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Past Classes

I Introduction to Multiagent Systems graduate class.

I Taught six times between 1999–2003.

I 10–20 students each time.

I Used Weiss and Wooldridge textbooks.

I No prerequisites.

I Used RoboCup, Jade, FIPA-OS, and NetLogo as teaching
tools.
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Approach

I Multiagent research is divided into
I Theory and algorithms: game theory, auctions, utility theory,

distributed algorithms, logic.
I Software and hardware agents: agent systems, ontologies,

communications.
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Approach

I Multiagent research is divided into
I Theory and algorithms: game theory, auctions, utility theory,

distributed algorithms, logic.
I Software and hardware agents: agent systems, ontologies,

communications.

Approach: Let students build systems so they can see the algorithms
in action and understand how local changes affect the emergent
behavior of the system.
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Using RoboCup

I Used RoboCup since second class.

I Students form teams of one to
three students. Compete in
tournament.

I Early lesson: need better basic
agent.

I Developed Biter and SoccerBeans.

I Biter contains many basic behaviors (dribbling, passing,
catching) and subsumption and BDI architecture support.

I SoccerBeans turns these into Beans and allows the use of
Sun’s Bean Development Kit.
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Lessons Learned

I RoboCup usage has had many benefits:
I It is an easy problem to learn.
I Students are very motivated to win and try different

techniques.
I Strategy is more important than raw performance (all teams

play each other).
I First-hand experience with nonintuitive emergent behaviors.

I But, it has some drawbacks:
I Techniques developed for domain are unlikely to transfer to

other domains.
I Very few of the standard multiagent algorithms are applicable.
I No selfish agents.

I Biter is essential but SoccerBeans was unsatisfactory due to
problems with BDK.
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NetLogo Background

I NetLogo is a programming language/environment used for
modeling complex systems.

I It is a descendant of StarLogo which is a parallel version of
Logo.

I Logo is a variant of Lisp designed to teach children basics of
programming.

I StarLogo was designed to teach children the distributed
mindset.

I We are born with a tendency to explain all phenomena,
including emergent, by alluding to a central controller.

I For example, kids think the Queen tells the ants what to do.

I NetLogo is written in Java and includes sophisticated
primitives.
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to setup

ca

create-n-turtles num-turtles

end

to move

locals [cx cy]

set cx mean values-from turtles [xcor]

set cy mean values-from turtles [ycor]

set heading towardsxy cx cy

if (distancexy cx cy < radius) [

set heading heading + 180]

if (abs distancexy cx cy - radius > 1)[

fd speed / 1.414]

set heading towardsxy cx cy

ifelse (clockwise) [

set heading heading - 90]

[

set heading heading + 90]

fd speed / 1.414

end

to update

no-display

while [count turtles > num-turtles][

ask random-one-of turtles [die]]

ask turtles [move]

display

end

to create-n-turtles [n]

create-custom-turtles n [

fd random 20

shake]

end

to shake

set heading heading + (random 10) - 5

set xcor xcor + random 10 - 5

set ycor ycor + random 10 - 5

end
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Other NetLogo Programs

1. Adopt algorithm for graph coloring and N-queens problem.

2. Asynchronous backtracking for N-queens.

3. Mailmen problem.

4. Tileworld problem.

5. Asynchronous weak commitment for N-queens.

6. Path-finding using pheromones.

7. Distributed recommender system simulation.

8. Reciprocity in package delivery.

9. The coordination game.

10. Congregating.

http://jmvidal.cse.sc.edu/netlogomas/
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NetLogo Class Use

I One day introduction/demo of NetLogo and its history and
purpose.

I Five or six two week long assignments using NetLogo.

I Implement known algorithm or solve open problem using
techniques from class.
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Lessons Learned

I NetLogo benefits:
I Easy to learn.
I Very short develop-test cycle.
I Easy graphics, easy GUI development, lots of playing!

I Minor problems:
I Hard to specify problem description in code.
I Lack of object model created some confusion.
I Students unfamiliar with list operators (map, reduce).
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FIPA Agents

I We have used both JADE and FIPA-OS.

I Assignments consists of groups of 1–3 students building an
application such as a distributed meeting scheduler.

I Each agent would need to cooperate with other in order to
maximize its own utility.

I The students had to develop their own communication
protocols which the agents had to obey.
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Lessons Learned

I Students preferred JADE. They found documentation better
and API easier to use.

I Both systems had significant learning curves.

I Most (all?) of the time was spent writing software and
debugging rather than designing communication protocols.

I This assignment was dropped from the last class taught.
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Theory and Algorithms

I Topics covered include
I notation for describing an agent,
I agent architectures,
I game theory,
I auctions,
I coordination,
I voting,
I learning in multiagent systems.

I Both Weiss and Wooldridge textbooks cover roughly the same
material.

I Both fail to provide consistent notation for all aspects of
multiagent design (not easy!).

I Vlassis does a better job and includes mechanism design.
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The Semantic Web

I Web Services and the Semantic Web are here to stay: RMI,
SOAP, WSDL, UDDI, WSDL, BPEL4WS, OWL, OWL-S.

I FIPA has been absorbed by the W3C.

I Part of the standard software engineering curriculum.

I Multiagent aspects are best learned after understanding the
technologies as above.

I Many students interested in client/server software engineering
problem.

I Not enough time!

I Decision: These technologies will be taught as part of a
“Distributed Programming” class which also covers software
agents.
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Software Tools

I Will continue to use RoboCup and NetLogo.

I NetLogo gives hands-on experience with a myriad of
algorithms and encourages experimentation—good for
understanding algorithms.

I RoboCup provides a much richer environment—good for
understanding complexities of real-world systems.
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Towards a Unifying Notation of Multiagent Systems

I Mechanism design offers us a notation for describing the
problem faced by a designer of a multiagent with selfish
agents.

I It is based on utility theory.

I Can we extend the notation to cover all multiagent systems?
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Solved

Problem

task allocation

distributed

constraint

optimization

RoboCup

M Known

M Unknown coalition formation

ui = vi (o, ti ) + pi

δi Known δi Unknown

Use VCG
{s,p} = M(a)
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Conclusion

I Software agents are now a software engineering concern. Web
services and the Semantic Web integrate multiagent research.
Enough material for a programming class.

I Multiagent research continues to find new (and more
complex) algorithms and coordination mechanisms. Tools like
NetLogo make it easier for us to understand how they work.

I A unifying notation would help in teaching theory. Mechanism
design might be the first step.
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