Reasoning Agents

José M Vidal

Department of Computer Science and Engineering
University of South Carolina

August 30, 2005

Abstract

Basic notation and frameworks for reasoning agents
Assume agents inhabit stochastic world defined by a Markov process where

- s_t is a state
- a_t is an action
- $P(s_{t+1} \mid s_t, a_t)$ is the transition function.

The agent has some **goals** it wants to achieve.

How do we map these goals into the Markov process?
A **goal** is just a preference over certain states.

Utility function $U(s)$ is the utility of state s for the agent.

The agent in s_t should take the action a_t^* which maximizes its expected utility

$$a_t^* = \arg \max_{a_t \in A} \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a_t) U(s_{t+1})$$

The function that implements this choice is the **policy**. In this case:

$$\pi^*(s) = \arg \max_a \sum_{s'} P(s' \mid s, a) U(s')$$
Greed is Good?

\[a^*_t = \arg \max_{a_t \in A} \sum_{s_{t+1}} P(s_{t+1} | s_t, a_t) U(s_{t+1}) \]

- Is this greedy policy the best?
Greed is Good?

\[a^*_t = \arg \max_{a_t \in A} \sum_{s_{t+1}} P(s_{t+1} | s_t, a_t) U(s_{t+1}) \]

- Is this greedy policy the best?
- No. The agent could get stuck in a subset of states that is suboptimal.
Greed is Good?

\[a_t^* = \arg \max_{a_t \in A} \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a_t) U(s_{t+1}) \]

- Is this greedy policy the best?
- No. The agent could get stuck in a subset of states that is suboptimal.
- Instead, discount future utilities by some constant \(0 > \gamma < 1 \) for each step.
- Optimal policy can be found using reinforcement learning.
The goal is to implement an agent as a theorem-prover.

The transduction problem is translating from the real world into good symbolic descriptions.

The reasoning problem is getting agents to manipulate and reason with this knowledge.
The goal is to implement an agent as a theorem-prover.

The transduction problem is translating from the real world into good symbolic descriptions.

The reasoning problem is getting agents to manipulate and reason with this knowledge.

Counterpoint: Rodney Brooks believes that the world should be its own model—an idea supported by Herbert Simon’s example of an ant walking in the sand.
The agent has a database Δ of statements such as
- open(valve221)
- dirt(0,1)
- in(3,2)
- dirt(x,y) \land in(x,y) \rightarrow do(clean).

The last one is a deduction rule, the set of all of them is p.

We write $\Delta \rightarrow_p x$ if x can be derived from Δ using p.

The see and next functions from the agent with state remain the same. The action function has to be redefined.
Action Selection

function action(Δ:D) returns an action
begin
for each a ∈ Actions do
 if Δ → p Do(a) then
 return a
 end-if
end-for
for each a ∈ Actions do
 if ¬ (Δ → p ¬ Do(a)) then
 return a
 end-if
end-for
return nil
end
Vacuum World

<table>
<thead>
<tr>
<th></th>
<th>Dirt (0,2)</th>
<th>Dirt (1,2)</th>
<th>(2,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1)</td>
<td></td>
<td>Robot (1,1)</td>
<td>(2,1)</td>
</tr>
<tr>
<td></td>
<td>(0,0)</td>
<td>(1,0)</td>
<td>(2,0)</td>
</tr>
</tbody>
</table>

- **In(x,y):** agent is at x,y.
- **Dirt(x,y):** there is dirt at x,y.
- **Facing(d):** agent is facing direction d.
- Possible updating rules:
Vacuum World

- In(x, y): agent is at x, y.
- Dirt(x, y): there is dirt at x, y.
- Facing(d): agent is facing direction d.

Possible updating rules:

\[
\begin{align*}
\text{In}(x, y) & \land \text{Dirt}(x, y) \rightarrow \text{Do(suck)} \\
\text{In}(0, 0) & \land \text{Facing(north)} \land \neg \text{Dirt}(0, 0) \rightarrow \text{Do(forward)} \\
\text{In}(0, 1) & \land \text{Facing(north)} \land \neg \text{Dirt}(0, 1) \rightarrow \text{Do(forward)} \\
\text{In}(0, 2) & \land \text{Facing(north)} \land \neg \text{Dirt}(0, 2) \rightarrow \text{Do(turn)} \\
\text{In}(0, 2) & \land \text{Facing(east)} \rightarrow \text{Do(forward)}
\end{align*}
\]
Vacuum Exercise

What are the rules for picking up all the dirt, wherever it may be?

<table>
<thead>
<tr>
<th></th>
<th>Dirt (0,2)</th>
<th>Dirt (1,2)</th>
<th>(2,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1)</td>
<td>Robot (1,1)</td>
<td>(2,1)</td>
<td></td>
</tr>
<tr>
<td>(0,0)</td>
<td>(1,0)</td>
<td>(2,0)</td>
<td></td>
</tr>
</tbody>
</table>
Vacuum Exercise

What are the rules for picking up all the dirt, wherever it may be?

How about:

- In(x, y) ∧ Dirt(x, y) → Do(suck)
- In(x, y) ∧ ¬Dirt(x, y) ∧ ¬Pebble(x, y) → Do(drop-pebble)
- In(x, y) ∧ Dirt(a, b) ∧ (a ≠ x ∨ b ≠ y) → Do(turn-towards(a, b)) ∧ Do(forward)
Building a purely logical agent is impractical.
Building a purely logical agent is impractical.

Proving theorems in first-order predicate logic is slow.
Building a purely logical agent is impractical.
Proving theorems in first-order predicate logic is slow.
Late actions are based on old information.
Pragmatics

- Building a purely logical agent is impractical.
- Proving theorems in first-order predicate logic is slow.
- Late actions are based on old information.
- But, webservice description languages are built to be used by logical agents. There might be a new renaissance of logical approaches.
Building a purely logical agent is impractical.
Proving theorems in first-order predicate logic is slow.
Late actions are based on old information.
But, webservice description languages are built to be used by logical agents. There might be a new renaissance of logical approaches.
For example, OWL-S uses service profiles which define services in terms of their Inputs, Outputs, Pre-conditions, and Effects (IOPEs).
Software For Deductive Reasoning

- Prolog programming language. Uses backtracking.
- Jess language. Uses the Rete algorithm (forward).
- SOAR cognitive architecture. Uses backtracking and chunking.
- Many more automated theorem provers are available.
Program agents in terms of mentalistic notions. Pre-cursor to a lot of important work in agent research.

The hope is that using these abstractions would simplify the programming of agents.

Introduced by Yoav Shoham in 1990.

The idea was then implemented as AGENT0 [Shoham, 1991]. Not used anymore.
AOP Primitives

- An agent has
 - **Capabilities** things it can do.
 - **Beliefs**
 - **Commitments** things it means to do.
 - **Commitment rules** that tell it when to create or drop a commitment.

- The commitment rules have a **message condition** and a **mental condition** (both in the conditional part).

- An agent can take a private action which amounts to running a subroutine, or a communicative action which amounts to sending a message.

- Messages are limited to: requests, unrequests, and inform messages.
AGENTO Example

\[
\text{COMMIT(}
 \text{(agent, REQUEST, DO(time, action)) ;msg condition} \\
 \text{(B,} \\
 \quad [\text{now, Friend agent}] \text{ AND} \\
 \quad \text{CAN(self, action) AND} \\
 \quad \text{NOT [time, CMT(self, anyact)]}) ;\text{metal condition} \\
 \text{self,} \\
 \text{DO(time, action))}
\]
AGENT0 Example

COMMITS

(agent, REQUEST, DO(time, action)) ;msg condition
(B,
 [now, Friend agent] AND
 CAN(self, action) AND
 NOT [time, CMT(self, anyact)]) ;metal condition
self,
DO(time, action))

- If I receive a message from agent which requests for me to do action at time and I believe that
 - agent is a friend.
 - I can do action
 - at time, I am not committed to doing any other action.
- then commit to doing action at time.
Practical reasoning is reasoning directed towards action.

Bratman, 1990.

Practical reasoning is a matter of weighing conflicting considerations for and against competing options, where the relevant considerations are provided by what the agent desires/values/cares about and what the agent believes.

Humans usually divide it into
- **Deliberation** determining what state we want to achieve.
- **Means-end reasoning** deciding how to achieve this state of affairs.
There is only so much CPU and memory. An agent must deal with these resource bounds by somehow constraining its reasoning.

The world does not stop for the agent. An agent must perform under certain time constraints.

How do we control an agent’s reasoning?

How do we know when to stop thinking?
There is only so much CPU and memory. An agent must deal with these resource bounds by somehow constraining its reasoning.

The world does not stop for the agent. An agent must perform under certain time constraints.

How do we control an agent’s reasoning? (think only about what is important, but, how does it know what is important, it should think about what is important before thinking about stuff, but...).

How do we know when to stop thinking? (if I only have 5 more minutes I could solve this problem, no, wait, another 5, really.)
Intentions

- Intentions are pro-attitudes; they tend to lead to action.
Intentions are pro-attitudes; they tend to lead to action.

If you intend to do p then I can assume that you will make a reasonable attempt at achieving p.
Intentions are pro-attitudes; they tend to lead to action.

If you intend to do p then I can assume that you will make a reasonable attempt at achieving p.

I can also assume that you will only intend p if you think it is not impossible to achieve.
Intentions

- Intentions are pro-attitudes; they tend to lead to action.
- If you intend to do p then I can assume that you will make a reasonable attempt at achieving p.
- I can also assume that you will only intend p if you think it is not impossible to achieve.
- The fact that I intend p does not mean that I necessarily have to act on it—there might be obstacles in my way.
Intentions

- Intentions are pro-attitudes; they tend to lead to action.
- If you intend to do p then I can assume that you will make a reasonable attempt at achieving p.
- I can also assume that you will only intend p if you think it is not impossible to achieve.
- The fact that I intend p does not mean that I necessarily have to act on it—there might be obstacles in my way.
- I should not persist with my intentions for too long. If they have failed for some time maybe it is time to give up.
Advantages of Intentions

- Drive means-ends reasoning: once an agent has an intention, it can focus reasoning on achieving that goal.
- Persist: so an agent will not give up at the first sign of trouble.
- Constrain future deliberation: so an agent does not consider options that are inconsistent with current intentions.
- Influence beliefs upon which future practical reasoning is based: so the agent can plan assuming the intention will be achieved.
Means-Ends Reasoning

- **Means-end reasoning** is the process of deciding how to achieve an end using the available means, you will remember this from your AI class as planning.

- A planner is composed of
 - A **goal** that the agent intends to achieve.
 - The current **state** of the environment.
 - The **actions** available to the agents (aka operators).

- The output of a planner is a plan.

- A plan consists of the series of actions that must be taken to get from the current state to the goal state.
Blocks World Example

Start

A
B
C

Goal

A
B
C
Blocks World Example

Start

A
B
C

Clear(A),
On(A,B),
OnTable(B),
OnTable(C),
Clear(C)

Goal

A
B
C

Clear(A),
Clear(B),
Clear(C),
OnTable(A),
OnTable(B),
OnTable(C)
Blocks World Example

Start

```
A
B  C
```

Goal

```
A  B  C
```

Stack(x,y)

precondition: Clear(y), Holding(x)
delete: Clear(y), Holding(x)
add: ArmEmpty, On(x,y)
Start

UnStack(x,y)

precondition: On(x,y), Clear(x), ArmEmpty

delete: On(x,y), ArmEmpty

add: Holding(x), Clear(y);

Goal
Blocks World Example

Start

A
B
C

Goal

A
B
C

Pickup(x)

precondition: Clear(x), OnTable(x), ArmEmpty
delete: OnTable(x), ArmEmpty
add: Holding(x)
Blocks World Example

Start

```
A
B
C
```

Goal

```
A
B
C
```

PutDown(x)
- precondition: Holding(x)
- delete: Holding(x)
- add: ArmEmpty, OnTable(x)

Stack(x, y)

UnStack(x, y)

Pickup(x)

PutDown(x)

Blocks World Example

What predicates should we use?

Start

\[
\begin{array}{c}
A \\
B \\
C \\
\end{array}
\]

Goal

\[
\begin{array}{c}
A \\
B \\
C \\
\end{array}
\]

- Stack\((x,y)\)
- UnStack\((x,y)\)
- Pickup\((x)\)
- PutDown\((x)\)
Blocks World Example

Start

\[
\begin{array}{c}
A \\
B \\
C
\end{array}
\]

Goal

\[
\begin{array}{c}
A \\
B \\
C
\end{array}
\]

Solution:

UnStack(a,b)
PutDown(a)
In general, generating a plan can take exponential time on the set of operators.

We do not need to generate a whole plan before acting, especially since our intentions might change in the meantime.
Practical Reasoning Agent

\[
B = \text{initial-beliefs}; \ I = \text{initial-intentions}
\]

while true :
\[
p = \text{see(perceptions())}
B = \text{belief-revision-function}(B,p)
\]
\[
D = \text{options}(B,I) \ #determine \ agent’s \ goals
I = \text{filter}(B,D,I) \ #which \ goals?
\]
plan = plan(B,I) \ #generate \ the \ plan

while not (empty(plan) or done(I,B) or impossible(I,B)):
\[
\text{next-action} = \text{head(plan)}
\text{execute(next-action) \ #do \ it.}
\text{plan} = \text{tail(plan)}
B = \text{belief-revision-function}(B,\text{see(perceptions())})
\]
\[
\text{if reconsider}(I,B): \ #should \ agent \ drop \ goals?
D = \text{options}(B,I)
I = \text{filter}(B,D,I)
\]
\[
\text{if not sound}(\text{plan, I, B}): \ #the \ plan \ might \ not \ be \ good.
\text{plan} = \text{plan}(B,I)
\]
There are many types of commitment.

Blind commitment (fanatical): agent continues to maintain intention until it has been achieved.

Single-minded commitment: agent will continue to maintain intention until it has been achieved or it is impossible to achieve.

Open-minded commitment: agent will maintain intention as long as it believes it is possible.
Reconsider Commitment

- When to reconsider intentions?
Reconsider Commitment

- When to reconsider intentions?
- If too much then agent spends all the time re-considering, if too little then might end up doing the wrong thing.
- If the world does not change much then agents that stick with the same plan do better.
- If the world changes a lot then agents that re-consider their intentions do better.
- Why?
Procedural Reasoning Systems

- BDI ideas have been implemented in several research and commercial products:
 - The SRI PRS system.
 - The JAM agent.
 - Click here for a list of current agent architectures.
