
Past Classes
The Future
Conclusion

Teaching Multiagent Systems: Past and Future

José M Vidal1 Paul Buhler2 Hrishikesh Goradia1

1Department of Computer Science and Engineering
University of South Carolina

2Department of Computer Science
College of Charleston

Teaching Multiagent Systems Workshop, 19 July 2004

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Past Classes

I Introduction to Multiagent Systems graduate class.

I Taught six times between 1999–2003.

I 10–20 students each time.

I Used Weiss and Wooldridge textbooks.

I No prerequisites.

I Used RoboCup, Jade, FIPA-OS, and NetLogo as teaching
tools.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Approach

I Multiagent research is divided into
I Theory and algorithms: game theory, auctions, utility theory,

distributed algorithms, logic.
I Software and hardware agents: agent systems, ontologies,

communications.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Approach

I Multiagent research is divided into
I Theory and algorithms: game theory, auctions, utility theory,

distributed algorithms, logic.
I Software and hardware agents: agent systems, ontologies,

communications.

Approach: Let students build systems so they can see the algorithms
in action and understand how local changes affect the emergent
behavior of the system.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Using RoboCup

I Used RoboCup since second class.

I Students form teams of one to
three students. Compete in
tournament.

I Early lesson: need better basic
agent.

I Developed Biter and SoccerBeans.

I Biter contains many basic behaviors (dribbling, passing,
catching) and subsumption and BDI architecture support.

I SoccerBeans turns these into Beans and allows the use of
Sun’s Bean Development Kit.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Using RoboCup

I Used RoboCup since second class.

I Students form teams of one to
three students. Compete in
tournament.

I Early lesson: need better basic
agent.

I Developed Biter and SoccerBeans.

I Biter contains many basic behaviors (dribbling, passing,
catching) and subsumption and BDI architecture support.

I SoccerBeans turns these into Beans and allows the use of
Sun’s Bean Development Kit.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Lessons Learned

I RoboCup usage has had many benefits:
I It is an easy problem to learn.
I Students are very motivated to win and try different

techniques.
I Strategy is more important than raw performance (all teams

play each other).
I First-hand experience with nonintuitive emergent behaviors.

I But, it has some drawbacks:
I Techniques developed for domain are unlikely to transfer to

other domains.
I Very few of the standard multiagent algorithms are applicable.
I No selfish agents.

I Biter is essential but SoccerBeans was unsatisfactory due to
problems with BDK.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Lessons Learned

I RoboCup usage has had many benefits:
I It is an easy problem to learn.
I Students are very motivated to win and try different

techniques.
I Strategy is more important than raw performance (all teams

play each other).
I First-hand experience with nonintuitive emergent behaviors.

I But, it has some drawbacks:
I Techniques developed for domain are unlikely to transfer to

other domains.
I Very few of the standard multiagent algorithms are applicable.
I No selfish agents.

I Biter is essential but SoccerBeans was unsatisfactory due to
problems with BDK.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Lessons Learned

I RoboCup usage has had many benefits:
I It is an easy problem to learn.
I Students are very motivated to win and try different

techniques.
I Strategy is more important than raw performance (all teams

play each other).
I First-hand experience with nonintuitive emergent behaviors.

I But, it has some drawbacks:
I Techniques developed for domain are unlikely to transfer to

other domains.
I Very few of the standard multiagent algorithms are applicable.
I No selfish agents.

I Biter is essential but SoccerBeans was unsatisfactory due to
problems with BDK.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

NetLogo Background

I NetLogo is a programming language/environment used for
modeling complex systems.

I It is a descendant of StarLogo which is a parallel version of
Logo.

I Logo is a variant of Lisp designed to teach children basics of
programming.

I StarLogo was designed to teach children the distributed
mindset.

I We are born with a tendency to explain all phenomena,
including emergent, by alluding to a central controller.

I For example, kids think the Queen tells the ants what to do.

I NetLogo is written in Java and includes sophisticated
primitives.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

NetLogo Background

I NetLogo is a programming language/environment used for
modeling complex systems.

I It is a descendant of StarLogo which is a parallel version of
Logo.

I Logo is a variant of Lisp designed to teach children basics of
programming.

I StarLogo was designed to teach children the distributed
mindset.

I We are born with a tendency to explain all phenomena,
including emergent, by alluding to a central controller.

I For example, kids think the Queen tells the ants what to do.

I NetLogo is written in Java and includes sophisticated
primitives.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

NetLogo Background

I NetLogo is a programming language/environment used for
modeling complex systems.

I It is a descendant of StarLogo which is a parallel version of
Logo.

I Logo is a variant of Lisp designed to teach children basics of
programming.

I StarLogo was designed to teach children the distributed
mindset.

I We are born with a tendency to explain all phenomena,
including emergent, by alluding to a central controller.

I For example, kids think the Queen tells the ants what to do.

I NetLogo is written in Java and includes sophisticated
primitives.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

to setup

ca

create-n-turtles num-turtles

end

to move

locals [cx cy]

set cx mean values-from turtles [xcor]

set cy mean values-from turtles [ycor]

set heading towardsxy cx cy

if (distancexy cx cy < radius) [

set heading heading + 180]

if (abs distancexy cx cy - radius > 1)[

fd speed / 1.414]

set heading towardsxy cx cy

ifelse (clockwise) [

set heading heading - 90]

[

set heading heading + 90]

fd speed / 1.414

end

to update

no-display

while [count turtles > num-turtles][

ask random-one-of turtles [die]]

ask turtles [move]

display

end

to create-n-turtles [n]

create-custom-turtles n [

fd random 20

shake]

end

to shake

set heading heading + (random 10) - 5

set xcor xcor + random 10 - 5

set ycor ycor + random 10 - 5

end

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Other NetLogo Programs

1. Adopt algorithm for graph coloring and N-queens problem.

2. Asynchronous backtracking for N-queens.

3. Mailmen problem.

4. Tileworld problem.

5. Asynchronous weak commitment for N-queens.

6. Path-finding using pheromones.

7. Distributed recommender system simulation.

8. Reciprocity in package delivery.

9. The coordination game.

10. Congregating.

http://jmvidal.cse.sc.edu/netlogomas/

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future

http://jmvidal.cse.sc.edu/netlogomas/


Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

NetLogo Class Use

I One day introduction/demo of NetLogo and its history and
purpose.

I Five or six two week long assignments using NetLogo.

I Implement known algorithm or solve open problem using
techniques from class.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Lessons Learned

I NetLogo benefits:
I Easy to learn.
I Very short develop-test cycle.
I Easy graphics, easy GUI development, lots of playing!

I Minor problems:
I Hard to specify problem description in code.
I Lack of object model created some confusion.
I Students unfamiliar with list operators (map, reduce).

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

FIPA Agents

I We have used both JADE and FIPA-OS.

I Assignments consists of groups of 1–3 students building an
application such as a distributed meeting scheduler.

I Each agent would need to cooperate with other in order to
maximize its own utility.

I The students had to develop their own communication
protocols which the agents had to obey.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Lessons Learned

I Students preferred JADE. They found documentation better
and API easier to use.

I Both systems had significant learning curves.

I Most (all?) of the time was spent writing software and
debugging rather than designing communication protocols.

I This assignment was dropped from the last class taught.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

RoboCup, Biter, and SoccerBeans
NetLogo
FIPA Agents
Theory and Algorithms

Theory and Algorithms

I Topics covered include
I notation for describing an agent,
I agent architectures,
I game theory,
I auctions,
I coordination,
I voting,
I learning in multiagent systems.

I Both Weiss and Wooldridge textbooks cover roughly the same
material.

I Both fail to provide consistent notation for all aspects of
multiagent design (not easy!).

I Vlassis does a better job and includes mechanism design.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

Semantic Web
Software Tools
Unifying Notation for Multiagent Systems

The Semantic Web

I Web Services and the Semantic Web are here to stay: RMI,
SOAP, WSDL, UDDI, WSDL, BPEL4WS, OWL, OWL-S.

I FIPA has been absorbed by the W3C.

I Part of the standard software engineering curriculum.

I Multiagent aspects are best learned after understanding the
technologies as above.

I Many students interested in client/server software engineering
problem.

I Not enough time!

I Decision: These technologies will be taught as part of a
“Distributed Programming” class which also covers software
agents.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

Semantic Web
Software Tools
Unifying Notation for Multiagent Systems

The Semantic Web

I Web Services and the Semantic Web are here to stay: RMI,
SOAP, WSDL, UDDI, WSDL, BPEL4WS, OWL, OWL-S.

I FIPA has been absorbed by the W3C.

I Part of the standard software engineering curriculum.

I Multiagent aspects are best learned after understanding the
technologies as above.

I Many students interested in client/server software engineering
problem.

I Not enough time!

I Decision: These technologies will be taught as part of a
“Distributed Programming” class which also covers software
agents.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

Semantic Web
Software Tools
Unifying Notation for Multiagent Systems

Software Tools

I Will continue to use RoboCup and NetLogo.

I NetLogo gives hands-on experience with a myriad of
algorithms and encourages experimentation—good for
understanding algorithms.

I RoboCup provides a much richer environment—good for
understanding complexities of real-world systems.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

Semantic Web
Software Tools
Unifying Notation for Multiagent Systems

Towards a Unifying Notation of Multiagent Systems

I Mechanism design offers us a notation for describing the
problem faced by a designer of a multiagent with selfish
agents.

I It is based on utility theory.

I Can we extend the notation to cover all multiagent systems?

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

Semantic Web
Software Tools
Unifying Notation for Multiagent Systems



�

	
�
� 	�



�

	
�




�

	

�6

-

Solved

Problem

task allocation

distributed

constraint

optimization

RoboCup

M Known

M Unknown coalition formation

ui = vi (o, ti ) + pi

δi Known δi Unknown

Use VCG
{s,p} = M(a)

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future



Past Classes
The Future
Conclusion

Conclusion

I Software agents are now a software engineering concern. Web
services and the Semantic Web integrate multiagent research.
Enough material for a programming class.

I Multiagent research continues to find new (and more
complex) algorithms and coordination mechanisms. Tools like
NetLogo make it easier for us to understand how they work.

I A unifying notation would help in teaching theory. Mechanism
design might be the first step.

Vidal, Buhler, Goradia Teaching Multiagent Systems: Past and Future


	Past Classes
	RoboCup, Biter, and SoccerBeans
	NetLogo
	FIPA Agents
	Theory and Algorithms

	The Future
	Semantic Web
	Software Tools
	Unifying Notation for Multiagent Systems

	Conclusion

