EECE 352

Problem Set #3

Due: September 15, 1998

Fall 1998

Problem: Being a big fan of the British Royal family, you decide to create a list containing the succession of the different kings and queens of England. You do not care how long it takes to add new members. However, since the other people in the BRFSIG (British Royal Family Special Interest Group) are always asking “Who came before Richard III”, or “Who came after Queen Elizabeth I”, you decided to set up a web-site that quickly (i.e. O(1)) answers those questions. With 352 knowledge in hand you figure that the best way to do this is with a double-linked list.

Task 1 (60%): You will implement a double-linked list, that looks like:

The elements are all just Strings. The list class will need to have all the following member functions:

const String emptyString = "***EMPTY***";

class list

{

node * listHead; //points to the head of the list.

node * currentPos; //pointer to the current position.

public:

int isAtTail(); //returns 1 if currentPos points to tail, 0 otherwise

int isAtHead(); //returns 1 if currentPos points to head, 0 otherwise

const list & operator--(int); // the int is a dummy argument

// increase currentPos to the next one, If at end, stays there.

const list & operator++(int); // the int is a dummy arg.

//It declares the operator as postfix.

//It decreases currentPos to point to previos.

//If at head, stay there.

String getCurrent(); // returns the name of the currentPos.

//If list is empty it returns emptyString (defined above)

int find(const String name);

//sets currentPos to match name, returns 1 if found, 0 otherwise

int eliminate(); //eliminates node at currentPos

int eliminate(const String name);

//eliminates the node with name IF there is one.

void print() const; // prints the list

virtual void insert(String newName);

//inserts new name just AFTER the currentPos.

//set currentPos to point to new node.

virtual void insertAtHead(String newName);

//inserts a new name at the head (listHead).

//set currentPos to point to new node.

list(); //constructor

virtual ~list(); //destructor

};

Notice that you will be using a new class called String, and you will need to define a class called node.
There will be a main.cpp file available, along with some other files and the output I expect you to get when you run the main.cpp I give you.

Task 2 (30%): You will implement a class called slist that inherits (public(from list and redefines insert() (and anything else it needs to redefine, without changing the private: classification I used in the declaration of the list class) . slist is a sorted list, so your insertion should make sure that the elements are all in order. Note: The String class has > and < operators already defined. Note that the member functions of slist cannot and should not access the private data members of list.

Task 3 (10%): Before each function definition, you will put a comment stating wether that function is O(n), O(1), O(nlgn), or whatever.

Rule of Thumb: The less lines of code you hand in, the higher your grade will probably be.

All the needed files (main.cpp, output.txt, String.h, String.cpp, words, list.h) will be in the class homepage.

element

next

previous

previous

previous

next

next

element

element

listHead

=0

=0

Department of Electrical and Computer Engineering

University of South Carolina

- 2 -

