EECE 352

Final

Name:_________________

Fall 1998

Problem 1: (5 pts) Draw a binary heap, as used in priority queues, that uses the numbers 1,3,5,7,9,11.

Problem 2: (10 pts) Assume the standard implementation of a binary heap as an array int A[n], where n is the number of nodes in the heap, and A[1] contains the root node.

· Which nodes must you check when finding the biggest element in the heap? Why don’t you need to check the other nodes?

We must check only the leaf nodes, since other nodes are guaranteed to have a node that is bigger than them (namely, their children).

· Specifically, which array elements in A[] must be checked?

We must check from A[(n/2(+ 1] to A[n].
· [[not in test]]Write a function that percolates a value at index hole from its current position down to its correct position. That is, A[hole] is too big for its current position and needs to be percolated down.
void percolateDown(int A[], int last, int hole){

//A[last] is last element in array, A[hole] must be

// percolated down.

int child, holeValue = A[hole];

for (;hole*2 (last; hole = child){

child = hole*2;

if (child != last && A[child++] < A[child])

child++;

if (A[child] < holeValue) A[hole] = A[child];

else break;}

A[hole] = holeValue;}

Problem 3: (5 pts) For each binary tree, write leftist below it if the tree is also a leftist heap. Also, write skew if the tree is also a skew heap. Write none if its none of these.

Problem 4: (5 pts) Show the result of merging these two leftist heaps:

Problem 5: (10 pts) Given that you already have a function:

heap * merge(heap * h1, heap * h2) //already implemented
and the heap constructor:

heap(int el) //already implemented

implement the following:

heap * insertElement(heap * h1, int el)//inserts el into h1

{

heap * h2 = new heap(el);

return merge(h1, h2);

}

Problem 6: (5 pts) [[not in test]] Edit Figure 6.27 from the book (reproduced below) so that it will work for skew heaps (instead of leftist heaps, as it does now).

template <class Etype>

Left_Node<Etype> * Left_Heap<Etype>::

Merge1(Left_Node<Etype> *H1, Left_Node<Etype> *H2)

{

 if(H1->Left == NULL) // Single node.

 H1->Left = H2;

 else

 {

 H1->Right = Merge(H1->Right, H2);

 if(H1->Left->Npl < H1->Right->Npl)//deleted line

 Swap(H1->Left, H1->Right);

 H1->Npl = H1->Right->Npl + 1;

 }

 return H1;

}

Problem 7: (5 pts) List all the inversions in the following array, where A[0] should be the smallest number.

i
A[i]

0
4

1
3

2
5

3
8

4
10

5
7

6
12

7
14

(0,1), (3,5),(4,5)

Problem 8: (5 pts) Which of the following two arrays (A and B) will take longer to sort using Insertion Sort? (where A[0] should be smallest element) Explain why by giving asymptotic (big-O) time bounds.

i
A[i]
B[i]

0
20
9

1
8
7

2
9
5

3
11
8

4
14
4

5
16
3

6
13
6

7
19
1

B will take longer because it has more inversions and the time to do insertion sort is O(N + I), where I is the number of inversions.

Problem 9: (5 pts) Show the results after applying Shell Sort to the following array, after each of the following increments (7,3,2,1). The smallest element should end up at the leftmost entry.

Original List
9
7
8
6
5
3
4
1

Increment K=7
1
7
8
6
5
3
4
9

Increment K=3
1
5
3
4
7
8
6
9

Increment K=2
1
4
3
5
6
8
7
9

Increment K=1
1
3
4
5
6
7
8
9

Problem 10: (5 pts) Which one of the following three sequences is a better choice of increments (Ks) for Shell Sort? explain why.

Sequence 1 = 8, 4, 2, 1

Sequence 2 = 7, 3, 2, 1

Sequence 3 = 9, 6, 3, 1

Sequence 2 is the best because the elements are relatively prime.

Problem 11: (5 pts) What is the running time of the following program? In order to solve this you must first state the T(n) and T(1) functions, and then solve them. Assume that n = 2k.

void foo (int n){

if (n <= 1) return;

for (int i = 0; i <= n; i++){

bar(1);//this function takes O(1) time

foo(n/2);

}

}

T(1) = 1;

T(n) = n*T(n/2)

T(n/2) = (n/2)*T(n/4)

T(n/4) = (n/4)*T(n/8)

T(n/8) = (n/8)*T(n/16)

T(n) = n*T(n/2)

T(n) = n*((n/2)*T(n/4)) = (n2/2)*T(n/4)

T(n) = (n2/2)*((n/4)*T(n/8)) = (n3/8)*T(n/8)

T(n) = (n3/8)*((n/8)*T(n/16)) = (n4/16)*T(n/16)

T(n) = (nk/ 2k)*T(n/2k)

using k = lg n, then

T(n) = (nlg n/2lg n)*T(n/2lg n) = (nlg n/n) * T(1) = nlg n/n = nlg n -1

Problem 12: (5 pts) We are going to sort the following array using QuickSort. Write a pickPivot routine that will make Quicksort take O(n2) time on this array.

i
0
1
2
3
4
5
6
7

A[i]
10
9
8
7
6
5
4
3

//A[left] is the leftmost element, A[right] is the

// righmost.

int pickPivot(int A[], int left, int right){//returns the

//value (A[pivot]) of the picked pivot

return A[left]; //or A[right]

}

Problem 13: (5 pts) [[not in test]] Now, find an example array that will make the QuickSort using the pickPivot routine median3() (as in Figure 7.13) take O(n2) time.

i
0
1
2
3
4
5
6

A[i]
6
4
2
1
3
5
7

Problem 14: (5 pts)[[not in test]] Give two reasons why QuickSort is better than MergeSort.

1- It sorts in place.

2- It has a smaller constant (i.e. its faster, in general).

Problem 15: (5 pts) Redraw the following graph in topological order (from left to right).

Now, show the values for the adjacency matrix int A[][] that represents this graph (it will be easier if you use a table format).

1
2
3
4
5
6
7
8

1
0
1
1
0
1
0
0
0

2
0
0
0
1
0
1
0
0

3
0
0
0
1
0
0
1
0

4
0
0
0
0
0
0
0
1

5
0
0
0
0
0
1
1
0

6
0
0
0
0
0
0
0
1

7
0
0
0
0
0
0
0
1

8
0
0
0
0
0
0
0
0

Problem 16: (10 pts) Modify the standard shortest-paths on unweighted graphs algorithm (Figure 9.18) so that it also stores information associated with each vertex which tells us how many shortest paths there are from the source to the vertex. That is, if there are 4 paths from s to v of distance 4, and no other shorter paths between s and v, then T[v].numpaths = 4.

 void // T is initialized (Fig 9.30).

 Unweighted(Table T)

 {

 Vertex V, W;

 Queue<Vertex> Q(Num_Vertex);

 Q.Enqueue(S); // Enqueue the start vertex S,

 while(! Q.Is_Empty())

 {

 V = Q.Dequeue();

 T[V].Known = TRUE; // Not really needed

 for Each W Adjacent To V

 if(T[W].Dist == Infinity)

 {

 T[W].Dist = T[V].Dist;

 T[W].Path = V;

 T[W].numpaths = 1;

 Q.Enqueue(W);

 }

 else if (T[w].Dist == T[V].Dist + 1)

T[W].numpaths++;

 }

 }

Problem 17: (10 pts) Using the graph shown below, and assuming that vertex 1 is the source, write down in order the vertices as they would be visisted (i.e. set to Known) by Dijkstra’s algorithm from Figure 9.32 (with line 12 fixed to !T[w].known)). You will assume that the for statement in line 12 inspects vertices ordered by their number. For example, when V= 1 the for loop will examine 2, 3, 5 in that order.

Now, show the state of the tables below just before the algorithm (running with vertex 1 as the source) sets the sixth vertex to Known. In the previous question you already determined which one was the sixth vertex set to known (it’s the sixth one in the list you gave).

v
T[v].Known
T[v].Dist
T[v].Path

1
1
0
0

2
1
8
1

3
1
4
1

4
1
9
3

5
1
2
1

6
0
3
5

7
0
4
5

8
0
12
4

 after the algorithm stops its:

v
T[v].Known
T[v].Dist
T[v].Path

1
1
0
0

2
1
8
1

3
1
4
1

4
1
9
3

5
1
2
1

6
1
3
5

7
1
4
5

8
1
10
6

9

7

5

3

1

6

4

3

2

4

2

2

5

4

5

1

2

1

1

11

4

2

3

4

5

6

8

9

none

none

leftist, skew

leftist, skew

skew

1

2

3

4

5

6

H1

H2

1

3

6

5

4

2

4

8

5

3

7

2

1

1

6

4

3

2

5

7

6

8

8

7

1

6

4

3

2

5

2

4

5

8

1

3

6

7

9

4

7

1,5,6,7,3,2,4,8 or

1,5,6,3,7,2,4,8

2

Department of Electrical and Computer Engineering

University of South Carolina

- Page 8 of 1 -

