Building Agent-Based Models of Seaport Container Terminals

José M Vidal and Nathan Huynh

Department of Computer Science and Engineering
Department of Civil Engineering
University of South Carolina

11 May 2010
Model
Each crane c picks the truck t that maximizes its utility u_c:

$$t^* \leftarrow \arg_{t \in T} \max u_c(t).$$

That becomes its goal g_c

$$g_c \leftarrow \begin{cases} t^* & \text{if } u_c(t^*) > u_c(g_c) + \text{decomit-penalty} \\ g_c & \text{otherwise,} \end{cases}$$
distance-based utility

\[u^\text{distance}_c(t) = -\text{DISTANCE}((\text{PATH}(c, t)) \]

\[- p_1 \cdot \text{OTHER-CRANE}?(\text{PATH}(c, t)) \]

\[- p_2 \cdot \text{HAS TURN}?(\text{PATH}(c, t)) \]

\[- p_3 \cdot \text{CHANGE-HEADING}?(\text{PATH}(c, t)) \]

\[- p_4 \cdot \text{NOT CLOSEST}?(c, t), \]

(1)
time-based utility

\[u^\text{time}_c(t) = \text{WAIT_TIME}(t) \]
\[- p_1 \cdot \text{OTHER_CRANE}?(\text{PATH}(c, t)) \]
\[- p_2 \cdot \text{HAS_TURN}?(\text{PATH}(c, t)) \]
\[- p_3 \cdot \text{CHANGE_HEADING}?(\text{PATH}(c, t)) \]
\[- p_4 \cdot \text{NOT_CLOSEST}?(c, t), \]

(2)
time-and-distance based utility

\[u_{c}^{\text{time-distance}}(t) = -\text{DISTANCE}(\text{PATH}(c, t)) + u_{c}^{\text{time}}(t) \]
Distance-based

<table>
<thead>
<tr>
<th>De-commitment Penalty</th>
<th>Average Wait Time (minutes)</th>
<th>Min of Max wait time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.37</td>
<td>41.30</td>
</tr>
<tr>
<td>100</td>
<td>15.42</td>
<td>37.93</td>
</tr>
<tr>
<td>10,000</td>
<td>15.04</td>
<td>45.65</td>
</tr>
<tr>
<td>De-commitment Penalty</td>
<td>Average Wait Time (minutes)</td>
<td>Min of Max wait time (minutes)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>0</td>
<td>68.97</td>
<td>68.95</td>
</tr>
<tr>
<td>100</td>
<td>65.49</td>
<td>72.58</td>
</tr>
<tr>
<td>10,000</td>
<td>53.84</td>
<td>56.18</td>
</tr>
<tr>
<td>De-commitment Penalty</td>
<td>Average Wait Time (minutes)</td>
<td>Min of Max wait time (minutes)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>0</td>
<td>68.04</td>
<td>86.38</td>
</tr>
<tr>
<td>100</td>
<td>65.42</td>
<td>67.97</td>
</tr>
<tr>
<td>10,000</td>
<td>52.24</td>
<td>56.77</td>
</tr>
</tbody>
</table>
2 Cranes

![Graph showing average wait time over trucks per minute with three lines representing distance, time, and time-distance.](image)

- **Distance** line
- **Time** line
- **Time-distance** line

The graph illustrates the relationship between trucks per minute and average wait time for different metrics.
3 Cranes

Average Wait Time

Trucks/minute

distance

time
time-distance
Wait distribution. Truck arrival rate of .5
Wait distribution. Truck arrival rate of .3

![Graph showing wait time distribution and average number of trucks]

- **distance**
- **time**
- **time-distance**

Average Number of Trucks

Mean Wait Time

0 10 20 30 40 50 60

0 10 20 30 40 50 60
Future Work

- We have crane operator logs. Dock model.
- Determine proper incentives.
- Full model: trucks, warehouses, container ports.