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Using C++ to Define Abstract Data Types.

An abstract data type is a theoretical construct that defines data as well as the operations to be performed on the data.  Examples include stacks, queues, priority queues, graphs, trees, hash tables, etc.,

This section discusses some of the "advanced" features of C++ which are useful for creating abstract data types. 

Classes are the basis of good data structure design, because through them, desirable object properties and operations, like encapsulation, inheritance, instantiation, abstraction, object comparison and object initialization, can be defined.

In C++, ad minimum, a good class definition should have:


A Virtual Destructor

A Default Constructor




Hidden members

A Copy Constructor





Overloading assignment operator(s)


Overloading comparison operators(s)

Example:

class Image {

protected:

  int w, h;   



  
// Dimensions of the image

  char *bitmap;


 

// Bitmap of image

  int Copy(int iw, int ih, char *bm);

// Hidden helper function

public:

  Image();                         


// Default constructor

  Image(const Image &im);      

// Copy constructor

  Image(int iw, int ih, char *bm);

  virtual ~Image();                  


// Virtual destructor

  Image&  operator=(const Image &im); 
// Overloaded assignment

  virtual void Show(int xs, int ys);

};

Encapsulation and Information Hiding

Hidden members can be thought of as being the internal parts of the object as well as its inner workings, while the public section defines the object interface to the outside world.  In most cases, the hidden part will be predominantly made of data members, while the public part will be constituted mainly by function members.

As a rule of thumb, we can say that whenever a class is designed to be a base class, with inheritance in mind, the data members are to be declared as protected rather than private.  If, on the other hand, the class is not meant to be a base class, then the data members should be declared private. In all cases, it is safer to access data members via function members.

In our Image class, the size of the image, the image itself, and the copy helper function are all protected.  The code for copy is:

int Image::Copy(int iw, int ih, char *bm)

/* ++


int Image::Copy(int iw, int ih, char *bm)

Protected helper function that allocates a bitmap of size iw*ih, and copies the bits stored in  bm  into it.  ASSUMES bitmap isn't already allocated. Returns 1 if allocation successful, 0 otherwise.

-- */

{

  w = iw; h = ih;

  bitmap = new char[w*h];

  if (bitmap) { // Allocation worked

      memcpy(bitmap, bm, w*h);

      return 1;

  }

  else { // Allocation failed. Set image to null

     w = 0;   h = 0;   return 0; // Allocation failed.

  }

}

It should be clear by now why copy() must be a protected function:  It assumes that a bitmap has not been allocated; therefore, copy() can be very dangerous if used in any other context.

Constructors and Destructors (C&D)

Constructors and destructors (C&D) determine how objects are created, copied, initialized and destroyed.  They are member functions having the same name as the class they belong to.  Destructors, by definition, have a tilde (~) prefixed to the class name.

Whenever a new object is defined, one of the object's class constructors is invoked.  The constructor creates the object and initializes it.  The destructor deletes the object. 

Although C&D can be seen as member functions, they have unique features:

1. They can not have return declarations.

2. They can not be inherited, only derived.

3. Constructors can have default arguments.

4. Constructors can use member initialization lists.

5. You can not take their addresses.

6. C&D can not be called as other functions.  They can only be invoked by using their "qualified name."

7. C&D can call the operators new and delete.

8. If the application does not define them, the compiler will create C&D which will be public.

9. It is preferable to make destructors virtual.

10. Declaring a constructor as virtual results in a compiler error.

Default Constructors

These are constructors that do not require arguments when called up (can take default values).  In general, a default constructor must  do, ad minimum:

1.  Create a null object (whatever that means)

2.  Initialize the data members to zero or NULL (whatever that means)

C++ will create automatically default constructors if the application does not define them, but,

1.  Data members may not always be initialized,

2.  Constructors will be public.

Since most ot the time you really want to initialize your data members, you can do that within constructors, and thus, in general, it is better to define them than letting the compiler do it.

Image::Image()

// Default constructor to create an empty image.

{

  w = 0; h = 0; bitmap = NULL;

}

Copy Constructors and Aliasing

Copy constructors differ from default constructors in that we can use them whenever a copy of a previously existing object needs to be made into an object which will be created by the constructor.  Copy constructors take one argument (the object being copied). 

/*++


Image::Image(const Image &im)

Copy constructor. Allocates room for bitmap and copies im's image into it.

--*/

Image::Image(const Image &im)

{    Copy(im.w, im.h, im.bitmap);    }

This constructor can be called up using the line below:

Image NewImage(OldImage);  // calls copy constructor

C++ will generate copy constructors if the application does not define them. As with default constructors, this practice is not recommended, because the automatic constructor will only do what is known as indigenous member-wise copies.  Default constructors do not initialize exogenous parts of an object.
Notice that whenever one of the members is a pointer, the automatic constructor will copy the address, not the contents, from the original object.  This will create a condition known as aliasing (two objects or more pointing to the same area).  If one of the objects is destroyed, the other will point to an area that does not exist anymore !

In the Image example, aliasing is avoided by having the copy constructor calling the helper function Copy.

When the line below is executed:


Image NewImage ( OldImage );  

if the copy constructor does not have the helper function copy, then bitmap will point to the same location in both images.  If any of the two is deleted, the other will point to a non-existing region in memory, because the operator delete will deallocate that region as part of the operations done to destroy the object.

[image: image1.wmf]
Obviously, this is a recursive problem; objects acting as containers for objects having other objects, etc.,  need to know how to perform proper copies and assignments. 

A First Look at Overloading Operators

In C++, the assignment operator = allows an existing object to be copied into another existing object.  For scalar objects (int, float, etc.) this is trivial:

float a,b,c;

int i,j,k;

a=123.456;

i=345;

b=a;  j=k;

Objects containing pointers (indirect memory references) need assignment operators which will take care of the indirect assignments. In the case of our Image class, this is done by deleting the bitmap memory area and creating a new one, within the copy helper function:

/* ++


Image&  Image::operator=(const Image& im)

Assignment operator.  Deallocates existing bitmap, allocates a new bitmap

having same size as  im, and copies im's image into it.

-- */

Image&  Image::operator= (const Image& im)

{

  delete[ ] bitmap;

  Copy(im.w, im.h, im.bitmap);

  return *this;
}

For example:

main ()

{

Image

myImage;


// default constructor called

Image

snapShot (4,5,"Image1");
// other constructor called


. . .

Image 
picture = snapShot;

//assignment, using operator=

}

QUESTION: Which object calls the operator=, picture or snapShot?

ANSWER:  picture

Also, note that passing arguments by reference is cleaner and faster:

classX
&classX::operator=(const classX  &v);

classY
&classY::operator=(const classY  *v);

classX a,b;

classY c,d;

a = b;

//cleaner, classX uses reference at operator=

c = &d;
// classY uses pointers

The Need for Virtual Destructors

A virtual function is a function that will be redefined in a derived class.  With virtual functions, an automatic form of polymorphism is achieved through dynamic binding. 
For the time being, we need to know that, in general, whenever a class is defined to serve as a base class for other derived classes, it is better to define the destructor as virtual, even if the destructor does not do anything interesting.  If the class does not need any virtual function, making the destructor virtual is optional.

Image::~Image()

/* ++


Image::~Image()

Destructor that deallocates bitmap. Note that bitmap might

 be null coming in, but delete() is supposed to handle this condition.

-- */

{

  delete[ ] bitmap;

}

In C++, pointers to a base class can point to instances of that class or of derived classes.  If the destructor is not virtual, confusion may arise when destroying the object pointed to by the pointer:

Image *p1;
// p1 can point to base or derived instances

Image *p2 = new  Image(3,5, "Some picture");

derivedImageClass *p3 = new derivedImageClass( 1,3, "Other picture");

p1 = p2;
//  p1 points to instance of Image;

delete p1;
// Image::~Image() invoked

p1 = p3;

delete p1;
// derivedImageClass::~derivedImageClass() invoked

Static Class Members

These are data members that can be seen and modified by all instances of the class (equivalent to class-variables in CLOS and Smalltalk).

Example:

class  PearlNode:  public bbnObj

{

private:

  static int PearlNodeCounter; // static data member

protected:

  int Number;

  float PiVec[MAX_NUM_VALS];

  float LambdaVec[MAX_NUM_VALS];

  float BeliefVec[MAX_NUM_VALS];

  BOOL Enable;

public:

  int ParentsCount, ChildrenCount, CatValsCount;

  PearlNode *Children[MAX_NUM_RELATIVES];  // NOTE: Arrays of pointers

  PearlNode *Parents[MAX_NUM_RELATIVES]; //  to the class

 . . . . . .. 

PearlNode ( )  {

   Number = PearlNodeCounter++;

   Enable  = TRUE;

   ParentsCount = 0; ChildrenCount = 0;

    . . . . . .

    }

virtual ~PearlNode()  {

    if ( PearlNodeCounter > 0 )

       PearlNodeCounter--
     else

        cerr << "Trying to destroy unexisting PearlNode";

   }

}; // EOC PearlNode

One caveat is that static class members must be global,  i.e., static data members must be declared out of the scope of the class, not bounded to any function (not even to main()).

The line below causes an error when given within the class:

static int PearlNodeCounter  = 0; // illegal

Hence, PearlNodeCounter must be declared as a global variable.  This can be done by issuing the line below before instantiating members of this class and before starting execution.  

This means that the line must be placed anywhere between the end of the class definition and before main().

int PearlNode::PearlNodeCounter = 0;

In our case we initialization means for PearlNodeCounter to be zero, but obviously different classes will have different initialization values, for example, bitmaps may need to have NULL. 

Constants

Constants can have global scope in C.  Once defined, constants having the same name, if found in other modules, will result in errors at linkage time.

This problem does not exist in C++, because constants can be declared, defined, and allocated anywhere, even in header files.  

More formally, a name of file scope that is explicitly declared const and not explicitly declared extern is local to its translation unit.  This means that the compiler will allocate space for the constant at the file level, and this in turn means that duplicate definitions need not be checked when modules are linked.

Thus, instead of:

#define pi 3.141592

#define MAXSIZE 100

In C++ we can say:

const double pi = 3.141592;

const int MaxSize = 100;

const int MAX_ARRAY_SIZE = 1000;

This feature can make it easier to deal with nested #define and #include directives.

When const is used to instantiate an object (or to pass an object as argument in a function), the keyword const prohibits any modification to the object.  See for example copy constructors.

Review of Access Control

(see also sec. 6.6 of B. Stroustrup C++ Book, and 

Chap 11 of Ellis & Stroustrup)

A. Access to Members

1.  Classes have a name, data members, function members, operators, ancestors classes and derived classes. 

2.  Members of a class can be private, protected, or public.

3.  Unless otherwise specified, all members of a class are private by default.
4.  If access is private, then only members of the class and their friends can see the name of the member.

5.  If access is protected, then the name of the member can be seen by the members of the class and its friend functions, as well as the members of the derived classes and their friends.

6.  Public means that access is not restricted.

7.  Access can be controlled by explicit use of the keywords private, protected, public.

B.  Access Control in Inherited Classes

Classes are derived according to the general form:

class derived-class-name : access-specifier base-class-name {


// body of the class

};

Access-specifier can be either public, protected, or private (default). 

When the access-specifier is public, the base class members are inherited as-is, i.e., all public members of the base class become public members of the derived class, and all the protected members of the base class become protected in the derived class.  

C++ passes private members in the base class to the derived classes.  These members are private at the base and therefore are not visible at the derived classes.  Obviously, it does not make sense to inherit members you can't see, but that is the way the C++ implements protection.  Nevertheless, you can access private members in base classes via public members functions at the base class.  Hence, although  private data members of base class are in fact inherited, not having direct access to them in the derived class has the desired effect of putting a blanket with hooks (accessors) around them.

When the base class is derived using private as the access-specifier, then all public and protected members of the base class become private members in the derived class.  In summary:

Base Class (BC)
inherited as
In Derived Class is:

priv, pro, pub
private
pub,pro->private, priv-> no access

priv, pro, pub
protected
pub,pro->protected, priv-> no access

priv, pro, pub
public
pub->public, pro->protected, priv->no access

EXAMPLE 1

The code below illustrates the denial of direct access to private members in the base class from the derived class.  It also illustrates that using public member functions in the base class, the private data members of the base class can be accessed by the derived class.

class base {

private:
  int i, j;
public:

  void set(int a, int b) {i=a; j=b;}

  void show() { cout << i << " " << j << "\n";}

};

class der1 : public base {

private:  

  int k;

public: 

  void setk() {k=i*j;} //error: NO dir access to i,j 

  void showk() {cout << k << "\n";} // K is OK

};

class der2 : public der1 {

  int l;

public: 

  void setk() {k=i*j;} //error: NO direct access to der1:k,





   // base::i, base::j.
  void showk() 

    {cout << k << "\n";} // error: NO access to der1::k
};

main()

{

  der1 ob;

  ob.set(2, 3); // OK to access to i, j, via base::set and
  ob.show();    // base::show, both are public.

  ob.setk();   ob.showk();   // error. 

}

EXAMPLE 2

The code below illustrates how protected members in a base class are visible to the derived classes.

class base {

protected:
  int i, j; // 

public:

  void set(int a, int b) {i=a; j=b;}

  void show() { cout << i << " " << j << "\n";}

};

class derived : public base {

  int k;

public: 

  // derived sees i and j as protected

  void setk() {k=i*j;}

  void showk() {cout << k << "\n";}

};

main()

{

  derived ob;

  ob.set(2, 3);  // OK, known to derived

  ob.show();    //  OK, known to derived

  ob.setk(); 

  ob.showk();

}

Avoiding Ambiguity

C++ will not compile if access to base class members is ambiguous.  The code below has several ambiguities:

class A {

public:
  int a;

  int (*b) ();

  int f();

};

class B {

private:
  int a;

  int b();

public:

  int f();

  int g;

};

class C : public A, public B { };

void g(C* pc)

{

  pc->a = 1;   
//error: A::a or B::a? What about access?

  pc->b();     //error: A::b or B::b?

  pc->f();     //error: A::f or B::f?

}

Adjusting Access (with a Note of Caution)

You can adjust (change) access to inherited data members, by using the :: scope operator in the derived class.  The code below illustrates how the standard protection schemes can be "adjusted."

Since D derives B with protected access, B::c in D would normally be protected.  However, making explicit use of the :: resolution scope operator, you can change B::c to be public in D. 

class B {

   int a;  // private access

public:

   int b, c;

   int bf ();

};

class D : protected B {

  int d;

public:

   B::c;  // adjust access of B::c from protected to public
   int e;

   int df();

};

int ef (D&);

NOTES:

1.  ef() is a global function. Hence it can see  B::b, B::c, B::bf(), D::e, D::df().
2.  D::df() can see  B::b, B::c, B::bf(), D::d,D::e and D::df().  D::df() can not see B::a.

3.  B::bf() can see a,b,c.
4.  The line  B::c  above would not work if  int B::c  is included instead, i.e., types can't be included in the line when adjusting access

5.  Access can't be adjusted backwards (restricting, e.g., from public in B to protected in D), nor can open inaccessible data members (private members).

6.   Although you can find "clever" ways to break the protection schemes, it is strongly advised that you stick to common sense and make wise use of these features.

Inheriting from Multiple Base Classes

Classes are derived according to the general form:

class derived-class-name : access1 base1, access2 base2, ... {


// body of the class

};

When an object of a derived class is created, if the base class has a constructor, it will be called first, followed by the constructor of the derived class.

If there is more than one base class, the constructors for the corresponding base-class objects will be called following the order of appearance in the inheritance list, from left to right.

Accordingly, when a derived object is destroyed, the derived destructor is called first, followed by the base destructor.

Rule of thumb:  Constructors are called up in the order of their derivation, while destructors are called up in the reverse order.

Order of construction and destruction with multiple inheritance: 

class base1 {

public:

  base1() {cout << "Constructing base1\n";}

  ~base1() {cout << "Destructing base1\n";}

};

class base2 {

public:

  base2() {cout << "Constructing base2\n";}

  ~base2() {cout << "Destructing base2\n";}

};

class derived: public base1, public base2 {

public:

  derived() {cout << "Constructing derived\n";}

  ~derived() {cout << "Destructing derived\n";}

};

main()

{

  derived ob;

  // construct and destruct ob

  return 0;

}
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Executing the program we would get at the output:

Constructing base1

Constructing base2

Constructing derived

Destructing derived

Destructing base2

Destructing base1
Changing the inheritance list changes both the constructor and destructor order of execution.



Passing Parameters to Constructors

Sometimes certain parameters (constants, references, or objects) need to be passed to constructors in order to initialize objects. This can be done by using member initialization list, in bold in the code below.

For instance, to initialize  classA below:

class classA {

  private:


const int a;


const int &b;


classB c;  //defined before

  public:


classA(int u, const classB &v);

};

The constructor for classsA  may have the following definition:

// initializes const a to have u, 

// reference b to point to a,

// classB's copy constructor used for  c = v.

classA::classA(int u, const classB &v)



: a(u), b(a), c(v)
{


// body

}

main ()

{


int y = 123;


classB b1;


// initialize b1 somehow...


classA a1(y, b1);

}


This also applies to derived classes. 

Passing Parameters to Base Constructors

member initialization lists of derived classes can also have base constructors.  In general,

der-constr(argLst): bs1(argLst1), bs2(ArgLst2), ... bsN(ArgLstn);

{
// body of constructor
};
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protected:

  int i;

public:

  base1(int x) {i=x; cout << "Cons b1\n";}

  ~base1() {cout << "Dest b1\n";}

};

class base2 {

protected:

  int k;

public:

  base2(int x) {k=x; cout << "Cons b2 \n";}

  ~base2() {cout << "Des b2\n";}

};

class derived: public base1, public base2 {

  int j;

public:

  derived(int x, int y, int z): base1(y), base2(z) 

    {j=x; cout << "Constructing derived\n";}

  ~derived() {cout << "Destructing derived\n";}

  void show() {cout << i << " " << j << " " << k << "\n";}

};

main()

{

  derived ob(3, 4, 5);

  ob.show();  // displays 4 3 5

}

Note that derived

uses only x;

y is passed to

base1, z to base2.


When ob is created by derived's constructor, base1's called, followed by base2's. 

The Need for Virtual Base Classes.

Consider the following situation:

class base {

public:

  int i;

};

class derived1 :  public base {

public:

  int j;

};

class derived2 : public base {

public:

  int k;

};

//  derived3 has two copies of base

class derived3 : public derived1, public derived2 {

public:

  int sum;

};





There are two ways to access i in base. The first is to use the scope resolution operator :: as in

main ()

{

derived3 ob;

  ob.derived1::i = 10;

  ob.j = 20;

  ob.k = 30;

}



Without the resolution operator, the code above will not compile, because the access declaration is ambiguous.  A better way is to use virtual base classes.
Virtual Base Classes

Declaring base classes as virtual prevents the creation of multiple copies of a base class in derived classes.  Virtual base classes are declared in the derived class by preceding the declaration with the keyword virtual.

In the previous example, the declaration of base changes to:

class derived1 : virtual   public base {

public:

  int j;

};

class derived2 : virtual  public base {

public:

  int k;

};

The resulting classes look like:
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Note that the keyword virtual can also used in conjunction with functions (Virtual Functions and Pure Virtual Functions).

Virtual Functions

Virtual functions are functions declared in a base class, which can be redefined (overrided) by a derived class.



Virtual functions are important because through them C++ supports run-time polymorphism.  This is done by using pointers.  When a pointer to a base class points to a derived object that contains a virtual function, C++ determines which version of the function is called up, based on the type of the object being pointed to by the pointer. 

Class base {

Public:

  Virtual void vfunc() { };

  Void f() {};

  };

class der1 : public base {

public:

  virtual void vfunc() { };

  void f() {};

};

class der2 : public base {

public:

  virtual void vfunc() { };

  void f() {};

 };


main()

{

  base *p, b;

  der1 d1, *pd1;

  der2 d2, *pd2;

  p = &b;

  p->vfunc(); // base::vfunc()

  p->f(); // base::f()

  p = pd1 = &d1;

  pd1->f(); // der1::f()

  p->vfunc(); // der1::vfunc()
  p->f(); // base::f()
  p = pd2 = &d2;

  pd2->f(); // der2::f()

  p->vfunc(); // der2::vfunc()
  p->f(); // base::f()
}



NOTES:  (1) The interpretation of a call to a virtual function depends on the type of the object being pointed at, whereas the interpretation of a nonvirtual function depends on the pointer type itself.  (2) der2 may be derived into another class, and its vfunc may also be virtual; this can be applied to der1 (see next slide).  (3) You still may call the functions directly, i.e., d1.vfunc() d2.f(), i.e., virtual functions behave like any other function in normal circumstances.

Inheriting Virtual Functions

Every time a virtual function is derived into another class, the virtual attribute will be passed on:

class base {

public:

  virtual void vfunc() {

    cout << "base's vfunc()\n";

  }

};

class der1 : public base {

public:

  void vfunc() {

    cout << "der1's vfunc()\n";

  }

};

// der2 inherits virtual function vfunc()

// from der1.

class der2 : public der1 {

public:

  // vfunc() is still virtual

  void vfunc() {

    cout << "der2's vfunc()\n";

  }

};


main()

{

  base *p, b;

  der1 d1;

  der2 d2;

  // point to base

  p = &b;

  p->vfunc(); // base's vfunc()

  // point to der1

  p = &d1;

  p->vfunc(); // der1's vfunc()

  // point to der2

  p = &d2;

  p->vfunc(); // der2's vfunc()

}



Naturally, if you do not need to override a virtual function, you do not have to.  For example, if der2 does not override vfunc, then the copy from base will be used.  In general, when a derived class does not override a virtual function, then the function used will be the first function found in reverse order of derivation, following the dominance rule.

The need for a dominance rule: Which function will be used when der3 inherits from der2?

class base {

public:

  virtual void vfunc() {

 cout << "base's vfunc()\n";

  }

};

class der1 : public base {

public:

  void vfunc() {

 cout << "der1's vfunc()\n";

  }

};

class der2 : public base {

public:

 virtual void vfunc() {

 cout << "der2's vfunc()\n";

  }

};

class der3 : public der2

  {

  };

main()

{

  base *p, b;

  der1 d1;

  der2 d2;

  der3 d3;

  // point to base

  p = &b;

  p->vfunc(); // base's vfunc()

  // point to der1

  p = &d1;

  p->vfunc(); // der1's vfunc()

  // point to der2

  p = &d2;

  p->vfunc(); // der2's vfunc()

  //points to der3

  p= &d3;

  p->vfunc(); //der2's vfunc

}

Dominance Rule:  The resolution of virtual function calls goes bottom-up.  The specificity is determined by the type of the object issuing the call, even if the object is a pointer or a reference, i.e., a name B::f() dominates a name A::f() if A is a base class of B.
Notes about virtual and non-virtual functions 

1. Virtual functions must have the same prototype in the derived classes.  If the argument list is different, the function is hidden and it is no longer virtual.  It is an error to change return types.

2. Virtual and non-virtual functions can be friend in another class. 

3. Virtual functions must be class members.

4. Virtual functions can not be static.

5. Explicit qualification with the scope operator suppresses the virtual call mechanism, e.g.,  void D::f() { ... B::f(); }

6. Non-virtual, overloaded functions are recognized by C++ by the fact that the function name is the same but the definition is made on a derived class.  

7. Synonym functions in derived classes become hidden when the returning value or the parameter list is changed.

8. Non-virtual functions call their static type (pointer, object, or reference) 

9. Virtual function call resolution goes bottom-up, following the dominance rule: a name B::f() dominates a name A::f() if A is a base class of B.
class base {

public:
 virtual void vf1();

 virtual void vf2();

 virtual void vf3();

 void f();

};

class der : public base {

public:
 void vf1(); // virtual override

 void vf2(int); //hides base::vf2()
 char vf3(); //error: dif. ret type

 void f();  //overload

};

main () { //  main 1: note bp->f();

  der d;

  base* bp = &d; 

  bp->vf1();
//der::vf1()

  bp->vf2();
//base::vf2()

  bp->f();
//base::f() is overloaded

  d.f();

//der::f() 

}

main () {

  der d;

  der* dp = &d; 

  dp->vf1();
//der::vf1()

  dp->vf2(9);
//der::vf2()

  dp->f();
//der::f() is overloaded
  d.f();

//der::f() 

}

der::vf1() dominates base::vf1(), hence der::vf1() is selected for execution.
Access to Virtual Functions

The access rules to virtual functions are determined by the access declarations and are not affected by the rules for functions that later override them.  For example:

class B

{
class D : public B

{

  public:
  private:

     virtual f();
      f();

};
};

void f() // this is a public function of scope ::f()

{

  D d;

  B* pb = &d;

  D* pd = &d;

  pb->f();  // OK, B::f() is public, D::f() is used

  pd->f();  // ERROR: access to D::f() via D:: is private

}

There are two mechanisms working:



Access and invocation. 

Access is checked by using the static type of the expression specifying the object (B* and D*, respectively). 

Invocation follows the dominance rule, i.e., it uses the dynamic type of the expression.  In the example, class D dominates class B, hence D::f() would be invoked provided access is granted.

Pure Virtual Functions

In this world of sin and lack of virtue, it is always recomforting to know that, at least in C++, something, deemed as pure, exists.

A pure virtual function is one that has no definition within the base class, and that merely acts as a stop flag that indicates where to stop searching for a function in the hierarchy.  The figure below shows part of the hierarchy of Borland's Classlib and part of the object definition:

class  Object

{

public:

  virtual ~Object() {  }

  virtual classType isA() const = 0;

  virtual char _FAR *nameOf() const = 0;

  virtual hashValueType hashValue() const = 0;

  virtual int isEqual( const Object _FAR & ) const = 0;

  virtual int isSortable() const

  {  return 0;  }

  virtual int isAssociation() const

  {  return 0;   }

  virtual void forEach( iterFuncType, void _FAR * );

  virtual void printOn( ostream _FAR & ) const = 0;
  static Object _FAR *ZERO;

  static Object _FAR & ptrToRef( Object _FAR *p )

    { return p == 0 ? *ZERO : *p; }

  static const Object _FAR & ptrToRef( const Object _FAR *p )

    { return p == 0 ? *ZERO : *p; }

  friend ostream _FAR& operator << ( ostream _FAR&, const Object _FAR& );

};

#define NOOBJECT  (*(Object::ZERO))






Abstract Classes

A class that contains at least one pure virtual function is said to be an abstract class.  Abstract classes may not be instantiated (i.e., objects of this class can not be created), may not be used as argument types, or as return types in a function.  Pointers or references may be declared on abstract classes. 

The purpose of abstract classes is to provide a root from which other classes can be derived, and polymorphism achieved.

Pure virtual functions are inherited as pure virtual functions; the intent is to give you a mechanism for overriding these functions in your more specific class.

New, Delete, Abort

C++ can let you create and destroy objects dynamically, with the functions new and delete.  The heap is used to allocate memory for objects created with new.  

The new operator allocates exactly nBytes. Recall from the Image class discussed earlier: 

bitmap = new char[w*h];
// from the image class

Since we know exactly the size pointed at by birtmap, we can call delete as in:

delete[ ] bitmap; // from the image class

It is important to remember that for every call to new there needs to be a corresponding call to delete, otherwise, you are bound to memory leaks as your application progresses.

Abort is a function that terminates the execution of the application, but does not destroy the objects in the heap. Control returns to the operating system, so that post-mortem analysis can be made.

Overloading Operators

The topic of overloading operators is surrounded with unnecessary mystery.  The original C language opened a can of worms when it postulated the notion of several operator types.  C++ inherited this tradition, and as a consequence, we have the following types of operators:

unary prefix, unary postfix, binary, ternary

In addition to that list, the following operations are really treated as operators: malloc, new, free, delete, sizeof, type casting, argument passing, and array subscripting (address_of) [ ].

C++ allows programmers to overload operators, i.e., gives the ability to redefine operators associated to classes.  We have seen overloading of operators in two cases:  the cin and cout operators, and the assignment operator  =.

The operators that can be overloaded in C++ are:

+
-
*
/
%
^
&
|

~
!
,
=
<
>
<=
>=

++
--
<<
>>
==
!=
&&
||

+=
-=
/=
%=
^=
&=
|=
<<=

>>=
[ ]
( )
->
new
delete



The operators that can not be overloaded are:

.
.*
?   ::

sizeof

#
##

In general, overloaded operators are C++ functions which may or may not be members of a class.

There are several rules (and exceptions) that must be considered when overloading operators.  These rules will be discussed through examples.

Overloading Binary Operators as Friends

The example below shows how to declare binary operators for the hypothetical jevClass, which is of some arithmetic type:

class jevClass {

  public:

    friend jevClass operator+ (jevClass &a, jevClass &b);

    friend jevClass operator- (jevClass &a, jevClass &b);

    friend jevClass operator* (jevClass &a, jevClass &b);

    friend jevClass operator/ (jevClass &a, jevClass &b);

// .. .. . . . other function members

};

With these operators, programmers can do such things as:

jevClass obj1, obj2, obj3;

     obj1+obj2;

     obj2*obj3;

     ..  etc ..

Notes:

1.  Since the operators were declared as friends, the operators have access to all data members of jevClass.

2. Being friends, the function definitions must be entered somewhere after the class definition, perhaps in a file where you would include all your friend functions for the class. 

3. The call to a friend binary operator is transated as follows:

c = a @ b;

c = operator @ (a,b);

Overloading Operators as Member Functions

In general, operators defined as members of the class have the following form:

returnType className::operator@ (argLst)

{

// body of the operator...

}

where:


returnType is the type returned after executing the function. 


className:: defines the resolution scope.


operator is the keyword.


@ is a place holder where the actual operator goes.


(argLst) is the list of arguments.  For unary operators, argLst is empty.   For binary operators, argLst has one item, and for ternary operators, argLst has two items. 

Overloading Binary Operators as Member Functions

Using the jevClass as before:

class jevClass {

  public:

    jevClass operator+ (jevClass &b);

    jevClass operator- (jevClass &b);

    jevClass operator* (jevClass &b);

    jevClass operator/ (jevClass &b);

// .. .. . . . other function members

};

Since the operators above are now members of jevClass, by definition, they will receive implicitly *this, the pointer for which the functions would be called, and therefore the operators do not need to have that calling object as part of the argument list.

Thus when binary operators are overloaded, the object on the left of the operator is the one that generates the call to the operator.  For example, in :

c = a @ b;

The operator @ is being called by a, and b is passed as argument, i.e., 

c = a.operator@(b);

The code where the actual definition of the function member operator is made could look like:

jevClass jevClass::operator+ (jevClass &b)

{


// ...  whatever

}

where:


jevClass is the returning value (instance, reference, or pointer)


jevClass::operator+ is the scope resolution of the operator


the argument list is the usual, which you could adorn with a const to feel better. 

Note that the line:

jevClass operator+ (jevClass &b, jevClass &c);

does not declare a binary, but a ternary operator, which will expect to have access to *this, b, and c. 

Again, the object calling this operator, would be at the left of the operator.  Since a ternary operator+ does not exist in C++, the  syntax  for invoking this operator will not be obvious. 

You may need to use parentheses to wrap (b+c) and return a jevClass:


a + (b+c)  ;

Overloading Unary Operators as Friends

Suppose we redefine jevClass as in:

class jevClass {

  private:

     char jevVal[80];

  public:

   // the four operators below are binary
    jevClass operator+ (jevClass &b); // a+b

    jevClass operator- (jevClass &b); // a-b

    jevClass operator* (jevClass &b); // ... etc ...

    jevClass operator/ (jevClass &b);

// .. .. . . . other function members

};

and assuming jevClass = long, we could have in the binary operator for subtraction, the following code:

jevClass jevClass::operator- (jevClass &b)

{

   return (atol(this->jevVal) - atol(b.jevVal));

}

Now we want to define a unary operator for negation, -Obj, as a friend.  First we add the declaration of the friend function within the class:

friend jevClass operator-(jevClass &a); // within class Definition

so that the definition for that operator could be:

jevClass operator-(jevClass &x) // after class Definition

{


return -atol(x.jevVal);

}

Note that there is no confusion with the binary operators for subtraction, addition, etc., due to the absence of scope resolution and to the rules for defining operators as member or friends functions.

Overloading Unary Operators as Member Functions

Unary operators defined as member functions must have an empty argument list.  For example, in jevClass, you would replace the friend negation with:

jevclass operator-(void);

The operator keyword and the ( ) or (void) construction will tell C++ that this is a unary prefix operator.

The code implementing the function must reflect the declaration:

jevclass jevclass::operator-(void)

{

  // whatever....

}

Note that the returning type is a design decision.  Most likely, you would want to return a jevClass object when you negate *this, but you may want to return something else, such as an int, when you do, say, factorials, like in !a.

Caveats

C++ gives you the flexibility of defining your own operators so that you could ultimately use them in expressions.  This means that C++ will inforce certain rules when it comes to expressions. The intent was to make C++ flexible, not mutable. 

C++ can not anticipate your intentions when you overload an operator, i.e., if you say operator* and give in the operator's body instructions for addition, C++ will not correct this inconsistency.  Similarly, if you have, say, a class stack, you may define the operator+ to act as a push, and the operator- to act as a pop.

C++ will not derive combinations of complex operators from previously existing operators, i.e., if you define the operators operator* and operator=, C++ will not derive for you the combination  operator*=.

You can not change the syntax of an overload operator, i.e., unary operators must stay unary, binary operators must remain binary.  Thus you can not create a unary operator for division (/).  Likewise, you can't create a binary operator for (%).  Similarly, you can not change the syntax of the previously defined operators, i.e., for example, the syntax for ! must be uniform across all classes.

C++ lets you define operators for your classes, which you can use in expressions.  The only restriction is that you use the set of operators already defined by the language, i.e., you can not invent your own set of operators and expect the license of using them in expressions.

You may overload the operators  ++  and  --, however, until version 2.1 of C++ the expressions ++a and a++ as applied to class instances had the same effect, i.e., C++ did not recognized the difference between postfix and prefix notations for  ++  and  -- .

You may not overload the following operators as friends:  = ( ) [ ] -> 
Overloading ++ -- as Postfix or Prefix Operators

Until recently, C++ did not recognized postfix ++   - -   operators.   The overloading mechanism was defined only for prefix ++   - -.

In general a unary  prefix  operator will be defined as follows:

retType className::operator++( )

{


// whatever

}

while a postfix operator will look like:

retType className::operator++(int);

i.e.,  the argument int is an artifact introduced to satisfy this anomaly.

To call prefix/postfix operator:

++a   ->   a.operator++( ); 

a++   ->   a.operator++(0); // value zero

Note that this follows the rules for unary vs binary vs in-class vs friends.

ADVICE:  Use prefix whenever possible, it is more consistent with the rule "... the object at left called the operator..."

Overloading Array Indexing

The operator[ ]  , also known as the subscript operator, is considered a binary operator, because the operator acts upon an index and an ordinal type such as array.

If you want to use the  [ ]  in either side of an assignment operator, the operator[] function must return a reference to the class.  

The friend version is not valid.

The member function version would be:

jevClass&  operator[] (int index);

Although the index could be of other type, int makes more sense.

Having such operators you could make calls like a[10], a[i].

In the body of the operator, you would say:

className& className::operator[] (int i) {return a[i];}

Overloading  the Function Call operator( )

Overloading   ( )   gives you the ability to create operator functions that may receive arbitrary number of arguments.  

class Point

{

public:

    Point() { _x = _y = 0; }

    Point &operator()( int dx, int dy )

        { _x += dx; _y += dy; return *this; }

private:

    int _x, _y;

};

...

Point pt;

pt( 2, 3 ); 
// add 2 and 3 to _x and _y, respectively

pt( 5, 6 ); // etc..

Overloading Conversion Operators (Casting)

These are operators having the form 

operator TYPE ( )

with these operators you can create your own type casting rules.  For example, you could cast the jevClass to long, as in:

operator long ( ) {return atol(jevVal); }

and you could use this operator as follows:

jevClass myObj;

cout << (long) myObj;

obviously, the conversion must make sense.

Overloading Memory Management Operators

You can also overload new and delete.  For example:

void * operator new (size_t size);

where size_t is a system type defined in mem.h, alloc.h and other system files.  size_t is a type capable of containing the largest single piece of memory that can be allocated.   Your operator will have code similar to: 

void *jevclass::new (size_t size)

{


// you get memory space here, by calling new(size)and


// doing other initialization procedures.

}

Your new operator must return the address of the allocated space, if successful, or zero if no memory is available.

To overload delete, you would add into the definition of jevClass the line:

void operator delete(void *p);

and the actual function code will look like:

void jevClass::operator delete(void *p)

{


//delete here. 

}

Overloading Assignment Operators

Assignment operators (AOs) are not inherited.   An AO will be called up, if it exists, at the class level.   The operator will do whatever was decided on its body.  If, on the other hand, no operator(s) have been defined for the class, then a value-wise (member wise) assignment will be done; such that data members pointing to indirect regions in memory will get the addresses, not the contents, of the objects.  This results in aliasing.

AOs are not inherited across classes because assignment was considered closer to construction and destruction than to other operations (+, _, etc.).   Therefore in most cases you will want to define your own AO at the class level, specially if the class contains pointers to memory regions.  This will imply slower execution, etc., but it will avoid the undesired effects of aliasing (memory leaks, referencing non-existing regions in memory, etc.).  

This also implies that whatever decisions were made during class definition must be consistent across classes, i.e., when an assignment operator is overloaded in a derived class, the derived class will call the operator from its base class(es) first and then do its own operations. In the figure below, when a der4 object calls its assignment operator, the corresponding assignment operators of classes base, der2, will precede execution of der4's.






ANNOTATIONS FOR CPP2.DOC





�page \# "'Page: '#'�'"�Page: 22���  at derived x=3, y=4, z=5;  @base1 i=4; @base2 k=z=5;


�page \# "'Page: '#'�'"�Page: 25��� In a class hierarchy, the most specific non-virtual function is called up.  The specificity is determined by the type of the object issuing the call, and this is true even if the object is a pointer or a reference.  In contrast, the mechanism for invoking virtual functions uses the type being pointed at to determine which function is to be called.  The terms override, overload, and hide are used to differentiate between virtual and non-virtual functions invocation.  The first is used with virtual functions.  The second is used to refer to a function with the same arguments and return type being defined at a more specific class, and the third to a function that has different argument list in a more specific class. 
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