Java:

Learning to Program with Robots

Chapter 01: Programming with Objects

Chapter Objectives

After studying this chapter, you should be able to:

e Describe models

e Describe the relationship between objects and classes

e Understand the syntax and semantics of a simple Java program
e \Write object-oriented programs that simulate robots

e Understand and fix errors that can occur when constructing a
program

e Read documentation for classes

o Apply the concepts learned with robots to display a window as used
In a graphical user interface

operations used to solve problems

e Models are simplified descriptions containing information and

Model Information

Operations

Concert Who’s performing
Performance Date
Which seats are sold

Sell a ticket
Count tickets sold

Schedule List of tasks to perform,
each with estimated time

Insert or delete a task
Calc estimated finish time

1.1: Modeling with Objects

Restaurant Occupied tables
Seating Ynoccupied tables
of seats at each table

Mark a table occupied
Mark a table unoccupied

e Models can be maintained:
e in our heads
e With paper and pencil
e With software

e Java programs are composed of software objects
e Software objects have:
e Information, called attributes

e Services that either change the attributes (a command) or
answer a question about attributes (a query)

1.1.2: Using Software Objects to Model

e A program may have a Concert ™\
many similar ObjeCtS date:| 28-March-2008
Ob t b performer:| Toronto Symphony
® JeC S Can e unsold
visualized with an — oy Concere
. . \ date:[{21-March-2008
ObJeCt dla‘g ram performer:|Great Big Sea
e shows attribute R
names and values e Concert < Type of
date:|22-March-2008 :/ object
Attribute performer:|Great Big Sea .
n:mes < unsoldTickets:[35A, 358, 35C Agﬂbute

soldTickets:|10A, 10B, ..., 347,

\ .. 35D, ... /
~ /

are called a class

e Classes are
represented with a
class diagram

1.1.2: Using Software Objects to Model

e A group of objects that
¢ have the same kind of information
e Offer the same services

Name of

Concert =<

date

performer
unsoldTickets

soldT ickets

Concert(date, performer)
numTicketsSold()
valueOfTicketsSold()
performerName()
performanceDate()

sellTicket(seatNumber)

the class

» Attributes

y Services

Understanding Karel’s World

1.2

2 Robots: Learning to program with Java

File Speed
1] 1
1]

2 3 4

+

o

Ali -0 x]

Controls

Start

Speed Z0om

Fast n —In

Slow = —Out

Quick Quiz

1.Draw an object diagram
for the robot labelled “M”
on the previous slide.

Hint: Three Concert
object diagrams are
shown to the right.

2.Draw your object diagram
again after the robot has
executed the following

commands:

move()
pickThing()

Attribute
names

-

Concert

~

date:

28-March-2008

performer:[Toronto Symphony

unsold
SO

Concert

~

date:

21-March-2008

performer:

Great Big Sea

un

sold Tickets:

10D, 22H, 25A,
25B 25C 287,...

N
e

Concert =€

date:|22-March-2008

N/

performer:

Great Big Sea

unsoldTickets:

35A,35B, 35C

L\

soldTickets:

.. 35D, ...

10A,10B, ..., 347,

/

| Type of
object

Attribute
values

Quick Quiz Solutions

Ve

Robot

~

currrentAvenue:

1

currentStreet:

0

direction:

WEST

e

-

backpack:

(empty

Robot

~

currrentAvenue:

currentStreet:

direction:

_

backpack:

Solutions may also contain
attributes for the label and color.

1.3: Modeling Robots with Software Objects

A class diagram for the robot class:

Robot

int street

int avenue
Direction direction

ThingBag backpack

Robot(City aCtty, int aStreet, int an Avenue,

Direction aDirection)
vold move()

void turnleft()
void pickThing()
void putThing()

1.4: An Example Program (1/3)

Two robots running a “relay.”

“ earning to program with Java Al o0 x| Inltl al SItU a.tl on
DID-1-2-3-4-5-5-? e
Iseeaaes g

l'- 2 B0808

IMnssesaas T |

R A J X R R

Em
r— aul-ldlx Final Situation

1] 1 2 3 4 g B 7 Controls
DWW W W Stop
Iaoaaesessns . ;B” plckg unkthe_
aton and takes It

A R R R R R R -

2 A to “K”, who

3. N }. L }: | finishes the race.
.!ml. . . . = —Slow - - Out

1.4: An Example Program (2/3)

/[Set up the initial situation

City beijing = new City();

Robot ben = new Robot(beijing, 2, O, Direction.SOUTH);
Robot karel = new Robot(beijing, 2, 3, Direction.SOUTH);
Thing baton = new Thing(beijing, 3, 0);

Wall finishLine = new Wall(beljing, 3, 6, Direction.EAST);
karel.setLabel("k");

ben.setLabel("B");

// Run the relay
ben.move(); // bwb
ben.turnLeft();
ben.pickThing();
ben.move();
ben.move();
ben.move();
ben.putThing();

karel.move();
karel.turnLeft();
karel.pickThing();
karel.move();
karel.move();
karel.move();
karel.putThing();

1.4: An Example Program (3/3)

Import becker.robots.*;

public class RobotRelay

{

public static void main(String[] args)

{

Code on the previous slide goes here.

All of the code goes into a computer file named
RobotRelay.java

—
——

1.4.5: Tracing a Program (1/2)

ben karel baton
Program Stmt str (ave | dir | bp | str [ave| dir | bp | str |ave
2 | 0 - | 2 | 3 - 130
ben.move();
3 1 0 - 1 2 |3 - 1310
ben.turnLeft();
310 - 12 |3 - 130
ben.pickThing();
310 ba| 2 | 3 - 1310
ben.move();
3 | 1 ba| 2 | 3 - 13 |1
ben.move();
3 | 2 ba| 2 | 3 - | 3] 2
ben.move();
3 | 3 ba| 2 | 3 - 13| 3

1.4.5: Tracing a Program (2/2)

ben karel baton
Program Stmt str |ave | dir | bp | str jave | dir | bp | str jave
3/ 3| E|ba|2]|3|S|-]3]3
ben.putThing();
3/ 3|E|-12|3|s|-]3]3
karel.move();
3/3|E|-13|3|S|-1]3]3
karel.turnLeft();
3/3|E|-|3|3|E|-1]3]3
karel.pickThing();
3|/ 3| E|-]13|3|E |ba|] 3] 3
karel.move();
3|1 3| E|-]13|4)|E |ba|] 3|4
karel.move();
etc. 3| 3| E|-13]|5] E|ba] 3|5

| htkp: /s, learningwithrobots, comfdoc/becker frobots/Robot. hkml

8 ¥9Robot (Java: Learning to Program with Robots) - Mozilla Firefox Al-ﬁl - |I:I|£|
O File Edit ‘Miew Go Bookmarks Tools Help

E <J:| - LL,’ - @ | : I @ I || htkpe e learningwithrobotbs, camfdocfindes, bkl j @ Go I@,

- -]
E All Classes :I

o Constructor Summary]
—l PﬂﬂkﬂgﬁS Fobot (City aCity, int aStreet, int anaAvenus,

becker.gui - - - -

O . : Directicon aDirection)

+ becker.robots Construct a new Robot at the given location in the given city with nothing in its

(- becker.robots.icons | [backpack.
9 l[—l —’I—I Fobot (City aCity, int aStreet, int anAvenus,

'IC_U' TLabel [Direction aDirection, int numThings)

-IE IPvedicate Construct a new Robot at the given location in the given city with the given

number of things in its backpack.

QO Classes < kp

E AppletRunner

8 gﬁv Method Summary

ity View

(@) Flasher protected wvoid hreakRobot (String meg)

M) Intersection Thiz method iz called when the robot does something illegal

o) Light such as trying to move through a wall or picking up a non-existant

c MazeCity object.
6 Robot hoolean|ganPickThing ()

(q0] RobotRC — Determine whether this robot is on the same intersection as a

DG:) RobotSE thing it can pick up.

g{i?lli)otUICompnner int \gountThingsInBackpack ()

o IEE=ra How many things are in this robot's backpack?

OO_ StateChangeEvent ay s kp

< Streetlicht v intlcountThingsInBackpack (IPredicate kindOfThing) v
i et ol e

A

Edit program's
source code

Destred

Compitle
the program

Run the
program

Compile?

1.5: Compiling and Executing Programs

Three kinds of errors:
e Compile-Time Errors

e The compiler can’t translate your program into an executable
form because your program doesn’t follow the language’s rules.

e Examples:

e karel.move; instead of
karel.move();

e Public class RobotRelay instead of
public class RobotRelay

1.5.1: Compile-Time Errors

e Unmatched braces; a { without a corresponding }
e Run-Time Errors
e Intent (Logic) Errors

1.5.2: Run-Time Errors

Three kinds of errors:
e Compile-Time Errors
e Run-Time Errors

e The compiler can translate your program and it begins to run, but
then an error occurs.

e Example:
e Code positions the robot in front of a wall

e The robot is told to move karel.move();
e Running into the wall causes the robotto (888
break (a run-time error) .

e Intent (Logic) Errors

Intent (Logic) Errors

1.5.3:

Three kinds of errors:

e Compile-Time Errors

e Run-Time Errors

e Intent (Logic) Errors

e The compiler can translate your program and it runs to
completion, but it doesn’t do what you want it to.

e Example: In the relay race, the programmer forgets to instruct

karel to turn left after picking up the baton.

4]

0 1 2 3 B 0 1 2 3
Pl E W . n.----

4 5 B
- - .

JEGSESEE IoacEEES
1

Initial Situation

YT N

Correct Final

2
18
3
18
4
18
g
18
B
18

1] 1 2 3 4 4] 6
|:I.-------
A A N N N B R
1

A A N N N B B
2

Ioeaean

3

A A N B N B

4

A A N N N B R
5

I8 800
]

I8 aee

Incorrect Final

1.7: Patterns

Patterns are fragments of code that appear repeatedly.
We give them names and learn them so that:

e \We can recognize when they are being used

e We can discuss them easily with others

e We can apply them in new situations

When patterns are used in the text, an icon and the pattern name
appears in the margin. Discussed in detail later in the chapter.

HSat up the initial situation

City ny

wall blockaveal
wall blockavel
Eobot mark
FEobot ann

new clty();

new wWall{ny, 0, 2, Directlion.WEST);
new wWall(ny, 1, 2, Directlion.wWEST);
new Robot(ny, 0, 2, Directlon.wEST) ;
new Robot(ny, 0, 1, Direction.EAST):;

/fmark goes around the roadblock

mark.turnLeft{);
mark.move()
mark.mowve() :
mark.turnLeft():;
mark.turnLeft();
mark.turnLeft();
mark.moveq()

i start wwming nght as thres tuns B

i finished tuming right

Pﬂ”tﬁ”h&h_
Ohject Instantiation

Pmur-:r-.llh‘em

Command Invocation
Segueniffal Execulion

1.7.1: The Java Program Pattern

Name: Java Program
Context: Writing a Java program
Solution:
Import «importedPackage»; // may have 0 or more import statements

public class «className»

{
public static void main(String[] args)
{ «list of statements to be executed»

}
}

Consequences: A class is defined that can begin the execution of a
program.

Related Patterns:

o All the other patterns in Chapter 1 occur within the context of the
Java Program pattern.

e All Java programs use this pattern at least once.

1.7.2: The Object Instantiation Pattern

Name: Object Instantiation
Context: An object is needed to carry out various Services.
Solution:

Examples:
City manila = new City();
Robot karel = new Robot(manila, 5, 3, Direction.EAST);

Pattern:
«variableType» «variableName» =
new «className»(«argumentList»);

For now, «variableType» and «className» Will be the same. The
«argumentList» is optional.

Conseqguences: A new object Is constructed and assigned to the given
variable.

Related Patterns: The Command Invocation pattern requires this
pattern to construct the object it uses.

1.7.3: The Command Invocation Pattern

Name: Command Invocation
Context: You want an object to perform one of its services.
Solution:

Examples:
karel.move();
collectorRobot.pickThing();

Pattern:
«objectReference».«commandName»(«argumentList»);

The «argumentList» is optional.
Consequences: The command is performed by the object.

Related Patterns: The Object Instantiation pattern must be preceded
by this pattern. The Sequential Execution pattern uses this pattern two
or more times.

1.7.4. The Sequential Execution Pattern

Name: Sequential Execution

Context: Your problem can be solved with a sequence of steps where
the order of the steps matters.

Solution: List the steps to be executed in order so that each statement
appears after all the statements upon which it depends.

For example, the following two program fragments are the same except
for their order. They do different things; only one of which is correct
In a given context.

karel.move(); karel.turnLeft();
karel.turnLeft(); karel.move();

Consequences: Each statement is executed in turn. The result usually
depends on the statements that have been previously executed.

Related Patterns: This pattern uses the Command Invocation pattern
two or more times.

You have a garden enclosed with four walls, as shown in the initial
situation. You want to plant flowers around it, as shown in the final
situation. Program a robot, karel, to do this for you.

0 1

issss 1a39s
IEEEE Iesas
TIII I

Initial Situation Final Situation

Case Study 1: Plant Flowers

Questions:
e \Where do the “flowers” (Thing objects) come from?
e How many walls are there? How are they positioned?

Import becker.robots.*;

Il Plant flowers around a square garden wall.
public class PlantFlowers

{

public static void main(String[] args)

{

I/l Code to create the initial situation goes here.

Case Study 1: Plant Flowers

// Code to plant the flowers goes here.

Case Study 1: Plant Flowers

Import becker.robots.*;

Il Plant flowers around a square garden wall.
public class PlantFlowers

{

public static void main(String[] args)

{

I/l Code to create the initial situation goes here.

City berlin = new City();

Wall eWall = new Wall(berlin, 1, 2, Direction.EAST);
Wall nWall = new Wall(berlin, 1, 2, Direction.NORTH);
Wall wWall = new Wall(berlin, 1, 2, Direction.WEST);
Wall sWall = new Wall(berlin, 1, 2, Direction.SOUTH);

/I Create a robot with 8 things already in its backpack.

Robot karel = new Robot(berlin, 0, 1, Direction.SOUTH, 8);

// Code to plant the flowers goes here.

Quick Quiz

1.Name all the patterns used in this case study.

2.Which patterns are not used?

Quick Quiz Solutions

1.Patterns that are used:
e Java Program
e Object Instantiation
e Sequential Execution

2 .Patterns that are not used:
e Command Invocation

Case Study 1: Plant Flowers

Robot karel = new Robot(berlin, 0, 1, Direction.SOUTH, 8);

// Code to plant the flowers goes here.
karel.move();
karel.putThing();
karel.move();
karel.putThing();
karel.turnLeft();

karel.move();
karel.putThing();
karel.move();
karel.putThing();
karel.turnLeft();

karel.move();
karel.putThing();
karel.move();
karel.putThing();
karel.turnLeft();

karel.move();
karel.putThing();
karel.move();
karel.putThing();
karel.turnLeft();

Note: The robot does the
same steps four times,
once for each side of the
square. In the next lesson
we’ll learn how to exploit
that fact.

Case Study 2: An Assembly Line

Write a program in which three robots on an “assembly line” are
positioned along street O at avenues 0, 1, and 2. A “part” (Thing) Is
positioned at (1, 0) on a “conveyor belt” along street 1. Starting with
the westernmost robot, each robot processes the part in some way and
then moves It into position for the next robot on the assembly line
before returning to its own starting position.

0 1 2 3 0 1 2 3 0 1 2

OO = f:': T s l:
TITITRITCIRmIRID

Initial Situation Final Situation
Questions:

¢ \What path must each robot take to do its task?
e Does it matter which robot goes first?
e How can a robot turn around? Turn right?

GC) Import becker.robots.?;
— // Simulate an assembly line with three robots and one part.
public class AssemblyLine

{

public static void main(String[] args)

{

Case Study 2: An Assembly

Case Study 2: An Assembly Line

Import becker.robots.*;

// Simulate an assembly line with three robots and one part.
public class AssemblyLine

{

public static void main(String[] args)

{ 1/ Set up the initial situation
City guelph = new City();
Robot rayna = new Robot(guelph, 0, O, Direction.SOUTH);
Robot roopa = new Robot(guelph, 0, 1, Direction.SOUTH);
Robot ruth = new Robot(guelph, 0, 2, Direction.SOUTH);

Thing part = new Thing(guelph, 1, 0);

public static void main(String[] args)

{ 1/ set up the initial situation
City guelph = new City();
Robot rayna = new Robot(guelph, 0, 0, Direction.SOUTH);
Robot roopa = new Robot(guelph, 0, 1, Direction.SOUTH);
Robot ruth = new Robot(guelph, 0, 2, Direction.SOUTH);

Thing part = new Thing(guelph, 1, 0);

/Il The first robot moves the thing to the next stage.
rayna.move();
rayna.pickThing();
rayna.turnLeft();
rayna.move();
rayna.putThing();
rayna.turnLeft();
rayna.turnLeft();
rayna.move();
rayna.turnLeft();
rayna.turnLeft();
rayna.turnLeft();
rayna.move();
rayna.turnLeft();

rayna.turnLeft();
I/l Repeat the above steps for each of the other robots.

Case Study 2: An Assembly Line

Application: Using what we’ve learned

Apply the patterns learned with Robots to other situations
e.g.: To create the beginnings of a graphical user interface.

Use the JFrame, JLabel, JTextField, and JTextArea classes to write
a program that looks (sort of) like a Web browser:

i Browser 0| x| je— J Frame
«+—JTextField
JLabel

<s— JTextArea

Use the following patterns:
e Java Program e Command Invocation
e Object Instantiation

welbold 01 Apeay bumss :uonedijddy

Application: The Java Program Pattern

Import javax.swing.*;

/' Write a program that display a window which looks sort of like a Web browser.
public class Browser

{

public static void main(String[] args)

{

/I Construct appropriate objects

/I Use their services

}

—

Application: The Object Instantiation Pattern

Import javax.swing.*;

/' Write a program that display a window which looks sort of like a Web browser.
public class Browser

{

public static void main(String[] args)

{

/I Construct appropriate objects

JFrame frame = new JFrame();

JPanel contents = new JPanel();

JLabel label = new JLabel("URL:");
JTextField url = new JTextField(15);
JTextArea html = new JTextArea(10, 20);

/I Use their services

—
—

Application: Command Invocation Pattern

mpublic static void main(String[] args)

{

I/l Construct appropriate objects

JFrame frame = new JFrame();

JPanel contents = new JPanel();

JLabel label = new JLabel("URL:");
JTextField url = new JTextField(15);
JTextArea html = new JTextArea(10, 20);

/I Use their services
contents.add(label);
contents.add(url);
contents.add(html);

frame.setContentPane(contents);

frame.setTitle('Browser");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setLocation(250, 100);

frame.setSize(250, 250);

frame.setVisible(true);

Concept Map

1.8

M

pl‘ o)
Dy
JQIG b
Q/QGS
‘o

&R
City
problem to
) be solved
<&
@

%

%
&

?

2
o
o,
5
% 2
< (@]
¢o) e’ »
28} ff) Q)
Cs,
Q COfb ije o
0200 Q'SS
S@t
of
par ameters

information to

Summary

We have learned:

e how to create objects using an existing class
(e.g.: Robot karel = new Robot(myCity, 1, 2, Direction.EAST);)

e how to use an object’s services
(e.g.: karel.move();)

e that these program statements must be contained within the Java
Program pattern.

e that objects have attributes to store information.

e that objects are defined by a class.

e how to use documentation to find out more about a class.
e that several kinds of errors can affect a program.

e that many code patterns occur repeatedly in programs.

