Search Algorithms
Search algorithms perform the membership operation on a set. The basic algorithms used to determine membership are:

· Linear search

· Binary search

· Tree search

· Hash coded search

The Dictionary
Set applications that only use the insert, delete, and member1 operations are referred to as dictionaries. The dictionary is a very common form of set.

1 The term member, as used here, means membership in the set, not a literally class member function, although the concepts are similar.

Search Schemes

Although our primary emphasis is on the use of hashing techniques, we will examine the following types of search algorithms:

· Linear

· Binary (includes trees)

· Hashing

Linear Search
The linear search takes O(n). It is suitable for all types of data structures. Use of the linear search with the list ADT is shown below:

p = first();

while(p != length())

if((i = locate(key)) != ListEnd())

return i;

return -1;

Binary Search
The binary search takes O(logn). It is suitable only for sorted data structures.

int
left, mid, result, right;

left = first();

right = length();

while(left <= right) {

mid = (left + right)/2;

if((result = retrieve(mid)) == mid)

return mid;

if(result > key)

left = next(mid);

else

right = previous(mid);

}

return -1;

Tree Search
A balanced binary search tree produces a binary search. However, as the tree becomes unbal​anced, the search approaches a linear search. Thus, the times for a binary tree search are

O(logn) (search time (O(n)

Balanced tree ((List

Hash Coding
· Search technique that takes O(constant).

· It is an approximation to using direct access with arrays.

· It requires an array with the elements arranged according to the hash algorithm being used.

· Hash algorithms are not unique, therefore two different keys may hash to the same address. This is known as a collision. Any hashing algorithm must include some scheme for handling collisions.

· The number of collisions tends to be a function of the sparcity of the table. As a rule of thumb, hash tables are not filled past about 50%.

The Dictionary Class

The following class will be used for all search algorithms:

class Dictionary

{

public:

Dictionary(int size);

bool InsertEntry(string entry);

bool FindEntry(string key);

void SortDictionary(void);

void PrintDictionary(void);

int DictionarySize(void);

int DictionarySpace(void);

};

We may add additional functions for some applications.

The Base Code

The same base, or support, code will be used for testing each of the search algorithms:

//
Determine size of the data file (dictionary contents)

NumEntries = CheckFile(fin, <data file>);

//
Construct the dictionary

Dictionary d(NumEntries);

// Initialization time
//
Transfer contents to an array

FileToArray(fin, data, NumEntries);

//
Insert contents into the dictionary from the array

for(int i = 0; i < NumEntries; i++)

// Build time

d.InsertEntry(data[i]);

//
Determine number of search keys and place in an array

NumKeys = CheckFile(fkeys, <keys file>);

FileToArray(fkeys, keys, NumKeys);

//
Perform the actual search

for(i = 0; i < NumKeys; i++)

// Search time

if(d.FindEntry(keys[i]))

found++;

The Tool Set

Most data sets will be strings. The following tools are useful in managing the test data:

· mix – Combines the contents of two files in an interleaved fashion and writes result to a third file.

· mkstring – Creates a file of strings of specified size and length

· ukey – Selects entries from one file, not contained in a second file.

· select – Selects entries from a file in an evenly spaced fashion.

· ssort – sorts a file of strings

· purge – Purges a file of duplicate strings.

Creating a Data Set

Creating the dictionary data:

1. Use mkstring to create a data pool

2. Use purge to remove the duplicate entries

3. Use select to create a file of the desired size. This is the dictionary data.

Creating the search keys:

1. Use select to create a temporary file of positive keys from the dictionary data.

2. Use nkey and the dictionary data to create a temporary file of negative keys from the data pool.

3. Use mix to combine the positive and negative keys into a single file.

Hash Coding
· hash key and hash index

· hash functions

· collisions (rehashing)

· analyzing the performance of hash functions.

The Hashing Process

[image: image1.wmf]key

(x)

Dictionary

hash value

hash index

h(x)

· Compute a hash value using the search key

· Using the hash value, compute a hash index, i.e., a legal address in the dictionary.

· If the address is already occupied, then continue the process until an empty spot is found (handle collisions).

Hash Function 1

Step 1: Compute a hash value:

int hash1(string key)

{

int HashVal = 0;

for(int i = 0; i < key.length(); i++)

HashVal = HashVal + key[i];

return HashVal;

}

Step 2: Compute the hash index from the value:

HashIndex = HashVal % TableSize;

The hash index is normally computed using the modulo technque given above.

Example 1

The names (lexington, lineville, highland, frogmore, pyriton, and Shinbone) were hashed into a table of size 11 using the algorithm from the previous page, with the following results:

Hash Value Data:

 pyriton, Key: [789], collisions: [0]

 Shinbone, Key: [822], collisions: [0]

 highland, Key: [831], collisions: [0]

 frogmore, Key: [865], collisions: [0]

 lineville, Key: [964], collisions: [0]

 lexington, Key: [984], collisions: [0]

Hash Index Data:

 lexington, Index: [5], collisions: [0]

 highland, Index: [6], collisions: [0]

 frogmore, Index: [7], collisions: [1] (lineville)

 Shinbone, Index: [8], collisions: [1] (pyriton)

Hash Function 2

The following algorithm uses additional information about the keys to computer the hash value:

int hash2(string key)

{

int HashKey = 0;

for(int i = 0; i < key.length(); i++)

HashKey = HashKey + (i + 1) * key[i];

return HashKey;

}

Example 2

The same names were hashed into a table of size 11, using algorithm 2, with the following results:

Hash Value Data:

 pyriton, Key: [3132], collisions: [0]

 highland, Key: [3731], collisions: [0]

 Shinbone, Key: [3780], collisions: [0]

 frogmore, Key: [3892], collisions: [0]

 lineville, Key: [4801], collisions: [0]

 lexington, Key: [4948], collisions: [0]

Hash Index Data:

 highland, Key: [2], collisions: [0]

 lineville, Key: [5], collisions: [0]

 Shinbone, Key: [7], collisions: [0]

 pyriton, Key: [8], collisions: [0]

 frogmore, Key: [9], collisions: [1] (lexington)

Hash Function Performance

· The table size is normally a prime number.

· The hashing function should spread the numbers over the range of indices in the table.

The following gives the results of our two algorithms with a larger table (table size = 997, 500 entries). Algorithm2 was marginally better.

ITEM
ALGORITHM 1
ALGORITHM 2

Value range
97 – 1725
97 – 13,955

Collisions (total/max)
97(4),
25(2)

Index range/collisions
1 - 996
0 - 996

Collisions (total/max
142(4)
120(4)

Hash Function 3

Hash function 3 (figure 5.4 from the text) uses the formula

for(int i = 0; i < key.length(); i++)

HashKey = HashKey + 37 * key[i];

To compute the hash function. It gave performance in between the first two functions.

Hash Value Data:

 [500] total keys with range of [3589 to 63825]

 [97] total collisions, [4] maximum for any key

Hash Index Data:

 [500] total indices with range of [3 to 995]

 [142] total collisions, [4] maximum for any key

Function 4

const int pv[5] = { 59051, 6569, 719, 83, 9 } ;

for(int i = 0; i < key.length(); i++)

if(i < 5)

HashKey = HashKey + pv[i] * key[i];

else

HashKey = HashKey + (i + 1) * key[i];

Hash Value Data:

 [500] total keys with range of [5727947 to 8101216]

 [0] total collisions, [0] maximum for any key

Hash Index Data:

 [500] total indices with range of [0 to 996]

 [107] total collisions, [4] maximum for any key

Collision Resolution

· Linear chaining – If there is a collision, then the item is placed in the next empty location. Simple, but not particularly effective.

· Random chaining – Same as linear chaining except that the locations are chosen by using the current location as the seed for a random number generator.

· Rehashing – The hashing function is modified in some manner and reapplied.

· Separate chaining – Additional spaces are created at the index, typically using a linked list.

Linear Chaining

return (index + 1) % TableSize;

In linear chaining, the successive locations are tried until and empty position is found.

· Very simple scheme

· Using contiguous memory increases the probability of secondary collisions.

Random Chaining

srand(index);

return rand() % TableSize;

In random chaining, the locations are chosen by using each previous location as the seed for a randomly generated index.

· Slower than linear chaining

· Reduces secondary collisions

Comparison

The four algorithms and the two collision resolution schemes were used to hash 500 strings (average length = 8, maximum length = 16) into a table of size 997 (a prime number).

Up to 10 tries were made for each number. After the 10th try, a failure was recorded.

Scoring Algorithm

Each of the 8 combinations was scored using the following algorithm:

for(i = 0; i < MAX_TRIES; i++)

score = score + ((float) TriesProfile[i])/(float) (i + 1);

score = 100.0 * score/((float) NumKeys);

Hashing all keys on the first try gives a score of 100.

Linear Chaining

ITEM
ALGORITHM 1
ALGORITHM 2
ALGORITHM 3
ALGORITHM 4

Total Keys
500
500
500
500

Number Hashed
462
484
498
500

Failures
38
16
2
0

Collisions
757 (9)
391 (10)
330 (4)
257 (4)

Total Tries
1219
875
828
757

Score
73.12
82.26
79.91
84.11

0
313
363
332
367

1
64
67
99
77

2
29
28
35
30

3
23
14
13
10

4
9
6
9
6

5
8
1
3
0

6
6
0
2
7

7
6
4
2
1

8
4
0
2
1

9
0
1
1
1

Random Chaining

ITEM
ALGORITHM 1
ALGORITHM 2
ALGORITHM 3
ALGORITHM 4

Total Keys
500
500
500
500

Number Hashed
498
499
495
500

Failures
2
1
5
0

Collisions
377 (6)
268 (5)
96 (3)
217 (3)

Total Tries
875
767
928
717

Score
78.36
84.57
78.24
85.21

0
325
376
331
373

1
91
60
75
81

2
33
30
40
23

3
25
15
16
11

4
11
8
15
7

5
4
7
2
3

6
5
0
6
1

7
2
0
6
0

8
1
1
4
1

9
1
2
0
0

Search Algorithms and Hash Coding - 2

_983074006.unknown

