EECE 352

Problem Set #1

Due: Tuesday September 1, 1998

Fall 1998

Problem: In a cost-cutting frenzy, the University has decided to eliminate all their accounting staff and hired you to develop a system for keeping track of all pertinent information about everyone involved with the University. Since you charge by the hour, you have decided to eschew the purchase of a commercial database and, instead, chosen to implement it all on your own. “Besides”, you gleefully proclaim, “this is a great opportunity to put into practice all the nifty things I learned about C++ classes in 352.”

Setup: You will implement the following class hierarchy:

USCMember

employee

student

faculty

Part of the class definitions are given by the following code (which you should use verbatim in your problem set solution, that is, there is no need to change any of this code, although you will need to add to it.):

#include<iostream.h>

#include<string.h>

class USCMember {

char * name; // the person's name

long int ssn; // social security number

char sex; // M for male, F for female, U for unknown

int firstYear; // year person started at USC

int firstMonth; // month (1-12) person started at USC

int firstDay; // day of the month (1-31) person started

// we define a << operator that will be a frien of this class

// Q:why do we need it to be a friend?

friend ostream &operator<<(ostream &, const USCMember &);

public:

USCMember(char * theName, long int theSSN, char theSex);

~USCMember();

void setStartDate (int month, int day, int year);

};

// This function overloads the standard << operator. It allows

// us to send a USCMember to an output stream, like cout.

ostream &operator<<(ostream &output, const USCMember &person)

{

if (person.firstYear == 0)

output << person.name;

else

// Here you must add code to print out the name and

// start date in the appropriate format.

Output << “Add code here.” << endl;

//missing code.

return output;

}

// A class for USC employees

// It inherits from USC members.

//

class employee : public USCMember

{

char *department; //department employee works for

int level; // 1-15 seniority level.

public:

employee(char * theName, long int theSSN, char theSex, char *theDept, int theLevel);

~employee();

};

Things You Must Do:

1- Define a class called faculty that inherits from employee and contains a data member char * researchArea (which contains the area in which the particular faculty does research), and another data member int numClasses which contains the number of classes the faculty teaches.

2- Define a class called student that inherits from USCMember and has data members double gpa, char * major (which contains the name of the student’s major), and int year (which is 1 for freshman, 2 for sophomore, etc.).

3- Implement and test all the constructors and destructors for all these classes.

4- Implement a void prettyPrint() function, in each class, which prints out the class contents in a pretty way (as shown by the following trace). Note that the function has to have the same name in all the classes, which means that the function in the lower classes (e.g. student) will have to override the function in the class that it inherits from (e.g. USCMember). (HINT: virtual). Not only that, but the prettyPrint() function in a lower class (e.g. student) should call the prettyPrint() function of its parent class (e.g. USCMember) in order to do its work.

In order to check your work, you should make sure that the following program returns the output seen below it.

void main()

{

USCMember alexa("Alexa Davidson", 123456789, 'F');

cout << alexa << endl;

alexa.setStartDate(8,15,1998);

cout << alexa << endl;

USCMember tony("Tony Thompson", 987654321, 'M');

cout << tony << endl;

tony.setStartDate(1,1,2000); // are you Y2K compliant?

cout << tony << endl;

tony.prettyPrint();

cout << endl;

employee joe("Joe Carpenter", 777334444, 'M', "Carpentry", 7);

joe.prettyPrint();

cout << endl;

joe.setStartDate(1,15,2002);

joe.prettyPrint();

cout << endl;

faculty larry("Larry Stephens", 333224444, 'M', "ECE", 7, "AI", 1);

larry.prettyPrint();

cout << endl;

larry.setStartDate(8,15,1990);

larry.prettyPrint();

cout << endl;

student susan("Susan Conry", 333012222, 'F', 3.3, "Music", 2);

susan.prettyPrint();

cout << endl;

susan.setStartDate(3,4,1995);

susan.prettyPrint();

cout << endl;

student you("Your Name", 100000000, 'U', 4.0, "?????", 0);

you.prettyPrint();

cout << endl;

you.setStartDate(3,4,1995);

you.prettyPrint();

cout << endl;

}

Output:
Alexa Davidson

Alexa Davidson start date:8/15/98

Tony Thompson

Tony Thompson start date:1/1/0

Tony Thompson 987654321 1/1/0 M

Joe Carpenter 777334444 0/0/0 M Carpentry 7

Joe Carpenter 777334444 1/15/2 M Carpentry 7

Larry Stephens 333224444 0/0/0 M ECE 7 AI 1

Larry Stephens 333224444 8/15/90 M ECE 7 AI 1

Susan Conry 333012222 0/0/0 F Music 3.3

Susan Conry 333012222 3/4/95 F Music 3.3

Your Name 100000000 0/0/0 U ????? 4

Your Name 100000000 3/4/95 U ????? 4

Things to check to make sure you don’t lose points:
1- You should only have one setStartDate() function.

2- You should have one prettyPrint() function in each class.

3- You should have some comments.

4- Are you Y2K compliant? That is, is the 1/15/2 date printed correctly?

5- You should know why operator<< needs to be a friend of USCMember, write the answer in a comment just before the definition of the function (it’s a one-liner answer).

6- The allocation of the memory for all the string (char *) should be done dynamically with a new.

7- You should have no memory leaks. That is, for each new there should be a corresponding delete.
8- You should run the test main() I provide here and the output from it should be exactly the same as the one I show. The fields are all separated with a single Tab.
Handing it in:
I will only accept email submissions to jmvidal0@engr.sc.edu. Simply email me your complete source file (and only your complete source file) and include a Subject: that says “EECE 352 Problem Set 1”. The source file is the one that ends in .cpp (and the .h if you used one). Make sure you write your name at the top of the file.

If your program does not compile then you will receive no credit. Therefore, I suggest you approach this assignment in an incremental fashion. Copy the code I gave you (which should compile) and add one constructor or class definitions. Then make sure it compiles after your changes. If it doesn’t then you added something wrong. This way you will always have something that works. (By the way, this is the way microsoft develops software. Every day at 5:00pm they have a build and if the code you added does not compile then you have to stay until it does.)

Department of Electrical and Computer Engineering

University of South Carolina

- 4 -

