
Interface Definition Language

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Introduction 2

2. Planning and preparation 3

3. IDL basics 6

4. Modeling objects 8

5. Digging more deeply 10

6. Resources and feedback 13

Interface Definition Language Page 1



Section 1. Introduction

Who should take this tutorial?
This tutorial gives a hands-on introduction to the basic building blocks for applications
that communicate two ways using Web protocols. If you are working on dynamic Web
applications or distributed programming, this tutorial will get you started.

CORBA Interface Definition Language (IDL) is the prevalent language used for defining
how components connect together. Beyond its use in CORBA systems, IDL has proven
a popular way to describe platform and language-neutral connection interfaces,
including the Document Object Model (DOM) -- the core API for XML. Even variations
on IDL, such as the one used by Component Object Model (COM), tend to be similar to
IDL. Understanding IDL brings about key insights to many of the techniques of
component programming.

If you are not very familiar with component development but you plan to do some work
in this area, this tutorial is recommended. It is also recommended for those who will be
writing XML programs using the DOM.

Navigation
Navigating through the tutorial is easy:

* Use the Next and Previous buttons to move forward and backward through the
tutorial.

* When you're finished with a section, select Next section for the next section.
Within a section, use the Section menu button to see the contents of that section.
You can return to the main menu at any time by clicking the Main menu button.

* If you'd like to tell us what you think, or if you have a question for the author about
the content of the tutorial, use the Feedback button.

Prerequisites
At its core, IDL is quite simple. If you are familiar with any object-oriented language
such as C++, Java, or Python you probably have a decent idea what it specifies. No
software is required for this tutorial.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 2



Section 2. Planning and preparation

What is an interface?
The interface is arguably the most important aspect of component development. The
interface determines the strict form of all remote requests and responses. It can be
very expensive to modify or even extend an interface after it has been deployed widely.
By contrast, changes in implementation can often be made to one code base without
affecting any other code base, as long as the interface is maintained. Such changes
tend to be far less expensive.

How do I make an interface?
It is very important to get the interface right when developing components, and this
applies in the case of XML messaging as well. Traditionally, interfaces have been
defined in many ways, including:

* Very specific prose description
* CORBA Interface Definition Language (IDL)
* Unified Modeling Language (UML)
* Various XML schema and data-typing languages

IDL is probably the most common and well known, and it is certainly the most broadly
implemented.

An example
As our example, we'll design an interface for employee information. First of all, since
we said that designing the interface is very important, we'll spend some time planning
what we need from this component.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 3



The sales commission authorization application
Let's say we want to build a simple employee application for a sales department. It will
be used to authorize commission payments for sales. The software developers and a
few folks from human resources and accounting sit around the table and brainstorm
what objects the application needs to model. The first obvious object is the
salesperson. From our brainstorming we get the following list:

* Every salesperson has a unique ID
* The salesperson's name is important
* The salesperson's social security number is important
* The salesperson needs to be paid commission based on their sales
* Each salesperson is in a particular department

Sticking to the essentials
These are all points that are relevant to how we want salesperson objects to behave in
our applications. It may be important for a departmental listing to have employee home
telephone numbers on file in the system. But this is not an issue for our current
application, so it is left out of the above list. Note that one could have different aspects
of employee objects represented in different interfaces, possibly to different
applications. If we think of this while we're designing our interface, we'll want to have a
unique identifier that can bridge all the various representations of the employee or
salesperson object.

In fact, for this reason, let's imagine our salesperson interface as simply one form of
employee interface. Other information relevant to the employee, such as home phone
number and address, could be represented in a parallel interface that we can easily
bind in our applications if necessary.

Try it yourself
Of course, no two groups of people considering even such a simple example would
come up with the same interface. As an exercise, list the various objects and aspects
of such objects you might need to model in an interface to an application for authorizing
sales commissions.

Almost certainly your list will have differences. This is why developing interfaces is
such a hard task. You have to exclude some things that you might think are natural,
and think hard so as not to forget others that don't immediately come to mind.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 4



Object relationships
Once the list of the core objects comes to mind, it's time to look for relationships. Some
of the objects you mentioned in your list of relevant employee characteristics
themselves need to be recognized as objects by the application.

In our example we mentioned that each employee is in a particular department. If we
think about our application, we realize that the department is something we probably
want to treat as a separate object in our application. We'd like to organize reports by
department. We'd like to be able to locate employees by department, etc.

So "Department" is established as an object related to employee. What other object
relationships do you find in your own list of employee characteristics?

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 5



Section 3. IDL basics

Constructing IDL: The module
This is the outline of how the IDL will look based on our employee component design.

module EmployeeInfoServer {

//More code goes here

}

The module specification groups closely related interface elements. It usually
corresponds to modules in the relevant programming language, such as Java or
Python. You would group related classes, exceptions, data types and other such matter
in a single module.

We'll be adding more to our IDL, in the spot we've marked with a comment to this
effect. A comment in IDL either consists of any text on a line following // or any text at
all between /* and */.

Forward declarations
First we'll add two forward declarations to the IDL:

interface Employee;
interface Department;

A forward declaration basically foreshadows a more complete definition to follow, and
can be used by the IDL parser if we need to refer to an object that has not yet been
defined. It is a good idea to have a forward declaration for each distinct business object
that will be represented in the IDL. Each one will have a full interfaces definition farther
down.

In our case we had the Employee and Department objects, which are represented in
appropriate forward declarations.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 6



Exceptions
Exceptions are used to signal unexpected conditions during processing. An
unexpected condition could be an error (say the server ran out of memory), or it could
simply be an event that has to be handled in a very different way. For instance, it might
be an exception if the amount of an employee's commission causes the department to
exceed its budget.

Adding an exception

exception EmployeeInfoException {
string message;

};

We define an exception of name and type EmployeeInfoException. Exceptions we
define can be raised by a method call. This means that the client code that makes a
call to a server might not get a normal function return. Rather, an exception may be
signaled. This is the normal method of defining error handling using IDL.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 7



Section 4. Modeling objects

IDL interfaces
Interfaces are the meat of IDL. Each one gives a detailed map for accessing a given
type of object. First comes the header, with the interface name:

interface Employee {
//interface body

};

Methods, part 1
The first two lines in the Employee interface body are methods requesting data from
the represented object. The first requests the employee's ID, a simple integer.

unsigned long getId();

Methods, part 2
The second method the interface body requests the employee's department.

Department getDepartment();

Note that the return value is the Department interface, which we've already mentioned
in a forward declaration, and which we'll fully define soon.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 8



Object stubs and strong typing
When an interface is specified as a return value from a method, as with Department in
the last panel, it means that some representation of an object with that interface will be
returned, which you can further manipulate. This representation is usually called a stub.

As you can see, everything we specify in the IDL has a type associated with it. This is
called strong typing. The interface is a contract that mandates how one interacts with
an object regardless of its location or how it is implemented.

The IDL so far
We now have a framework for the basic employee object, and we are a little over halfway
through the sample IDL.

module EmployeeInfoServer {
interface Employee;
interface Department;

exception EmployeeInfoException {
string message;

};

interface Employee {
unsigned long getId();
Department getDepartment();
//More to come in this interface

};

//And more to come over all

};

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 9



Section 5. Digging more deeply

A more complex method
So far our methods have been quite simple, merely returning a requested value. The
next couple of lines in the Employee interface are a bit more interesting.

float authorizeCommission(in float saleVolume)
raises (EmployeeInfoException);

Parameters and remote operation
authorizeCommission is a method that probably requires more processing on the
back end. The code that calls this method must provide a parameter (unlike with the
preceding two methods), which is a floating-point number representing the amount of a
sale on which the caller authorizes commission.

The remote object will cause the commission amount to be computed based on all the
complex factors that usually govern sales commissions. Perhaps it will also trigger an
electronic fund transfer from the company's bank to that of the employee represented
by the remote object.

Return values and exceptions
If all goes well, the return value of authorizeCommission is the amount of actual
commission granted.

This method can raise an EmployeeInfoException exception. Again, this could be
a programming error, say the method was called with a negative saleVolume
parameter. It could be simply an unusual condition, perhaps if the employee has
already reached his or her cap on commissions for the quarter.

Since we defined a message string as one of the attributes of the exception,
EmployeeInfoException, the remote side can set this string to a description of the
reason for the exception (for our information). What exactly this message is depends
on what is done with it. If it is an error message to be displayed on a screen it will
probably be something like "negative value given for saleVolume". If it's to be used for
automated processing it might be something more unfriendly such as "data error
34533".

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 10



IDL attributes
We round our interface body with a couple of attributes.

attribute string name;
readonly attribute string ssn;

Each attribute represents atomic values of the remote object. This means that they
behave as if they were simply stored in a data field to which the client is given access.
This can be read/write access as in the name attribute above, or read-only as the ssn
attribute. Both attributes are of string type.

Defining our own types

typedef sequence<Employee> EmployeeList;

In the next panel, we'll see a method that returns a list of employees for a particular
department. We accomplish this in IDL by creating a type definition for a sequence of
Employee object stubs, called EmployeeList.

One more interface

interface Department {
unsigned long getId();
attribute string name;
EmployeeList employees();

};

There are few surprises here, except perhaps the employees method whose return
value is of the EmployeeList type we just defined. This way our application can
obtain the list of employees in that department by calling the employees method.

The complete IDL
That's all there is to it. Here then is our complete code so far:

module EmployeeInfoServer {
interface Employee;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 11



interface Department;

exception EmployeeInfoException {
string message;

};

interface Employee {
unsigned long getId();
Department getDepartment();
float authorizeCommission(in float saleVolume)
raises (EmployeeInfoException);

attribute string name;
attribute string ssn;

};

typedef sequence<Employee> EmployeeList;

interface Department {
unsigned long getId();
attribute string name;
EmployeeList employees();

};
};

Your turn
As an exercise, write up an IDL file that models the objects and relationships you came
up with in your own analysis of the application for commission authorization.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 12



Section 6. Resources and feedback

Summary
As you can see, basic IDL is rather simple. There are many other features of IDL we
have not covered, some quite simple and some extremely complex. We have focused
on providing enough IDL background to cover the interface definitions introduced in this
series. If you follow the path outlined in this tutorial in developing your own technology,
you will find that IDL is a very effective way to establish the rules for communication.

IDL definitions are mostly designed for access of objects separated by a network, but
IDL itself doesn't deal with any of the details of how this network is traversed. That is
the realm of network protocols, of which there are a multitude. HTTP is the network
protocol we shall mostly use in this series on XML messaging; it is covered in the next
tutorial in this series.

Resources
* Visit the official page for CORBA information.
* See this quick and dirty start to understanding CORBA .
* Check out information and downloads for JavaIDL , a CORBA client and IDL compiler that

comes with Java 2.
* See , by George Lebl, which covers the CORBA-based Bonobo component library, and

includes a description of IDL.
* idldoc is a tool that generates HTML documentation from CORBA IDL.
* , an article by Dave Bartlett, offers a more advanced look at IDL and is a good place to go

from here.
* , by Mike Olson, introduces CORBA, including an explanation of IDL.
* omniORB is an open-source CORBA ORB with a flexible IDL compiler, omniidl. It

supports C++ and Python.
* ORBit is an open-source CORBA implementation that is used in the core of the GNOME

project. It supports C, C++, Python Perl and Eiffel.
* The W3C Document Object Model (DOM) , an XML API expressed in IDL, is available on

the W3C site.
* The Mozilla XPIDL compiler generates component specifications from a format much like

CORBA IDL.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 13

http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://splash.javasoft.com/products/jdk/1.2/docs/guide/idl/
http://herzberg.ca.sandia.gov/idldoc/
http://www.uk.research.att.com/omniORB/index.html
http://www.labs.redhat.com/orbit/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://mozilla.org/scriptable/xpidl/
http://mozilla.org/scriptable/xpidl/
http://mozilla.org/scriptable/xpidl/
http://mozilla.org/scriptable/xpidl/
mailto:uche.ogbuji@fourthought.com
mailto:uche.ogbuji@fourthought.com


Giving feedback and finding out more
For technical questions about the content of this tutorial, contact the author, Uche
Ogbuji .

Uche Ogbuji is a computer engineer, co-founder and principal consultant at
Fourthought, Inc . He has worked with XML for several years, co-developing 4Suite , a
library of open-source tools for XML development in Python , and 4Suite Server , an
open-source, cross-platform XML data server providing standards-based XML
solutions. He writes articles on XML for IBM developerWorks, LinuxWorld, SunWorld,
and XML.com. Mr. Ogbuji is a Nigerian immigrant living in Boulder, CO.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics, and
two PDF files. Our ability to generate multiple text and binary formats from a single source file
illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Interface Definition Language Page 14

mailto:uche.ogbuji@fourthought.com
mailto:uche.ogbuji@fourthought.com
http://Fourthought.com
http://Fourthought.com
http://4Suite.org
http://python.org
http://Fourthought.com/4SuiteServer
http://Fourthought.com/4SuiteServer

