i; . . . ; Ig a set of agents
V is a matrix of agent's private values for trains, with elements Vi�r�
de®ned for each i 2 I and r 2 R.

The physical con®guration of the railroad determines a portion of the
constrained optimization environment E � �s; F ;Q�, such that:

(i) sPC � 2R � fS : S � Rg � set of all subsets of R.
(ii) FPC�S� � 1 if and only if ��S 
 S� \ C � [�

FPC�S� � 0 otherwise.

Two of the three elements of E are determined by the physical con®gu-
ration alone. The remaining element, the criterion function Q� �, depends on
the type of public information that is present. The information that is
available depends on institutional features. Two examples, key to the later
arguments of the paper, are considered below.

E�cient scheduling EV

The criterion for e�cient scheduling is to attempt to maximize the value of
agents' uses of the track. The values V of the trains to each operator must be
known to the manager.20 Any trains that are scheduled can then be assigned

20 Whether the manager can obtain the necessary information about values, especially when the

values are privately held con®dential information, is often a key point of debate about whether a

centralized or decentralized system of management is appropriate. If the values are known, then

the e�cient scheduling problem will involve the constrained optimization environment de®ned

above.
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to the agent with the highest value. For each r 2 R let HV�r� � maxi2I Vi�r� be
the highest value for each train. Then in the general scheduling framework,
Q�S� � Qv�S� �

P
r2S

HV�r�, and
Ev � �sPC; FPC� �; Qv� �� :

Auction-based scheduling EB

The criterion for auction-based scheduling is to attempt to maximize the
total bid revenue for use of the track. The manager does not need to know
the values V . Instead, under auction-based scheduling, agents bid for the
right to run the various trains.21 Suppose for each train route r 2 R,
B�r� is the bid on that train. Then in the general scheduling framework,
Q�S� � QB�S� �

P
r2S

B�r�, and EB � �sPC; FPC� �; QB� � �.
This paper will concentrate primarily on the computational challenges

inherent in auction-based scheduling rather than on a comparison of auc-
tion-based scheduling and e�cient scheduling. This distinction will become
important in the design of the experiments and the techniques for data
analysis.

2.3 Computational perspectives

Attempting to maximize the criteria Q�S� over the feasible schedules could be
done in many ways. The best way of mathematically or computationally
setting up a particular problem involves many di�erent, possibly con¯icting
issues. For example, if a computing machine is to be used, there are tradeo�s
involved between programmer time and machine time in choosing an elegant
versus a brute force style of solution. Details on how a problem is set up
certainly a�ect the likelihood of obtaining a solution as well as its accuracy.
These details become important when computational capabilities are severely
limited or extremely costly.

An instance of a computational problem is an environment E together
with conditions a solution must satisfy. Thus, a problem has a formal de®-
nition. The computational perspective that a particular problem imposes is
not rigorously de®ned, but involves intuitions about tradeo�s between the
kinds of solutions likely to be obtained in practice and under harsh condi-
tions. Two types of problems are de®ned below.

De®nition. An instance of OPTIMIZATION �E � is the problem: ®nd a
solution S� 2 s such that

(a) F �S�� � 1, and

21 In theory, the agents with high values will outbid the agents with low values. Whether that in

fact occurs is a question for empirical ®eld and laboratory research. In any case, the

computational problem for the scheduling authority is to maximize the bid revenue over the

feasible schedules.
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(b) Q�S�� � Q�S� for every S 2F
or return the null solution [.

De®nition. An instance of IMPROVEMENT �E; S� is the problem: ®nd a
solution S� 2 s such that

(a) F �S�� � 1, and
(b) Q�S�� > F �S�Q�S�

or return the null solution [.

The problems of IMPROVEMENT and OPTIMIZATION are related in
a straightforward way. If a non-null solution to OPTIMIZATION �E� ex-
ists, let this solution be S�. Then the solution to IMPROVEMENT �E; S��
must be [ because no feasible schedule can have a higher Q� � value than S�.
This suggests that an algorithm that repeats the improvement procedure,
improving the schedule until a feasible schedule with a higher value can not
be found, could yield solutions for OPTIMIZATION.

De®nition. An instance of the ITERATIVE-IMPROVEMENT �E; S0� al-
gorithm involves ®nding a solution S� 2 s via the following procedure:

for k � 1; 2; 3; . . .
repeat Sk � solution to IMPROVEMENT �E; Skÿ1�

until Sk � [
end with the solution S� � Skÿ1

When agents have in®nite computational abilities, the ITERATIVE-
IMPROVEMENT algorithm will solve the OPTIMIZATION problem. An
improvement solution exists if and only if the optimum has not been reached.
ITERATIVE-IMPROVEMENT can only stop if the optimum schedule is
calculated, and thus, its solution is equivalent to OPTIMIZATION.

2.4 Limited rationality

Limits on agents' computational abilities create a distinction between
the problems OPTIMIZATION, IMPROVEMENT and ITERATIVE-
IMPROVEMENT. IMPROVEMENT involves evaluating the functions F
and Q until a suitable schedule is found or until the agent ``gives up''.
OPTIMIZATION could require calculating the entire feasible set F, and
this increased di�culty increases likelihood that an agent will ``give up''.

Suppose that either OPTIMIZATION or IMPROVEMENT can fail
by returning a solution of [ when in fact some solution does exist. This
provides agents involved in computing a way out of a prohibitively costly
situation, and it provides mechanism designers a way to model the failure of
computations.

If a di�cult computation is structured as OPTIMIZATION, the ®nal
result may be [. In scheduling resources, a null schedule may be feasible but
not particularly desirable. A more useful result is likely if the computation
is structured as ITERATIVE-IMPROVEMENT, because as long as some
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IMPROVEMENT solution is found, a non-null schedule solution will be
returned. The return from ITERATIVE-IMPROVEMENT may or may not
be optimal, but it is more likely to be higher in Q� � value than a solution of
[. Furthermore, while a null solution to OPTIMIZATION is not particular
useful for further attempts at solution, the schedule solution to ITERA-
TIVE-IMPROVEMENT can be used to start another instance of the
algorithm,22 with no loss of the partial solution information.

3 The computation procuring clock auction [CPCA]

3.1 Overview

The CPCA mechanism involves a modi®cation of the ITERATIVE-IM-
PROVEMENT algorithm of the previous section. The primary modi®cation
is to invite the participation of many di�erent agents by providing payment
incentives similar to those in a clock auction. Thus, the name of the mech-
anism ± the Computation Procuring Clock Auction. This section is con-
cerned with de®ning and explaining the formal rules of this auction.

CPCA can be summarized as follows. At the beginning of the auction
there is some status quo feasible schedule. Agents who can ®nd and submit
an improved solution are paid a bonus equal to some percentage of the
improvement. While this is happening, a clock counts down from some initial
value. This clock indicates the time remaining in the auction if no im-
provements are submitted. As the clock counts down, the percentage of the
surplus o�ered to any agent submitting an improvement increases. The
percentage of the surplus o�ered to agents approaches 100% as the time
remaining approaches zero.

If an improved solution is submitted, the clock is reset and more im-
provements are sought. If no improved solution is found, then the procedure
ends with a recommendation to implement the best solution found so far.
The idea is that if no agent is willing to provide an improvement, even when
they are given all the surplus from the improvement, then further improve-
ment in the solution is not practical, at least not in a decentralized framework
with the given agents.

Some CPCA parameters, such as the choice of the time scale and the way
that the bonus increases as time ticks down, might be adjusted in order to
``®ne tune'' CPCA to a speci®c need. At the current time, there is no well
organized theory about how this might be done. In choosing a means for
approximating maxima, one typically wants to minimize solution time, and
solution cost, but maximize solution accuracy, all else being equal. But how

22 In his survey of bounded rationality, Conlisk (1996) mentions that iterative models are in use

in the theory of bounded rationality. In the bounded rationality literature, ideas similar to

iterative improvement are ± under other names ± o�ered as a behavioral theory of human

activity. Thus the ideas presented here are not totally unfamiliar to the economic literature.

When the manager does not have perfect rationality, it is reasonable for him to attempt an

iterative improvement calculation rather than a full optimization.
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to trade o� these qualities against each other is not obvious. Di�erent ap-
plication-speci®c needs might dictate di�erent tradeo�s one could make in
solving speci®c instances. The goal here was to ®nd a common mechanism or
adaptation of a common mechanism that would respond to all three of these
dimensions of the computing problem.

3.2 Formal description: states, messages, and transitions

In this section, the rules of CPCA are described using an event-driven ap-
proach that should be familiar to those who study dynamical systems or
state-machines. In this approach, the mechanism has a state that reacts to
events. Events are outside stimuli, such as messages from agents or the pas-
sage of time, that cause the state of the mechanism to change. Transition rules
indicate how events a�ect the states of the mechanism.

States have importance in this model of CPCA for two reasons. (1) The
current state of the mechanism is public information and common knowledge.
The state is available to all participants and everyone knows that the other
agents are seeing this information. (2) Given the current state in formation
and the transition rules, agents can determine the immediate e�ect that their
messages can have upon CPCA states and outcomes, as well as what will
occur if agents take no further action.

CPCA is described by 4 classes of states: null [ , listening L, veri®cation V ,
and closing C. The role of each of these classes will be made clear shortly. A
particular state is de®ned by a letter for the class �[; L; V ; or C� together
with the values of certain parameters that are relevant for that state. These
parameters are put in braces after the letter, e.g. LfQ; F ; S; bg denotes a
listening state with parameters Q; F ; S and b. The following paragraphs will
de®ne further the various classes of states and their parameters.

Classes of states

The null state [ denotes a pre-existing state of the world before the mecha-
nism is placed into operation. In the null state, there is no public information
about the mechanism's operation. ``Starting'' the mechanism involves a
transition away from the null state to a state where public information exists.

``LfE; S; bg'' denotes a listening state where E is a constrained optimiza-
tion environment, S is the best solution so far, and b is the current bonus rate.

``V fE; S; b; S�; ig'' denotes a veri®cation state. The environment E and the
variables S, and b have the same interpretation as in the listen states de-
scribed above. In this state, agent i has suggested that S� is better than the
solution S. That is, the agent claims that Q�S�� exceeds Q�S�. The mechanism
remains in the veri®cation state until this claim is veri®ed or rejected.

CfE ; SFINALg denotes a closing state. The closing state parameters are
the environmental parameters and the ®nal solution SFINAL obtained by the
CPCA mechanism. The closing state is a terminal state. It is a ®nal outcome
of the mechanism.
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Events

When events involve a particular agent, the notation for the event will in-
volve an arrow. For example, the notation ``actor ! event 1'' shows that a
particular actor caused event 1. There are 4 events that a�ect the current state
of CPCA. Two of these events are messages from the market maker. The
event mm! E�E ; S0� indicates that the market maker made public the de-
tails of the improvement problem to be solved. The market maker must also
send a message to verify or reject suggestions that are submitted by the
agents. The other two events are suggestion messages from agents for
improved solution, and the passing of time with no such suggestions. Details
of these messages are shown in Appendix A.

Transition rules

The transition rules for the various states and events are illustrated in
Figure 1 and more formally de®ned in Appendix A. The ®gure is complete in
the sense that it shows the features of the rules necessary to the operation of
CPCA. The notation of the ®gure can be read as follows. States are given by
circles. Dashed lines indicate potential steps of how CPCA responds to
events that might or might not occur. Solid lines indicate procedural steps
that must occur. Boxes give details of procedures that are required in the
transition from one state to another.

Figure 1 can be interpreted as follows. The mechanism initially exists in a
null state [, where nothing is happening and agents have no information. An
agent called the ``market maker'', who is responsible for the maintenance of
CPCA, starts the mechanism by sending the message ``mm! E�E; S0�''
[dashed line]. This message speci®es the constrained-optimization environ-
ment E (the functional form Q�S� of the criterion to be maximized, and the
function form F �S� of the feasibility constraint) along with the an initial
feasible schedule S0. The CPCA mechanism is then reset [solid box] so that
the information on the CPCA public display is then reset to indicate this
information. A particularly important variable, the bonus rate b, is set to
0%. This bonus rate determines the rate of payment to agents who submit
suggestions to the message. The mechanism then enters a Listen state where
it waits for one of two events to occur. Either (1) some agent, say agent k,
sends in a suggestion message for an improved solution to the constrained-
optimization environment or (2) time passes without any agent sending in
such a message. These two possibilities are considered separately below.

If time passes without a suggestion message from an agent, then the
indicated path is followed. If agents do not provide suggestions, the bonus
rate b steadily increases from 0% to 1%, 2%, 3%, up to 100%. When b
reaches 100%, the mechanism closes The bonus rate b is rising in a familiar
way, similar to the increase in price level in a clocked auction. As will be seen
in the next paragraph, b is such a price. b gives the proportion of the im-
provements surplus to be awarded to the agent submitting the suggestion.
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Figure 1. CPCA ¯owchart
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As b increases, an agent might know or ®nd a solution to the problem
IMPROVEMENT�E; S� of ®nding an improved schedule that is better than
the current schedule S. If agent k believes that the schedule S� is such a
solution, then agent k has the option, but not the requirement, to send a
suggestion message k ! S�k; S��. Such a message causes the mechanism to
leave the listen state and enter a veri®cation state V f g where the suggestion
�k; S�� is stored until it can be veri®ed. The market maker then veri®es
whether the suggestion is an improvement �F �S��Q�S�� > Q�S�� or not. If the
suggestion is an improvement, then a counterclockwise path is followed from
the verify state back to the listen state. First, the box ``POSITIVE IM-
PROVEMENT'' is entered, the market maker pays the agent the bonus rate
times the amount of the improvement, sets the current solution to S� and
then sets the bonus rate back to b zero. The mechanism once again enters a
Listen state. If the suggestion is not an improvement, then the clockwise path
is followed. The agent pays a penalty to the market maker, and then the
mechanism goes back to a listen state.

If no agent sends in an improvement, the bonus rate b climbs to 100%
and then the mechanism enters the (terminal) closed state. Stated another
way, if no agent can provide an improved solution when o�ered the entire
improvement �b � 100%�, then the process is terminated. The intuition be-
hind this termination rule is that the system should stop when costs of further
improvements exceed the bene®t in the improved solution.

3.3 Theoretical properties of the process

The purpose of this section is to present some rough ideas about properties
CPCA might be expected to possess. Because there is no fully worked out
theory about the behavior of such complicated mechanisms in such complex
environments, what follows must necessarily be only a beginning in evalu-
ating the properties of the process.

These properties are logical properties that follow from the rules of the
CPCA process. Theories of agent behavior in a particular CPCA application
will be addressed later in section 4.

CPCA creates a competitive game. Given several agents willing to submit
suggestion messages, the structure of rewards in the CPCA mechanism cre-
ates a competitive game between these agents. There are several dimensions
to this competition. Among agents who can ®nd and submit similar sug-
gestions, only the ®rst agent to submit the suggestion will obtain the bonus
payment. Similarly, agents who submit suggestions that involve greater
amounts of improvement may tend to receive larger payments than agents
who are only able to ®nd smaller improvements.

CPCA provides incentives to lower costs. Because the CPCA mechanism in-
volves resetting the bonus rate to 0% and increasing it gradually for each
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new improvement, agents who have the lowest costs for submitting an im-
provement will be the ®rst to be o�ered a su�cient incentive to submit a
suggestion. Thus agents who can perform low-cost searches or agents who
already have information are favored by CPCA over those who have high
costs of participation.

CPCA terminates in ®nite time. The CPCA mechanism always terminates
when Q� � is bounded from above and agents' costs of ®nding improvements
are positive and bounded from below. CPCA can terminate with the initial
solution S0 when the constrained optimization environment is too di�cult
for the agents to solve it.

CPCA has monotone accuracy. The CPCA mechanism encourages more
accurate solutions over less accurate solutions. In a scheduling environment
E; S�� is more accurate than S� if F �S���Q�S��� > F �S���Q�S��. If the
solutions S�� and S� are submitted to CPCA, then no matter the order of
submission, CPCA will result in S�� and never S�.

CPCA is outcome-oriented. The CPCA mechanism rewards agents for in-
formation no matter the source. Participation in and rewards from the
mechanism are not related to the level of e�ort that went into creating the
solution, or whether the solution is a result of existing knowledge, new
knowledge, private or public information. All that matters is whether the
suggested solution S� has F �S��Q�S�� greater than the value Q�S� of the best
schedule S that the process had found.

CPCA relies upon voluntary participation. With the exception of the market-
maker, agents under CPCA are not required to participate in any way.
Agents will voluntarily participate in order to a�ect the schedule or to receive
bonus payments.

CPCA is incentive compatible. Since an agent submitting a suggestion can be
paid as much as 100% of the improvement, if an agent has or can obtain a
suggestion that improves the value of the schedule by more than the cost to
the agent, then eventually CPCA provides a su�ciently high incentive for the
agent to submit the information. Similarly, if an agent has or can obtain a
suggestion, but only at a cost higher than the bene®t, then CPCA does not
provide a su�cient incentive to obtain or submit the information. E�ciency
of CPCA is compatible with individual incentives and the incentives created
by the process.

Under CPCA, information cascades may lead to competitive behavior. The
onset of competition might emerge as a kind of cascade e�ect, under the
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following argument. If agent j knows of a valid CPCA improvement and
believes with certainty that others will ®nd and submit the improvement,
then agent j should submit the improvement before another agent submits it.
Only in that way does agent j collect the bonus. If competition is ®erce, then
immediate submission might be warranted. Agents will believe competition is
®erce if a number of agents submit often and appear to submit immediately.
Thus, a common belief in ®erce competition produces incentives under which
®erce competition would occur.

4 Applying the CPCA to the BICAP railroad auction

The CPCA procedure will be merged with a bidding procedure known as
BICAP.23 In BICAP, agents bid for access to railroad tracks and are free to
increase their bids in an attempt to compete for the available rights. A central
computer continuously calculates potential allocations based on maximizing
the total bid from trains relative to some feasibility constraints. This infor-
mation is reported as feedback to the agents. Agents can, if they wish, in-
crease their bids, causing a new allocation to be calculated. The auction ends
when a certain time period elapses with no further increases in the bids.
When the auction ends, the potential allocation becomes the actual alloca-
tion of track rights, and the agents receiving an allocation must pay their
bid(s).

Replacing the electronic central computer in BICAP with CPCA will
require careful consideration about how these two auction processes interact.
Ideally, CPCA should be used merely to replace the central computer in
BICAP. CPCA should, ideally, not a�ect the incentives to bid generated in
BICAP. Attempts to achieve a minimal interaction will de®ne the interface
between BICAP and CPCA. Data obtained in the laboratory experiments
that follow will provide an opportunity to examine both CPCAs computing
performance and its e�ect on BICAPs economic properties.

4.1 Issues

Level of feedback to agents. BICAP with a central computer provided
feedback on the potential scheduling immediately after each bid.
BICAP� CPCA, by depending upon others to calculate schedules, may take
much longer, provide less accurate schedules that are subject to change, and
may provide a much lower level of feedback concerning the e�ect of recent
bids on the potential schedule that might be implemented.

23 Recall that BICAP stands for Binary Con¯ict Ascending Price, and is an auction for allocating

access to railroad tracks that was described in Brewer and Plott (1996).
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Minimal BICAP/CPCA interaction. Even slight changes in the rules of
auction procedures have been known to cause dramatic and debilitating
results.24 Only by avoiding any obvious pitfalls will the resulting
BICAP� CPCA mechanism be suitable for testing via laboratory proce-
dures.

Elimination of arbitrage. One obvious pitfall involves the following scenario.
If the bonus rate b is non-zero immediately after a bid, the bidder might be
able to submit a suggestion message and reclaim a portion of the bid. Sup-
pose, for example, the bids on A and B are 300 and 299 respectively, and that
the schedule is fAg, and that the bonus rate b is 50%. A bidder who bids 400
on B could try to submit the suggestion fBg. The CPCA bonus to this bidder
would be 50%��400ÿ 300� � 50%�100 � 50. This payment of 50 should be
seen as an arbitrage opportunity. Such an arbitrage opportunity, although it
provides information to CPCA, distorts bidding in BICAP. Agents might bid
much more than their value for trains, because they anticipate recapturing a
portion of bids.

Simultaneous or sequential operation. CPCA scheduling could operate only
after BICAP bidding has concluded, or the two mechanisms could operate
simultaneously. Simultaneous operation involves greater challenges to the
incentive structures of both processes, because it involves additional inter-
actions that can not occur if the mechanisms are operated in sequence.

4.2 Interface

Simultaneous operation of BICAP and CPCA was chosen, with the CPCA
mechanism reset immediately after every BICAP bid. One interpretation of
such a rule is that every time the bid changes, the scheduling environment EB

has changed through the change in the function QB�S�, which is a sum
depending directly on the bids in B. In resetting CPCA, the current best
schedule is retained. The function Q� � is changed to re¯ect the new bids.

The most important e�ect of this rule, which reduces the possibility of
arbitrage, is that the bonus rate b is reset to 0%. Thus, submitting a CPCA
suggestion immediately after a BICAP bid results in CPCA processing the
suggestion, but awarding a zero bonus.

This method of reducing the BICAP � CPCA arbitrage relies on a degree
of competition in the CPCA process. It is possible that an agent might
submit a BICAP bid, know how it changes the bid maximizing schedule, wait
a time and then submit the CPCA suggestion message. In such a case an
arbitrage is still possible, but it is limited by the competition among agents to

24 For an example, see Cason and Plott (1996) regarding an EPA pollution permit market.
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submit suggestions. The amounts received in this way are likely to be small,
and will not drastically a�ect the incentives to bid under BICAP.

4.3 Summary of BICAP � CPCA

Operationally, the BICAP� CPCA mechanism can be summarized as fol-
lows. The mechanism starts with a null potential allocation S� � [, no bids,
and a clock showing s � s0 seconds remaining in the auction unless some
agent sends in a bid. Certain BICAP and CPCA information is publicly
available throughout the process ± public knowledge includes the physical
con®guration of the tracks PC � �R;C� (which is su�cient to determine the
feasibility function FPC�S�), and the high bids B (which are su�cient to de-
termine QB�S�). As time elapses the clock s counts down toward zero and the
CPCA bonus rate b increases. If someone submits a bid on a train route that
is higher than current high bid for that route, B is altered. Any change in B
requires resetting CPCA, because the criterion function QB�S� has changed.
Therefore, the clock is reset to s � s0 seconds and the bonus rate b is re-
set to 0%. If someone submits a CPCA suggestion S� such that
F �S��QB�S�� > F �S��QB�S�, then the potential allocation is changed to S**,
the agent is paid their CPCA bonus b�QB�S�� ÿ QB�S��, the clock is reset to
s � s0 seconds and the bonus rate is reset to b � 0%. At some point, agents
stop submitting bids and suggestion messages, the clock s counts down to
s � 0 (and b reaches 100%) and the auction terminates. Upon termination,
the potential allocation becomes the ®nal allocation. Agents then pay their
bids in B on the allocated trains in S� and receive the right to run their
respective train(s).

4.4 Questions for empirical study

The purpose of this section is twofold: (i) to de®ne criteria that will be used to
measure the performance of the BICAP� CPCA mechanism in the experi-
ments that follow, and (ii) to give a few rough theories about the behavior of
agents under CPCA that might help to explain its failure or success as a tool
for decentralized computing.

Is CPCA e�ective?

Here we are interested in knowing whether CPCA is e�ective at producing
the same bid revenue maximizing schedules that a computer can. That is, if
the ®nal BICAP bids are given by B and the ®nal CPCA schedule is S, does S
produce the maximum bid revenue from the given bids and physical con-
®guration of the trains? Put another way, does S solve OPTIMIZE�EB�
[where EB de®ned in section 2.2]?
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De®nition. The Computing E�ectiveness of CPCA is the ratio
Q�SCPCA�
Q�SOPT

B �
where S the CPCA schedule, and SOPT

B is a non-null solution of OPTIMI-
ZATION �EB�.

Example. Suppose there are only three trains A;B;C, and that every pair of
trains has a con¯ict. Then the set of feasible schedules is simply
F � ffAg; fBg; fCg; f[gg. Suppose that the bids B are 100 for A, 400 for B,
and 500 for C, and that the CPCA schedule is S � fBg. The solution to
OPTIMIZATION�EB� is the schedule with the highest bid revenue,
which is fCg. So SOPT

B � fCg. The computing e�ectiveness ratio is then
Q�fBg�=�QfCg� � 400=500 � 80%.

Much of previous research uses a di�erent ratio called ``allocation e�-
ciency'' that involves comparing the sum of values V generated in auction-
based scheduling experiments with the ideal, e�cient scheduling of section
2.2. That comparison is not the primary goal here. Computing e�ectiveness is
primarily concerned with the computational challenges inherent in con-
strained maximization of the sum of bids within auction-based scheduling.
The computing e�ectiveness ratio de®ned here measures the extent to which
CPCA has met this computational challenge.

Does CPCA work without destroying the bidding incentives in BICAP?

The key question behind this idea is whether the outcome of an auction
mechanism depends on the means of computing. The following conjecture
hypothesizes that this is not the case.

The CPCA computational invariance conjecture. If CPCA is computationally
e�ective then CPCA will not a�ect closing bid prices in a combinatorial
auction, so long as the bonus for submitting a proposal immediately after a
bid is zero.

The conjecture involves a view that CPCA is solely a tool for computing
the bid maximizing feasible schedule. As long as the computation is e�ective,
the ®nal bid prices should be dependent on the railroad environmental
parameters �PC;EC� rather than on the method by which computing takes
place.

The bid revenue and total surplus of BICAP� CPCA could be compared
to these statistics for BICAP with central computing. This would necessitate
some experiments that duplicate the Brewer and Plott (1996) experimental
environments where BICAP was previously tested.

The relevant statistics are:

Bid-Revenue BR � P
s2S�

B�s�
Total Surplus TS � Train Operators' Profit� Bid Revenue
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Are CPCA costs competitive or monopolistic?

Under perfect competition, CPCA costs should be low for simple problems.
The exact level of computational costs will be determined by the competitive
supply of suggestion information.

Under monopoly, only one agent has the relevant CPCA suggestion in-
formation. This agent can wait until the bonus rate is 100% before sub-
mitting the information. Thus, under monopoly, one expects that the CPCA
costs will be quite high and perhaps as much as 100% of BICAP bid revenue.

5 Experimental procedures

This section describes the design and conduct of experiments to examine
bidding and computing behavior of BICAP � CPCA. The parameters of
these experimental environments will be related, in a straightforward way, to
an environment used for initial research on the BICAP auction. In this way
some comparison of economic variables between the earlier research and this
research will be possible ± it will be possible to examine whether taking
BICAPs computational chores out of the computer code and giving them to
the agents through CPCA caused any unusual e�ects in the combined
BICAP� CPCA mechanism. In addition, it will be possible to assess the
performance of the combined BICAP� CPCA mechanism.

5.1 General

A total of six experimental sessions were conducted. Table 1 summarizes the
environments studied in each experiment.

Table 1. Summary of experiments performed with three-track testbeds

Environment Experiment Proposers P Periods Subjects

Separable tracks SIP1 3 independent

agents

3 13 Caltech student

S1 All buyers 3 10 Caltech students

S2 All buyers 1a 10 Georgia State

business students

Combined tracks C1 All buyers 3 10 Caltech students

C2 All buyers 2a 10 Caltech students

C3 All buyers 1a 10 Georgia State

business students

a Time did not allow running additional periods
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As can be seen from the table, four of the sessions were conducted at
Caltech and two of the sessions were conducted at Georgia State University.
Subjects were undergraduate and graduate students, and were recruited via
¯yers and a computer network announcement.

Sessions proceeded as follows. Subjects were seated at a computer ter-
minal. The experiment instructions (see Appendix C for a sample ± there are
slight di�erences across experiments) and train value sheets were passed out.
The instructions were read, and there was a question and answer period. The
subjects spent 5 to 10 minutes practicing with the experiment software, and
then there was another question and answer period. Depending on time, 1 to
3 periods were conducted for actual cash payments. Periods ended when no
agent bid for 30 seconds, so there was no ®xed ending time for a period. In
practice, periods took from 20 to 30 minutes and sometimes a bit longer. At
the end of the experiment, subjects were paid their earnings. If a subject made
an error entering a bid, they were urged to notify the experimenter so that the
error could be corrected. A number of such errors were corrected.

Cash payment included a show up fee of from $2 to $5, plus their pro®ts
from the BICAP� CPCA mechanism. Subjects received a row of train val-
ues from a table like Table 2, and did not know anything about other sub-
jects, values or the probability distribution. A subject's BICAP pro®t (or
loss) was the di�erence between train value and ®nal bid for each scheduled
train for which they were the high bidder Their CPCA pro®t depended upon
participation and submission of train system schedules according to the rules
of section 3.2. Individual subject payments tend to fall in a broad range of $5
to $40 for a 1±3 hour session.

Subjects who lost money in a period had these losses deducted from
earnings in pro®table periods, and from the show up fee if necessary. A few
subjects could not earn very much pro®t from equilibrium BICAP activity,
and so their earnings were mostly from the show up fee and CPCA sug-
gestions. Although no attempt was made to vary redemption value rates
across subjects, a two-tiered, progressive franc to dollar ratio was used for
experiments SIP1, S1, C1, and C2. Subjects earned 10 cents per franc for the
®rst 20 francs, and then 2 cents per franc after that.25 A ¯at 3 cent franc to
dollar ratio was used for rewarding subjects in experiments S2 and C3.

Each of the four sessions lasted approximately 2±2.5 hours and used 10
subjects (except experiment SIP1, 13 subjects). Some sessions did not proceed
as quickly as others, thus di�erent amounts of data were collected: some
sessions are 1 period, some 2 periods, and some are 3 periods.

5.2 The railroad testbeds: Physical con®guration parameters

Recall from section 2 that a railroad scheduling environment consists of a
physical con®guration and an economic con®guration. The physical con®g-

25 Although it is possible that high initial franc values might lead `poor' agents to compete more

aggressively in CPCA and depress CPCA costs, such an e�ect was not noted.
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uration determines the sets of trains that are feasible. A feasible set of trains
can have simultaneous access to the railroad tracks without causing a con¯ict
or collision.

Figure 2 shows the physical con®guration of the tracks and the con¯icts
between the trains in the testbed. In the ®gure, each row de®nes a particular
testbed that will be used in experiments. The row shows a name for the
testbed along with a physical layout of tracks in this model railroad, followed
by a diagram of the con¯icts in this railroad. The diagram represents a
con¯ict in C by a direct link between the two con¯icting trains. For example,

Figure 2. Testbed railroads for the experiments
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in the single track ``BP96'' testbed, there is a con¯ict between trains fA;Bg
and trains fD;Eg but not between trains fD; F g.

Environment ``BP96'' is a portion26 of the environment used for the ex-
periments reported in Brewer and Plott (1996). It consists of one track with
trains R � fA; . . . ;Gg. The layout shows a single track between two points.
The con¯icts are shown graphically in the box to the right. The con¯ict graph
directly connects pairs of trains that are in con¯ict. Thus, trains A and B are
in con¯ict because a line connects train A and train B in the con¯ict graph.
But trains A and D are not in con¯ict because there is no line directly con-
necting A and D.

Environments ``S'' and ``SIP'' involve three independent tracks, where
each track has a copy of the 7 trains in the BP96 environment. Because the
tracks are not physically connected, the scheduling of one track does not
a�ect the scheduling of the other tracks. Independence of the tracks is
shown in both the physical diagram for the tracks and in the train con¯ict
diagram.

Environment ``C'' involves a harder problem. Each of three tracks still
contain the con¯icts of environment S, but there are additional con¯icts
because the tracks now cross. The additional con¯icts in the con¯ict diagram
show that the scheduling of one track is now dependent on the scheduling of
the other tracks. For example, if trains fA;D; F g are scheduled on track 1,
then the trains fO;R; T g can not be scheduled on track 2 and train H can not
be scheduled on track 3.

The di�culty of computing optimal schedules in these environments is
related in a straightforward way. Complexity theory says that this type of
scheduling problem is NP-complete, meaning that solution time can (but
need-not) scale exponentially with the number of con¯icting trains. This
suggests that environment ``C'' is more complex than ``S'' which is similar in
complexity to ``BP96''. Page (1996) takes an alternative view and gives two
measures of computational di�culty, one of which is important for the train
problem. The measure of cover size de®nes di�culty relative to the hardest
separable sub-problem that must be solved. This type of di�culty is most
important to parallel processes like CPCA. Each physical con®guration will
now be examined brie¯y in terms of the di�culty of the associated scheduling
problem.

When each train has a positive additive value, the BP96 environment
contains 5 schedules that, depending on the values of the trains, could be
optimal: fA;D; F g, fA;Eg, fB;C;Eg, fB;C; F g, and fGg. Any other schedule
either leaves out a possible train or causes con¯ict.

The di�culty of the ``S'' environment is determined by the 3 separate
copies of the BP96 environment that are contained. Although there are
53 � 125 schedules that need to be searched for the best schedule, optimal

26 In the original experiments, two additional trains H and I were in the testbed. Because these

trains did not con¯ict with any of the trains in fA; . . . ;Gg, they were not relevant to the

scheduling of the con¯icting trains, and are not relevant to the discussions of this paper.
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schedules can be determined in steps. The fact that the tracks are indepen-
dent suggests that only 15 comparisons need to be made: a schedule for track
1 can be determined ®rst, then a schedule for track 2, and then a schedule for
track 3.

The di�culty of the ``C'' environment is much higher, because the
tracks can no longer be scheduled in isolation. There are 139 di�erent
schedules that need to be considered. While there may be ways to reduce
the number of comparisons from 139 to some smaller number, the inter-
dependence of the con¯icts on the tracks does not make any obvious
methods apparent.

5.3 The railroad testbeds: Economic con®guration

The economic con®guration of the testbeds are identical, and are given by
the set of agents I � f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g along with an assignment of
train values for each train and agent such as that shown in Table 2. Each
agents values are private information, and agents are not given any infor-
mation about the distribution of values.

Table 2 gives the train values for period 1 of the experiments. It is im-
portant to note that these train values are exactly the same values as were
used in the BP96 experiments. The values for period 1 of the BP96 experi-
ments became the values of the trains on track 1 in the experiments reported
here. The values for period 2 of the BP96 experiments became the values of
the trains on track 2 in Table 2. The values for period 3 of the BP96 ex-
periments became the values of the trains on track 3 in Table 2.

Periods 2 and 3 of the experiments use di�erent train values, which in the
interests of space are not shown. However, the link to the BP96 experiments
is maintained. Period 2 of the new experiments used periods 4, 5, and 6 of the
BP96 experiments for the train values for tracks 1, 2, and 3 respectively.
Period 3 of the new experiment used periods 7, 3, and 4 of the BP96 ex-
periments to obtain the train values on tracks 1, 2, and 3.

Isomorphic physical and economic con®gurations of the BP96, ``S'', and
``SIP'' scheduling environments imply that important BICAP variables, such
as ®nal bid prices, bid revenue, allocation e�ciency, and aspects of bidding
behavior, should be related across these 3 sets of experiments. For example,
bidding behavior observed in the BP96 experiments in period 5 should cor-
respond-under the isomorphism ± to bidding behavior to be observed in
period 2, track 2 of the ``S'' or ``SIP'' experiments.

The ``C'' environments, although they involve identical train values to the
``S'' environments, do not involve an identical physical con®guration. The
substantially di�erent nature of the feasible set will make the comparison of
economic variables impossible between the earlier BP96 environment and the
``C'' environment. The purpose of the ``C'' environment is to provide ob-
servations with a harder problem.
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5.4 BICAP � CPCA Con®guration

Train scheduling agents

The set of scheduling agents, who could submit CPCA proposals, was the
same as the set of train operator agents, who could bid, in all the experiments
except experiment SIP1.

Table 2. Train redemption values Vj[r] for Period 1 in the experiments

Period 1 ± Track 1

Agent id# Train A Train B Train C Train D Train E Train F Train G

0 332 232 878 708 746 426 2619

1 946 521 321 241 739 265 2491

2 302 198 307 270 1013 645 1329

3 1699 645 307 206 306 217 509

4 1282 454 1634 1447 341 134 2543

5 801 354 933 465 936 561 2339

6 389 242 387 117 583 348 423

7 320 132 1405 974 528 360 594

8 708 332 309 188 1635 1421 2005

9 372 277 341 138 395 284 1549

Period 1 ± Track 2

Agent id# Train H Train I Train J Train K Train L Train M Train N

0 368 133 683 346 320 108 1604

1 1124 980 319 269 340 291 93

2 303 219 335 168 1359 641 373

3 305 171 371 149 524 177 466

4 403 325 463 237 475 382 124

5 692 487 320 267 1027 515 1625

6 405 315 370 194 375 284 570

7 413 311 417 343 430 377 531

8 558 340 354 270 577 224 304

9 362 154 320 96 312 206 1710

Period 1 ± Track 3

Agent id# Train O Train P Train Q Train R Train S Train T Train U

0 425 365 360 116 500 310 598

1 319 241 337 263 463 194 1843

2 528 382 350 117 306 206 1570

3 1858 615 840 662 384 264 412

4 456 376 1227 964 315 105 206

5 660 405 342 217 328 169 1336

6 413 227 314 248 368 257 382

7 448 290 371 274 943 774 1387

8 312 267 1025 657 482 341 247

9 300 109 451 244 309 257 1731
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In experiment SIP1, the scheduling agents were 3 additional subjects that
did not bid on the trains. Only these 3 agents could make proposals. Several
questions are addressed by this design. Would CPCA still work with such a
small group of scheduling agents? Would agents, somehow, implicitly collude
to extract large bonuses from the system? Should agents who suggest
schedules be independent of the agents who are bidding, or is a system where
bidders can suggest schedules actually more desirable?

Timing

In the experiments, the BICAP� CPCA timer was set from 30 to 60 seconds
depending on the subjects. Longer times reduced subjects anxiety about
rushing to bid, but longer times also allow subjects to delay the process when
they increase bids by only 1 Fr at a time.

5.5 Software

Identical versions of the BICAP� CPCA rules were implemented in two
di�erent versions of the software. The di�erences in the software that are
relevant to the experiments reporter here primarily revolve around the user
interface.

Version 1

The experiments that ran at Caltech involved a DOS version of the software.
This software displayed a table of bids on the screen and a set of keyboard
commands that could be used to enter a new BICAP bid or send a CPCA
scheduling suggestion. Color codes indicated the current CPCA scheduling
information. The software was a modi®cation of the software used in the
BP96 experiments.

Version 2

The experiments that ran at Georgia State involved a LINUX27 version of
the software. This software displayed bids and proposals on separate screen
windows. The mouse was used instead of the keyboard to select a command.
The use of the mouse and graphical windows made describing and using the
software much easier.28 The LINUX software, while not DOS compatible,

27 LINUX is a full-featured, free version of UNIX that was developed by a collaboration of

thousands over the internet. It is named for its principle architect, Linus Torvalds. This

operating system was chosen because at the time, DOS/Windows based systems could not easily

provide the desired multi-user internet capabilities.
28 The subjects did not need to know anything about LINUX. As the displays were mouse

driven, the subject simply clicked on a button corresponding to the desired action ± bidding or

suggesting a schedule.
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could be run on the internet and thus allows the potential for larger exper-
iments in the future.

6 Experimental results

This section will provide analysis, support, and discussion for four primary
results of the experimental laboratory research.

Principal ®ndings

Result 1. The Computation Procuring Clock Auction (CPCA) exhibited
computational e�ectiveness inducing agents to compute schedules that max-
imize bid revenue.

Result 2. CPCA exhibited computational robustness in inducing some agents
to make up for the shortfalls of others. Such robustness involves the ability
of the CPCA process to aggregate information from di�erent sources.

Result 3. CPCA exhibited low total costs for suggestion incentives. Costs are
relatively low even over a wide range of concentrations of computing ac-
tivity. A form of competition seems to be present even when only a few
agents are submitting suggestions.

Result 4. Observation of BICAP � CPCA bidding behavior sustains a con-
jecture of computational invariance in comparison with behavior of
BICAP� Central Computin. BICAP bidding incentives, as evidenced by
BICAP bidding behavior revenue, do not seem to be adversely a�ected by
the introduction of CPCA as the computing technique.

The argument involved in this series of results is one of proof of principle
and design consistency. Result 1 shows that CPCA can be e�ective as a
computational technique in this testbed railroad scheduling application. The
Computation Procuring Clock Auction provides su�cient incentive to in-
duce the agents to compute the bid maximizing potential allocations and to
submit this information as CPCA proposals before the end of the round in
every experiment studied.

It is not enough to know that CPCA exhibited adequate performance as a
decentralized computing mechanism. The mere fact that a mechanism can
work in a few cases does not logically imply that it will work in the general
case or even in similar cases where it has not been tested. For this reason,
laboratory researchers have acknowledged the importance of examining the
design consistency of a mechanism. The idea is to answer not only the
question `Did CPCA work?', but to also examine other questions: `Why did
it work?'; `Did it work for the right reasons?'. Results 2 through 4 will show
that CPCA is operationally consistent with economic principles implicit in its
design.
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6.1 Result 1. Computational e�ectiveness

Data

Section 4 provides a discussion of the measure of CPCA computing e�ec-
tiveness that will be used here to analyze the experimental data.

Recall that

Computing E�ectiveness � QB�SCPCA�
QB�SOPT

B � ,

where SCPCA is a schedule produced by the CPCA process and SOPT
B a

schedule that produces maximum bid revenue at BICAP bids B. The SOPT
B

schedules were not directly observable to agents or the experimenter, but can
be calculated from the observed bids in the experiment, and are the standard
against which the performance of the CPCA process is being judged. Recall
that the function QB�S� is the sum of current bids for the schedule S.

If the CPCA process works correctly ± if CPCA is computationally ef-
fective ± then the total bid revenue from the schedule that CPCA produces,
QB�SCPCA�, will equal the maximum possible bid revenue from these bids,
QB�SOPT

B �. Thus, computational e�ectiveness is indicated by a ratio value of
100% and lack of e�ectiveness is indicated when the ratio is below 100%.
Ratio values above 100% are not possible.

Table 3 shows the calculation of the CPCA Computing E�ectiveness at
the close of each experimental period. From left to right, the table is read as
follows. The ®rst two columns give the experimental environment (envi-
ronment S or environment C),29 experiment number and the period number.
Column 3 gives the observed ®nal BICAP � CPCA allocation. Column 4
gives the allocation that would maximize bid revenue to the scheduling
authority given the bids submitted by the agents in that round. This bid
maximizing schedule in Column 4 is the schedule that CPCA is supposed to
induce agents to compute. Column 5 gives the related measure of CPCA
computing e�ectiveness: the ratio corresponding to the sum of bids at the
observed [col. 3] allocation divided by the sum of bids at the bid revenue
maximizing [col. 4] allocation.

Analysis and support

Table 3 shows that in each experiment, CPCA achieved 100% computing
e�ectiveness for the ®nal schedules and allocations. This data provides the
necessary support to establish that CPCA is computationally e�ective in the
testbed environments.

29 Recall that environment ``C'' is more di�cult than environment ``S'', and that within an

experimental environment the matrix of train values V were varied from period to period within

an experiment, giving rise to di�erent patterns of bidding and di�erent computational problems

in each case.
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Discussion

Table 3 clearly shows that CPCA always terminated at the bid maximizing
feasible allocation in each period of each experiment. But it is possible to
show more. In this discussion it will be shown that CPCA ®nds the 100% bid
revenue maximizing schedule many times in a period, changing in response
to the bids submitted by the agents. It does not calculate these new schedules
instantly, and it occasionally misses a few opportunities to provide feedback,
with most of the missing feedback occurring at the ®rst minutes of each
period. However, from the middle to the end of the each period, the CPCA
process provided, with a several second delay, similar scheduling feedback to
what a central computer could provide.

While CPCA was shown to be e�ective in calculating the ®nal schedules,
it is also important to ask how CPCA performed in calculating the potential
schedules during the BICAP � CPCA process. Recall that in the BICAP
process with central computing, the computer calculates ± after each bid ± a
new schedule showing the e�ect of that particular bid on the potential
scheduling outcome. CPCA decentralizes this task, relying on agents to
submit suggestions about which schedules will provide higher revenues.
Proper feedback to bidders in the BICAP process depends critically on the
computing e�ectiveness of the CPCA process.

Time series data for computing e�ectiveness within a period tend to re-
semble Figures 3.1±3.3 in that 100% computing e�ectiveness is lost and
regained many times during a period. This pattern in the ®gure is caused by a
repeating pattern of events in the data: some agents submit pivotal bids that
change the bid maximizing feasible allocation and thus cause the denomi-
nator of the computing e�ectiveness ratio to increase. This causes the com-

Table 3. Computing e�ectiveness of CPCA: Final allocations

Experiment Period System allocation

realized in

experiment

S*OBS

Bid revenue

maximizing

allocation at

closing bids on

trains S*MAX(BOBS)

CPCA computing

e�ectiveness
Q�S�

OBS
;B�

QMAX�B�

S1 01 BCEIJLPQS BCEIJLPQS 1.0

02 BCEHKMPQS BCEHKMPQS 1.0

03 ADFHKMPQS ADFHKMPQS 1.0

SIP1 01 ADFIJLPQS ADFIJLPQS 1.0

02 BCEHKM*PQS BCEHKMPQS 1.0

03 ADFHKMPQS ADFHKMPQS 1.0

S2 01 ADFIJLORT ADFIJLORT 1.0

C1 01 ADFILPQS ADFILPQS 1.0

02 GHKMPQS GHKMPQS 1.0

03 ADFNPQS ADFNPQS 1.0

C2 01 BCEHLORT BCEHLORT 1.0

02 BCEHLORT BCEHLORT 1.0

C3 01 BCEHLORT BCEHLORT 1.0
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putation e�ectiveness to drop. CPCA then gives agents an incentive to ®nd
and submit new scheduling proposals appropriate to these new bids. The
agents eventually respond each time, increasing the computing e�ectiveness
ratio back to 100% . Figure 3 shows that the CPCA schedule is acting as an
e�ective running approximation of the bid maximizing feasible allocation.

Another measure of the interim e�ectiveness of CPCA involves com-
paring the time of arrival of pivotal bids ± bids which change SOPT

B ± and the
time of arrival of subsequent CPCA suggestion messages. The ®gures give an
idea but not the entire pattern of the data. For that reason, the raw data was
examined in detail. A di�erent experiment ± experiment S1 ± was examined.

For the ®rst 3 to 4 minutes of experiment S1, period 1, �T � 1756 to
T � 1960�, the CPCA schedule is being updated but does not follow the bid
maximizing schedule very well. Intuitively, this suggests that the agents are
only beginning to learn how to solve the relevant constrained improvement

Figure 3. a CPCA computing e�ectiveness during period 1, experiment C1. b CPCA computing

e�ectiveness during 2, experiment C1. c CPCA computing e�ectiveness during 3, experiment C1
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problem. However, there is a time when CPCA begins to track the changes in
the bid maximizing potential allocations. After 51=2 minutes �T � 2071�, in
experiment S11, each pivotal bid is followed, within 7 to 23 seconds, by a
suggestion message that updates the CPCA schedule to once again match the
bid revenue maximizing schedule. This pattern continues for the remainder
of the period, which lasted just over 17 minutes. The pattern of data in the
other experiments, while not presented due to space, is fairly similar. CPCA
does occasionally skip improvements later in the period, but most of the
skipped improvements are concentrated in an initial ``learning'' phase of each
round.

6.2 Result 2. Computational robustness

Computational robustness means that a number of agents participate in the
CPCA process, and that when some of these agents fail to calculate or submit
information, other agents correct for these failures.

Demonstrating CPCA computational robustness involves identifying
features in the experimental data that reveal failures of individual agents and
corrections by other agents.

Data

The data analysis identi®es the omissions of some agents involved in the
CPCA process and how other agents corrected for these omissions. A new
table categorizing the CPCA suggestion messages was compiled from the raw
data of various experiments and is included as Table 4. A CPCA suggestion
message is categorized a ``Complete Solution'' if the suggested schedule is in
fact the bid revenue maximizing schedule. Otherwise, the suggestion message
is categorized a ``Partial Solution''. A ``Partial Solution'' is still an im-
provement over the current schedule but is not the bid revenue maximizing
schedule.

The number of partial and complete solution suggestion messages is
tallied for each experiment and period, and by what type of agent submitted
the suggestion.

A pivotal bidder is the agent whose recent bidding activity has changed the
schedule that ought to be adopted. For example, if the schedule can be fAg
or fBg, and the current schedule is fAg, and some agent places a very high
bid on fBg that ought to change the schedule, then that agent would be a
pivotal bidder. The schedule need not actually change from fAg to fBg.
Others are simply agents who were not the pivotal bidder at the time the new
schedule was suggested.

Analysis and support

The argument supporting CPCA computational robustness involves three
elements.
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(A) A number of di�erent agents participate in the CPCA process as
shown by Figure 4.

(B) The categorization of CPCA suggestion messages in Table 4 indicates
that some pivotal bidders who did submit a CPCA suggestion message after
their bid failed to submit a complete solution, but only submitted a partial
solution. A partial solution means that an improved schedule was submitted,
but this schedule did not maximize bid revenue from the available high bids.
This indicates that agents are not always submitting30 scheduling informa-
tion that is associated with their bids.

(C) The computational e�ectiveness of CPCA exhibited in Result 1 shows
that a complete solution is eventually submitted to CPCA. At the end of the
period, the CPCA schedule matches the bid revenue maximizing schedule
because some other agent submitted a complete solution. Thus, some agents
in CPCA are shown to correct for the failure of others.

Discussion

Result 2 shows that in the laboratory testbed environments, some agents can
and do correct for the omissions of others. Intuition involved in the design of
the process suggest two factors relevant towards extending this result to
future research and possible application.

Result 2 suggests that the payment of bonuses to agents who submit
information to CPCA is probably an important part of the process. In a
world of ideally rational bidders, one could consider abandoning the CPCA
bonus payments. Pivotal bidders would always understand how their bid
a�ected the bid revenue maximizing schedule, and would automatically
provide updates to CPCA because otherwise their pivotal bids would not be
included in the ®nal CPCA schedule. A pivotal bidder who did not submit a
CPCA suggestion message would not change the schedule, and their bid
would be worthless.

Table 4 shows that when pivotal bidders send CPCA suggestion message,
the suggested schedule is often a full solution for the bid maximizing
schedule. However, the same table shows that the pivotal bidders sometimes

Figure 4. CPCA participation

30 It is also true that the agents might be unaware of whether their bid is su�ciently high to

change the schedule. However, we can not observe what agents are aware of ± only their bids and

suggestion messages are observable.
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submit partial solutions, which suggests that they either do not fully un-
derstand the e�ect of their pivotal bid or are acting in some strategic manner.
In these cases, it is important that other agents are rewarded for ®nding
improved schedules.

CPCA functions well because it does not allow the bid revenue from a
schedule to go down but it accepts any schedule change that causes bid
revenue to increase. Because CPCA provides no rules for evaluating how an
agent calculated an improved schedule or who the agent is, the design of the
CPCA process makes possible both omissions and the correction of omis-
sions. The fact that a mistake is an omission by a pivotal bidder, who might
normally be assumed to know the intent of his bid, and the fact that a
correction was submitted by someone who merely guessed a better schedule,
are facts never evaluated formally within the process. In this way, CPCA
impartially accepts and aggregates di�erent kinds of information.

6.3 Result 3. Costs of CPCA incentives

CPCA exhibited low total costs for suggestion incentives. Costs are relatively
low even over a wide range of concentrations of computing activity. A form
of competition seems to be present even when only a few agents are sub-
mitting suggestions.

Data

In a given period of a given experiment, the sum total CPCA bonuses paid
across the agents ranged from 10 Fr to 350 Fr. The total bid revenue was in
the range of 6000±8000 Fr.

Table 4. Partial vs. full solution CPCA proposals

Experiment CPCA proposals by

pivotal bidders

CPCA proposals by others

Partial solution Full solution Partial solution Full solution

SIP11 4 4

SIP12 9 4

SIP13 6 4

S11 0 4 7 1

S12 1 6 8 8

S13 4 1 15 5

S21 0 0 11 2

C11 2 6 5 5

C12 1 1 7 5

C13 1 7 24 38

C21 2 4 20 3

C22 1 12 27 28

C31 0 1 7 0

Total S+C 12 42 131 95
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Figure 5 explores the relationship between the concentration of rewarded
CPCA activity in the experimental environment, and the total cost of CPCA.
On the horizontal axis, the code for the experiment and period is given (e.g.,
C12 indicates period 2 of experiment C1) along with the HHI concentration
of the bonus payments. The vertical axis shows the total cost of CPCA
incentives that were paid out to agents in that period, as a percentage of the
bid revenue.

This HHI index is a standard Hirschmann-Herfandahl index, familiar in
industrial organization theory, applied to the CPCA bonus payments re-
ceived by the agents. In this case, the HHI equals the sum of the squares of
the CPCA bonus shares of all the agents in a particular period. For example,
suppose in a period agent 1 received a 30 Fr CPCA bonus payment, and
agent 2 received a 20 Fr CPCA bonus payment, and other agents received
nothing. Then the sum total of the bonus payments is 50 Fr across the
various agents, and agent 1 received 60% of this whereas agent 2 received
40% and other agents received nothing. The HHI is the sum of the squares
of the percentage shares. In this example the HHI � 602� 402 � 02 �
3600� 1600 � 5200. Thus in pure monopoly the HHI would be
1002 � 10; 000. If all ten agents received an equal 10% share of the CPCA
bonus payments, the HHI would be 102 � 10 � 100 � 10 � 1000. As shown in
the graphs, the observed HHI of the CPCA bonuses varies among the
di�erent experiments and periods.

Analysis and support

Figure 5 shows that the CPCA bonus payments typically consume 1% ±5%
of BICAP bid revenue. This is a low cost when compared to the monopoly
outcome. A monopolist could wait until the bonus rate was 100%, and
collect 100% of BICAP bid revenue as a CPCA bonus.

The ®gure shows that even when the CPCA activity was fairly concen-
trated, costs do not rise as might otherwise be expected. This supports a
conjecture that competition exists and induces agents to reveal information

Figure 5. Total cost of bonuses vs. concentration
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at low bonus rates. Agents do not tend to wait for higher bonus rate levels,
even when only 2 or 3 agents are submitting suggestions.

Discussion

While the result shows that CPCA costs are low, an understanding of the
nature of the competition within the CPCA process is desirable in order to
understand why the costs are low.

Pivotal bidders play a role in keeping CPCA costs low in two ways. First,
from Table 4 many pivotal bidders submit full CPCA solutions that detail
how their bid changes the bid revenue maximizing schedule. These submis-
sions are often made shortly after a bid, and at a zero or low CPCA bonus
rate. Attempts from pivotal bidders to insure that their bid is included in the
schedule present serious competition to agents who are merely watching the
process, and might keep overall CPCA costs low.

The ¯uctuating nature of the bonus rate timer is another factor that might
keep CPCA costs low. Figure 6 shows the bonus rate for the C1 experiment.
Other experiments display similar data. Recall that the bonus rate uniformly
increases from 0% to 100%, so long as no bid or suggestion messages are
received. Any BICAP bid or CPCA suggestion message that meets the im-
provement rule requirements will cause the CPCA bonus rate to be reset to

Figure 6. CPCA bonus rate (experiment C1, periods 1±3)
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0%. Thus, a graph of the bonus rate will indicate low bonus rates at times of
high bidding activity and high bonus rates at times of low bidding activity.

The noisy nature of the bonus rate introduces some uncertainty for an
agent who has information to submit to CPCA and wants to maximize their
payment for the information.

Figure 7 provides a graphical depiction of two risks caused by the noisy
bonus rate. The data shown is taken from period 1 of experiment C1.

One risk involves the fact that the agent does not know how long he will
have to wait for the bonus to climb to 20%, 50%, or some other target level.
The longer an agent must wait, the higher the likelihood is that someone else
will claim the bonus for the information.

A second risk that agents face when submitting CPCA suggestions occurs
when the bidding is very active. An agent wanting to submit a CPCA sug-
gestion does not know if another agent will be pressing the bid key a few
tenths of a second before he presses the suggestion key. If another agent
submits a bid, the computer running the BICAP� CPCA process will reset
the CPCA bonus rate to 0%. If the agent submitting the CPCA suggestion
does not notice this, and submits the suggestion anyway, then they will
receive a bonus of zero. While this does reduce CPCA costs, it does increase
the risks for agents who compute improved schedules. Questions from agents
during the experiment showed that agents did encounter this e�ect in the
process.31

6.4 Result 4. Conjecture of computational invariance

A conjecture that CPCA does not a�ect BICAP bidding revenues can be
sustained.

Figure 7. Risks faced by CPCA participants seeking larger CPCA bonuses (experiment C1,

period 1)

31 Complaints from experimental agents usually took the form of a ``computer bug'' report or a

report that something unfair was happening. Agents were told individually that a chance existed

that someone else placed a bid at roughly the same time that they entered a suggestion. The

bonus rate would be determined by which event was processed ®rst by the mechanism.
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Data

Figure 8 shows a comparison of the total BICAP revenue from the experi-
ments of Brewer and Plott (1996) [BP96] and the new experiments reported
here �SIP1; S1; and S2�. Figure 8 shows the revenues in economically com-
parable environments.

From the discussion of section 5.3, the BP96 environment and the SIP1,
S1, and S2 experiments should produce comparable patterns of bidding.
There is a one to one correspondence between the physical and economic
con®gurations of the trains on a particular track of the S environment and of
the trains fA; . . . ;Gg of the BP96 environment.

Analysis and support

Figure 8 shows that the BICAP bid revenue is a slightly higher in the new
experiments, where CPCA was used for train schedule calculation, than in
the BP96 experiments, where a central computer was used for train schedule
calculation.

Comparable track environments produce similar revenues in both the
BP96 and the BICA� CPCA experiments.

This data shows that CPCA did not noticeably reduce the BICAP bid
revenue. If anything, the bid revenue increased slightly.

The data also shows that in later periods, the revenue followed theoretical
predictions just as in earlier periods. There is no trend away from the the-
oretical predictions. Thus, CPCA does not somehow encourage agents to
collude over time.

Figure 8. Comparison of bid revenue from BICAP, BICAP+CPCA and theoretical upper and

lower bounds
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Discussion

While results 1±3 involve relatively ``clean'' data and strong results, result 4 is
stated as a sustained conjecture. Several pieces of evidence exist that point to
mixed results. Future experiments in a variety of environments may help to
resolve the questions at hand.

What does it mean for the BICAP mechanism to be relatively `unharmed'
by a transition from central computing of schedules to CPCA computing of
schedules? The idea is that the same economic principles that make BICAP
relatively e�cient should also be observed to operate in BICAP� CPCA.

Thus, the bid revenue is only a part of the possible evidence that might
need to be examined in order to make a complete determination. Other
sources of evidence that could be compared would include the ®nal train
schedules for each agent, the ®nal bid prices, whether or not a one stage nash
equilibrium was reached, and the nature of agent bidding behavior during
the auction.

Mixed results from the analysis of this evidence is summarized below.

� Allocation e�ciencies32 were in the range 90±100% in 10 of the 13
experimental periods. On average, the allocation e�ciency with
BICAP� CPCA is fairly high: 91:5% in the ``S'' environments and
93.6% in the ``C'' environments. With BP96, in a much simpler envi-
ronment, the average was 97%. The somewhat lower e�ciencies were
expected as a result of studying the much more complex environments
and as a possible cost of using a procedure like CPCA.

� Low allocation e�ciencies exhibited in 3 periods point to possible causes
of di�culties in the mechanism. The two lowest cases of allocation e�-
ciency are 67% in period 1, experiment SIP1; and 77% in period 3,
experiment C1. In the case of SIP1 period 1, the overbidding of agent 0
and agent 2 caused the low e�ciency. In the case of C1 period 3, over-
bidding did not occur. However, agents 1 and 4 could have submitted
bids that would have greatly improved their individual pro®ts and the
overall allocation e�ciency, but failed to do so.

� Overbidding was a problem in 5 of the 13 experimental periods. Over-
bidding means that some agent bid over his redemption value by a large
amount. Because 3 of these ``overbid'' periods occurred in the SIP1 ex-
periment, this overbidding does not seem to be related to arbitrage cap-
ture strategies between BICAP and CPCA as mentioned in section 4.
Recall that in the SIP1 experiment, bidders could not enter scheduling
proposals. Thus, overbidding is not directly related to a strategy to
overbid and then submit a related scheduling proposal. When overbid-
ding occurred, other agents usually took advantage by not bidding as

32 Allocation e�ciency is determined by comparing the sums of the values (e.g., from table 1) at

the ®nal schedule to that obtained by solving the e�cient scheduling problem of section 2. Thus

an allocation e�ciency of 100% means that the most valuable trains are scheduled to be run by

those agents who value them the most.
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high on complementary schedules.33 Thus, overbidding did not always
a�ect the total bid revenue by very much.

� Nash-like (NE1) bidding equilibrium were frequently not obtained. In
contrast, in the BP96 experiments, NE1 were frequently obtained. A NE1
pro®le of bids exists when no agent can submit a pivotal bid that increases
his or her own pro®t. Not counting the 5 periods where overbidding
occurred, 6 of the 8 remaining periods involved a failure by one or more
agents to recognize a `valuable' pivotal bidding opportunity. In this case,
`valuable' means that the agent could have increased their pro®t by at
least 100 Fr by submitting another bid. Instead, the agents allowed the
clock to run out and the mechanism to close.

Mistakes by subjects may be the problem here and certainly exist in many
other types of experiments.34 The tasks which subjects must perform are
fairly complex, and include watching a constantly updating screen and
comparing the bids with their own values on separate redemption value
sheets. The subjects must form a bidding strategy that is consistent with their
own objectives and the complex interdependencies of the feasibility con-
straints, and they must execute this strategy on an unfamiliar35 software
system. Thus the fact that BICAP� CPCA works at all is strong evidence for
the value of future research. The 2nd version of the software, which was used
for the experiments at Georgia State, had a friendlier36 user interface ± and
data from a future series of experiments may resolve many of the problems
reported here.

33 For example, Figure 2 shows that in all environments, trains A and D are in competition with

trains B and C. If trains A and D are scheduled, B and C can not be scheduled, and vice versa. If

someone overbids on A, then the bidder for train D need not bid as high in order to help insure

that the total bid on A and D beat the total bid on B and C.
34 For example, in a large number of experiments that use market systems, agents sometimes

trade at prices far from the equilibrium simply because one of the agents mistyped his bid or ask.

Usually, successive trades return to the equilibrium price and there is little e�ect on total

revenues or e�ciency; just a decrease in the pro®t of error prone agents. In auctions, mistakes

can have a more permanent e�ect on the data. An e�ort was made to correct errors reported by

subjects, but subjects did not always announce their overbidding as a typo.
35 Although a practice period was provided after reading the instructions, it is safe to say that the

subjects had never seen this software before and were unfamiliar with its weaknesses.
36 In a new series of 1997 experiments currently in progress, changes in the software have

improved the ability of subjects to cope with their environment. The addition of redemption

values to the screen displays and the display of warning messages about overbidding has reduced

it considerably. Bidding over the redemption value causes a box to appear where the subject is

warned and then asked if they still wish to enter the bid. Overbidding still sometimes occurs, but

not at the levels reported in this initial series of experiments. These developments suggest that

subject error is responsible for much of the problems reported here.
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7 Conclusions

This paper began with questions concerning the large scale feasibility of
smart markets. The question posed was whether it might be possible to
develop techniques for ®nding or calculating bid maximizing feasible allo-
cations in a way that might allow smart markets to function at larger and
larger scales. In particular, the technique was to rely on economic rather than
technical concepts ± the idea was not to ®nd a better mathematical algorithm
for ®nding optimal solutions, but rather, to develop an incentive structure
that would cause partial solutions and, eventually, a best known solution to
be revealed. At the same time, the technique for computing bid maximizing
potential allocations should only minimally a�ect the incentives for bidding
in the market.

The answer is that such an incentive system can be constructed. The
Computation Procuring Clock Auction (CPCA) is such an incentive system.
Experiments were performed where CPCA successfully replaced the central
computing aspects of the BICAP smart auction. In several testbed environ-
ments, CPCA always obtained the bid maximizing potential allocation by the
close of each period. Often, CPCA potential allocations tracked the bid
maximizing schedule within several seconds of any changes. The variety of
environments in which CPCA was tested shows that its ability to ®nd opti-
mal solutions is not a ¯uke or an accident of choice of experimental proce-
dures.

A conjecture can be sustained that CPCA provided e�ective computation
because it provided incentives similar to those mentioned by Hayek (1945)
for problems of much larger scale. CPCA functioned e�ectively because:

� CPCA gives agents the incentives to compute improvements or changes
to small parts of the big problem of how to schedule the railroad network.
Computation occurs in parallel by many agents.
� CPCA provides for an information transfer capacity through the po-

tential allocation. The potential allocation summarizes information about
the best known schedule ± an agent does not need to know why the solution
has changed in order to react with new BICAP bids for trains and/or a new
CPCA proposal to change the solution for scheduling trains on the tracks.
� Pro®tability in the marketplace regulates the activities of the agents in

regards to providing e�ective information or computation. Whenever an
information or computation activity can be pro®table, CPCA encourages it.
Whenever information or computation activity is unpro®table, the incentives
in the market discourage it. In CPCA we do not know whether agents'
computational activities were pro®table, because the costs are the costs of
human e�ort and are probably varied and unobservable.
� CPCA does not strictly prevent or prohibit activities on the grounds

that they are not the best technical means of solution. Many types of com-
putation and information are provided by agents in the marketplace that are
very di�erent from what would be suggested by technical experts desiring a
complete, central solution. CPCA solutions may partially depend on agents'
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abilities in understanding the strategy of other agents' BICAP bids, a type of
knowledge that would be very di�cult to program into a computer.

As an algorithm for optimization, CPCA has some interesting features
that might be useful in many other applications besides smart market ap-
plications. The algorithm by which CPCA computes the bid maximizing
potential allocation is likely to be very di�erent than the one that a computer
programmer or operations research specialist would construct for this type of
problem.37 In CPCA calculation of optima are not centrally controlled or
dispatched and there is no control to prevent the duplication of e�ort ±
several agents might be simultaneously searching for very similar solutions.

Whether duplication of e�ort would necessarily point to an ine�ciency is
a potential point for future debate about computing mechanisms. Huberman
and Hogg (1995) and Huberman, Lukose, and Hogg (1997) have developed
the idea of computational portfolios, where a number of di�erent techniques
are simultaneously tried for solving the same problem. The idea is that on a
multiprocessing computer that can support a number of simultaneous pro-
grams, choosing a level of time sharing between a number of solution
techniques is similar to choosing a portfolio of stocks in ®nancial theory. The
solution techniques each have an uncertain ex ante yield in terms of time to a
solution. Thus, a combination of techniques would involve a tradeo� be-
tween speed of solution and variance of solution time, just as a portfolio of
stocks involves a tradeo� between performance and variance. CPCA would
appear to be compatible with such techniques for computation, as it causes a
market portfolio of solution techniques to evolve based on performance.

In addition, evidence exists suggesting that CPCA also procures substi-
tutes for computation when they are available. In the experiments, agents
often knew what e�ect a bid had on the value of certain allocations and were
able to gain a small bonus by immediately revealing this information. These
agents might be said to have what Hayek (1945) referred to as the knowledge
of particular circumstances of time and place. The CPCA procedure caused
the revelation of this special type of information that would be di�cult to
otherwise incorporate into a computing algorithm ± information such as
personal, strategic reasons for a particular bid and the ability to guess
strategic reasons for others' bids. In addition, CPCA also gave agents in-
centives to undertake more extensive searches of the allocations when such
simple rules-of-thumb would be ine�ective.

While the current series of experiments shows that CPCA is an e�ective
computational tool that can also elicit knowledge that is di�cult to include in
formal computer programs, future series of experiments are required to
further determine CPCA's properties. Can CPCA cause agents to appro-

37 Usually the push is for better algorithms and/or faster computers. The novel idea of interactive

optimization, as suggested by Fisher (1986), involves linking human and computer abilities in

solving optimization problems. No one, to my knowledge, proposes linking competing humans

who have various computing abilities at their disposal.
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priately use available computing tools when these tools are costly? In the
current experiments, the only costs to computation for the agents was the
cost of their own mental e�ort. Because CPCA does not place restrictions on
what an agent does to construct a solution proposal, any algorithm or
computer program for ®nding or approximating optima could be used with
CPCA. In more complicated computational environments, various computer
programs or other tools might have real economic costs as well as potential
bene®ts. The CPCA procedure would help determine a parallel algorithm
where agents were willing to undergo computing costs associated with the use
of certain tools or techniques in order to gain the possible CPCA bonus.
More complex environments need to be studied to determine how e�ective
CPCA would be in these situations. Eventually, ®eld tests might even be
warranted. Perhaps CPCA, or something like it, could eventually be used as
a means of rewarding teams of sophisticated, optimization research spe-
cialists who compete and/or collaborate to solve problems of importance to
industry.

Appendix A

The many potential uses of CPCA as a computation mechanism, and in
particular its use within allocation mechanisms such as smart markets,
requires that the CPCA rules be stated in a su�ciently clear and general
fashion so that its compatibility with other mechanisms can be ascer-
tained.

Here we take an approach familiar to those who work with dynamical
systems or state-machines. The mechanism has a state. In CPCA, the state is
assumed to be public information and common knowledge (e.g. agents know
that other agents have access to the state).

The operation of a mechanism, in general, can be described as follows.
The mechanism starts in a universal initial state we will call [. The mech-
anism changes states only by processing messages, which may arrive asyn-
chronously from agents or be a special ``message from time''. The message T
will be considered as a message that some uniform time interval has passed.
In this way, the description of a mechanism's reaction to the passing of time
can be placed in the same framework as its reaction to messages from agents.
The mechanism may or may not have terminal states, from which further
changes are impossible. The terminal states, when they exist, may occur in
operation either through messages from the agents or messages from time. In
some allocation mechanisms, the terminal state provides a ®nal allocation
that is to be implemented. In CPCA, the terminal state will give the ap-
proximate mathematical solution of a constrained optimization problem.

The reaction of a mechanism to a message is given by a transition rule.
The transition rule speci®es an initial state, a message or messages, and a
®nal state. If the mechanism is at the initial state, and the message or se-
quence of messages is received, then the state of the mechanism changes to
the ®nal state. If a transition rule does not exist for a given mechanism initial
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state and agents message, then a transition does not occur ± the message is
ignored.

A taxonomy of transition rules can make useful distinctions in required
and optional transitions in mechanisms. When only one transition rule exists
for a given state, that transition is called a required transition. A required
transition must occur in order for processing in the mechanism to continue.
When many possible transition rules exist for a given state, then at this state
there are many optional transitions. This taxonomy of transition rules may
help to identify bottlenecks that occur because of the limited abilities of
agents involved in required transitions.

The notation used for required and optional transitions follows below.
Required transitions

notation

Statefvariablesg �������������!sender!messages
NewÿStatefvariablesg

interpretation
If the mechanism is at the initial State, then for the mechanism to con-

tinue operations, the sender must send the indicated message or messages,
and then the mechanism state changes to the New_State.

notation

Statefvariablesg ^ �applicability condition� �������������!sender!messages

NewÿStatefvariablesg
interpretation
If the mechanism is at the initial State, and the applicability condition is

satis®ed, then for the mechanism to continue operations, the sender must
send the indicated message or messages, and then the state changes to the
New_State.

Optional transitions
notation

Statefvariablesg � �������������!sender!messages
NewÿStatefvariablesg

interpretation
If the mechanism is at the initial State, and the sender sends the indicated

messages, then the mechanism state changes to New_State.
notation

Statefvariablesg^ �applicability condition� � �������������!sender!messages

NewÿStatefvariablesg
interpretation
If the mechanism is in the initial State, and the applicability condition is

satis®ed, and the sender sends the indicated messages, then the mechanism
state changes to New_State.
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A rough description of the CPCA mechanism is as follows. The states of
CPCA are a null initial state [, a listening state Lf g, a veri®cation state V { },
and a terminal closed state Cf g. The agents include a market maker and a
number of computing agents. The market maker starts the process by pro-
viding details of the constrained optimization environment. This message
causes a transition from the [ state to a Lf g state. In the state Lf g, CPCA
will accept improvement messages from agents, and proceed to state V f g,
where the improvement will be veri®ed by the market maker, and cause
CPCA to enter another Lf g state. Time a�ects the Lf g states in a manner
that makes it more pro®table for agents to send improvement messages.
Eventually, if no improvement messages are sent, time will cause the
mechanism to enter a terminal Cf g state.
CPCA states

[ ± Null state
LfQ; F ; xn;Bg ± Listening State

variables for Lf g
Q � value function (maximand)
F � feasibility function (constraints)
xn � n-th iterated potential solution
B � bonus rate

V fQ; F ; xn;B; i; x�g ± Veri®cation State
variables for V f g
Q; :F :x:B ± as above
i; x� ± potential improvement

CfQ; F ; xng ± Auction closed.

Transition rules

The market maker has the option to start the auction by providing the details
of the constrained optimization environment.

[ � �������������!mm!E�Q;F �
LfQ; F ; x0 � [;B � 0%g

Time raises the bonus to 100% then closes the auction if no messages
arrive from the agents.

LfQ; F ; xn;B � 0%g � ���!T
LfQ; F ; xn;B � 1%g�

���!T
. . . � ���!T

LfQ; F ; xn;B � 99%g�
���!T

LfQ; F ; xn;B � 100%g � ���!T
CfQ; F ; xng

The market maker has the option to monotonically increase the value
function

LfQ; F ; xn;Bg � �������������!mm!DE�jDQj�
LfQ� jDQj; F ; xn;Bg
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Agents have the option to suggest improvements x� to the current po-
tential solution xn

LfQ; F ; xn;Bg � �������������!i!S�i;x��
V fQ; F ; xn;B; i; x�g

The market maker must verify and pay agents who submit bona®de
improvements.

V fQ; F ; xn;B; i; x�g^
�F �x�� ^ �Q�x�� > Q�xn��� ��������������������!mm!A�x���P�i;B��Q�x��ÿQ�xn���

LfQ; F ; xn�1
� x�;B � 0%g

The market maker must reject and penalize agents for incorrect im-
provement submissions.

V fQ; F ; xn;B; i; x�g ^ :�F �x�� ^ �Q�x��
> Q�xn��� �����������������!mm!R�x���P�i;ÿpenalty�

LfQ; F ; xn;Bg

Formal description of the BICAP mechanism
Transition rules
The market maker has the option to start the BICAP mechanism by

providing the details of the trains and con¯icts.

[ � �����������������!mm!E�R;C�
LfR;C;B � 0;H � 0; S � [ g

Agents have the option to place a bid b on a train r 2 R.

LfR;C;B;H ; Sg � �����������������!i!B�b;r�
V fR;C;B;H ; S; i; b; rg

The market maker must verify that a new bid is above the current high
bid, and if so, must announce the new high bids. The mechanism then enters
a wait state while the new bid maximizing feasible schedule S, is computed.

V fR;C;B;H ; S; i; b; rg ^ �b > Br� �����������������!mm!A�b;r�

W fR;C;B � �. . . ; b; . . .�; H � �. . . ; i; . . .�g
The market maker must reject any new bid that does not exceed the

current high bid for that train.

V fR;C;B;H ; S; i; b; rg ^ :�b > Br� �����������������!mm!R�b;r�
LfR;C;B;H ; Sg

A computing agent (which might be the market maker or a machine
controlled by the market maker) must compute the new bid maximizing
feasible schedule whenever a wait state is entered.

W fR;C;B;Hg �����������������!comp!Sched�S�
LfR;C;B;H ; Sg

Formal description of the BICAP+CPCA mechanism
Transition rules
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The market maker has the option to start the BICAP� CPCA mecha-
nism by providing the details of the trains and con¯icts to BICAP. The
CPCA environment �Q�x�; F �x�; x0� is determined from R and C.

[ � �����������������!mm!E�R;C�
LfR;C;B � 0;H � 0; S � [g

Agents have the option to place a bid b on a train r 2 R.

LfR;C;B;H ; Sg � �����������������!i!B�b;r�
V fR;C;B;H ; S; i; b; rg

The market maker must verify that a new bid is above the current high
bid, and if so, must announce the new high bids and send a CPCA envi-
ronment change message.

V fR;C;B;H ; S; i; b; rg ^ �b > B r� ��������������������!mm!A�b;r��DE�DQ�DB�

LfR;C;B � �. . . ; b; . . .�;H � �. . . ; i; . . .�; Sg
The market maker must reject any new bid that does not exceed the

current high bid for that train.

V fR;C;B;H ; S; i; b; rg ^ :�b > Br� �����������������!mm!R�b;r�
LfR;C;B;H ; Sg

Appendix B: Experimental instructions.
BICAP+CPCA 8/9/94, 8/10/94, Experiment C1, C2

The instructions that follow are original. In experiments S1 and SIP1, similar
instructions were used but the con¯ict diagram was replaced with the ap-
propriate diagram from Figure 2.

In experiments C3 and S2, the two-tiered redemption values were not
used. In these experiments there was a constant payment in cents per franc.

Instructions

This is an experiment in the economics of market decision making. The
instructions are simple, and if you follow them carefully and make good
decisions you might earn money which will be paid to you in cash.

In this experiment, we are going to conduct a computerized market over a
sequence of trading periods. The items to be sold are called projects, and are
designated by letters of the alphabet (project A, project B, project C, etc...).
You may try to purchase any number of projects as you wish. The value to
you of any particular project is detailed on your attached set of redemption
value sheets. The redemption values vary from period to period and from
person to person. You must pay careful attention to make sure you are using
the correct period number sheet in evaluating which project(s) you wish to
purchase. [note: the information on the redemption sheets is your own pri-
vate information, do not reveal it to anyone.] At the end of each period,
project(s) you have purchased are redeemed by the experimenter for the
amounts indicated on these sheets.
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Your trading pro®ts in a period are determined by the di�erence in the
redemption amount you receive for the projects you purchased and the
amount you paid for them.

i.e. trading profit=(total project redemption value)ÿ (total purchase price)

For example, if BUYER 43 purchases project C in the market for 500 and
project N for 200 and her redemption value from her sheet is 750 for C and
300 for N , then BUYER 43's trading pro®t is

750 (value of C) ÿ 500 (payment for C) � 300 (value of N ) )200(payment
for N ) � 350 (pro®t) .

Each project can be sold to one and only one buyer during each period.
The projects are sold via an auction, carried out using the computer termi-
nals. Buyers will have an opportunity to bid on each project as many times as
they wish. To bid, follow the instructions at the bottom of the screen. Bids
are not binding until the SEND key is hit. Bids which are lower than the
current bid on the screen are ignored. Once a bid for a project is sent into the
system, and becomes the current bid, the bidder is obligated to honor it until
someone else bids higher on the same project, at which point the lower bid is
deleted from the system.

There is an additional complication. Not all combinations of projects
are possible. For example, it could be that if X is sold, that Y or Z
cannot be sold. Incompatible groups of projects are detailed on an at-
tached sheet.

The computer will accept proposals for which objects should be sold. The
PROPOSERs earn pro®t for making proposals which are ACCEPTED for
consideration. At the end of the period, the computer will use the best
proposal submitted to determine which projects it will sell.

A PROPOSAL consists of a list of proposed objects to be sold by the
computer. The computer allways keeps the current proposal on display.
Projects included in the proposal are green on the display and items which
were not included are red. At the beginning of the period, the current pro-
posal is the proposal that none of the projects are sold.

A new proposal is ACCEPTED if there are no incompatible groups of
projects in the proposal, and if the value of the new proposal given the
current bids is higher than the value of the current proposal.

The proposer earns pro®t for ACCEPTED proposals. For each AC-
CEPTED proposal, a PROPOSAL BONUS is paid. Bonuses accumulate
over the period.

PROPOSAL BONUS � amount of improvement � bonus percentage.
The bonus percentage starts at 0% and rises as time left on the PERIOD

TIMER decreases. When the timer indicates half the time left, the bonus will
be 50%, and when the timer indicates 1 second left, the bonus will be close to
100%.

If you wish to make a proposal, type in the proposal by listing the object
letters which should be accepted, then hit the [F1] key. You may propose any
set of projects that you wish, but it will not be ACCEPTED unless it meets

88 P. J. Brewer



the criteria above (no con¯icts, improves sum of bids). The period begins
with the current proposal being to sell nothing.

It is important to emphasize the di�erence between Proposals and Bids.
Remember that a PROPOSAL is a recommendation to the computer con-
cerning which projects it should sell, given the BIDS already entered into the
system. These bids might be your own, or they might be another BUYERs
bids. Since projects are sold to the highest bidder, it is allways necessary to
BID on projects which you are attempting to purchase. The projects you
wish to purchase must also be in the best proposal received by the end of the
period in order for you to actually purchase the projects. However, this
proposal does not need to be made by the same person who is bidding on the
projects.

At the beginning of each period, a PERIOD TIMER is set to 60 seconds
and is reset to this value whenever an acceptable bid or proposal is made.
When the timer reaches 0, the period closes.

At the end of each period, the computer noti®es each buyer of any suc-
cessful bids. Successful bid(s) must be paid, and the bidder receives the in-
dicated projects.

Unsuccessful bids are not displayed. Unsuccessful bidders pay nothing,
and receive nothing.

At the end of the period, buyers should ®ll out their BUYER RECORD
SHEET and calculate any pro®ts (or losses) from the period. The total bonus
from proposals is also displayed on the screen when the period closes, and
this should be included in the pro®t calculation.

Currency:

The currency used in these markets is ``francs''. At the end of each period of
the experiment francs will be converted to dollars. This will occur according
to the following formula:

Losses: $0:02 � francs
1±10 francs: $0:20 � francs, or 5 francs � $1
10-in®nity francs: $1:80� 0:02 � francs.
Therefore, if you gain 10 francs either formula gives $2:00
Gain 100 francs, $3:80.
Gain 500 francs, $11:80.
If you lose 50 francs, then thats $1.
Remember, conversion to dollars occurs at the end of each PERIOD of

the experiment.

Incompatible projects

Any proposal that contains an incompatible pair is not feasible.
The incompatible pairs of projects are shown via the following graph(s).
An incompatible pair of projects are directly joined by a line. For instance

A;C is an incompatible pair because a line directly connects A and C, but A
and E are compatible because there is not a line between A and E.
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Examples:

fA;D; F g is feasible since neither A;D, A; F or D; F are connected by lines in
the ®gures above.
fB;D; F g is not feasible since B;D is connected by a line.
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