GPGP and TÆMS

José M Vidal

Department of Computer Science and Engineering, University of South Carolina

November 7, 2007

Abstract

Chapter 9
Overview

- **TÆMS**: language for representing task hierarchy.
- **GPGP**: scheduling and negotiation algorithm.
- Used by Lesser and students for decades on different problems.

GPGP and TÆMS

TÆMS

and

G₀

G₁

G₂

G₂₁

G₂₂

G₂₃

G₃

G₃₁

or

and

data

and

data

and

resource

enables

enables

quality

(cost: (1,0))

duration: (1,2)

q: (.1,0)(.9,5)

c: (1,10)

d: (.4,2)(.6,5)
data₁, data₂, resource₁, resource₂
GPGP and TÆMS

TÆMS

and

enables

and

or

data1

data2
resource1
resource2

enables

cost: (1, 0)
duration: (1, 2)
q: (.1, 0)(.9, 5)
c: (1, 10)
d: (.4, 2)(.6, 5)
GPGP and TÆMS

G₀

G₁

G₂

G₃

quality: (.2,0)(.8,8)
cost: (1,0)
duration: (1,2)

G₂₁

G₂₂

G₂₃

G₃₁

data₁

data₂

resource₁

resource₂

enables

and

or

q: (.1,0)(.9,5)
c: (1,10)
d: (.4,2)(.6,5)
Quality Accumulation Functions

q_{min} minimum quality of all subtasks
q_{max} maximum quality of all subtasks
q_{sum} aggregate quality of all subtasks
q_{last} quality of most recently completed subtask
$q_{\text{sum_all}}$ as with q_{sum} but all subtasks must be completed
$q_{\text{seq_min}}$ as with q_{min} but all subtasks must be completed in order
$q_{\text{seq_max}}$ as with q_{max} but all subtasks must be completed in order
GPGP and TÆMS

GPGP

Agent Architecture

Design-to-Criteria Scheduler

TÆMS Structure and Goal Criteria

Non-Local Commitment Database

GPGP Coordination

Task Assessor

Schedule

Execution
GPGP and TÆMS

GPGP

Agent Architecture

Design-to-Criteria Scheduler

Schedule

TÆMS Structure and Goal Criteria

Task Assessor

Execution

Non-Local Commitment Database

GPGP Coordination

Uses:
- State Updates
- Reschedule Requests
- Coordination Msgs.

Uses:
- Uses
- Produces
GPGP and TÆMS

GPGP

Agent Architecture

Design-to-Criteria Scheduler

Schedule

Execution

TÆMS Structure and Goal Criteria

Task Assessor

GPGP Coordination

Non-Local Commitment Database

Uses

Uses

Uses
GPGP and TÆMS

GPGP
Agent Architecture

Design-to-Criteria Scheduler

Uses Non-Local Commitment Database

Produces Schedule

Uses TÆMS Structure and Goal Criteria

Uses GPGP Coordination

Produces Reschedule Requests

Uses State Updates

Uses Reschedule Requests

Uses Coordination Msgs.

Execution

Task Assessor
GPGP and TÆMS

GPGP

Agent Architecture

Design-to-Criteria Scheduler
- Produces Schedule
- Uses Execution
- Uses TÆMS Structure and Goal Criteria
- Uses Non-Local Commitment Database

TÆMS Structure and Goal Criteria
- Uses GPGP Coordination

Task Assessor
GPGP and TÆMS

GPGP

Agent Architecture

Design-to-Criteria Scheduler

Produces

Uses

Schedule

Uses

Execution

Produces

Uses

TÆMS Structure

Uses

and Goal Criteria

Uses

Non-Local Commitment Database

Uses

Task Assessor

Uses

Action/Sense Domain Info. Msgs.

Uses

GPGP Coordination
GPGP and TÆMS

GPGP

Agent Architecture

Design-to-Criteria Scheduler

- Produces Schedule
- Uses Execution

- Uses TÆMS Structure and Goal Criteria
- Uses Reschedule Requests
- Updates State
- Uses Non-Local Commitment Database

- Uses Task Assessor

TÆMS Structure and Goal Criteria

GPGP Coordination
GPGP and TÆMS

GPGP

Agent Architecture

Design-to-Criteria Scheduler

Produce Schedule

Uses Execution

Uses TÆMS Structure and Goal Criteria

Uses GPGP Coordination

Uses Non-Local Commitment Database

Uses State

Uses Task Assessor

Uses Updates

Uses Reschedule Requests

Uses Updates

Uses Schedule

Uses Schedule
GPGP and TÆMS

GPGP

Agent Architecture

Design-to-Criteria Scheduler

Produces Schedule

Uses

Executes

Reschedule Requests

State

TÆMS Structure and Goal Criteria

Uses

Task Assessor

Non-Local Commitment Database

Uses

Reschedule Requests

Updates

Action/Sense Domain Info. Msgs.

Updates

GPGP Coordination

Updates

Coordination Msgs
Coordination Relationships

\[G_0^1 \]

\[G_1^{1,2} \]

\[G_2^2 \]
Coordination Relationships

Diagram showing relationships between different nodes labeled G_0, G_1, G_2, G_3, and G_4. The diagram illustrates coordination relationships such as G_1^* connecting to G_2^2 and G_3^1.
Coordination Relationships

Diagram showing coordination relationships between groups G_0, G_1, G_3, G_1, G_2, and G_4.
Coordination Relationships

GPGP and TÆMS
GPGP
Coordination

Diagram showing coordination relationships between different groups labeled as G_0^1, G_1^1, G_1^2, G_2^2, G_3^1, and G_4^2.
Coordination Relationships

GPGP and TÆMS

GPGP

Coordination

Diagram:

- Nodes: G_0^1, G_1^1, G_3^1, G_4^2, G_1^2, G_2^2, G_0^1
- Edges: CR connections between nodes
A non-local effect in the original graph now starts in one graph and ends in another, or

a non-local effect or a subtask relationship has one end in one subgraph but the other end in both subgraphs.
Commitment Messages: from 1 to 2

- Commit \((\text{Do}(G_1))\)
- Commit \((\text{Do}(G_3))\)
Uses search and heuristics. Complex.

Needs to create schedules for the coordination module: what if? scenarios.

Must find best schedule if many are possible.
Key Concepts

- Coordination as distributed optimization—quantitative view of coordination.
Key Concepts

- Coordination as distributed optimization—quantitative view of coordination.
- Family of coordination mechanism for situation-specific control.
Key Concepts

- Coordination as distributed optimization—quantitative view of coordination.
- Family of coordination mechanism for situation-specific control.
- Domain-independent representation of agent tasks, using TÆMS.
Key Concepts

- Coordination as distributed optimization—quantitative view of coordination.
- Family of coordination mechanism for situation-specific control.
- Domain-independent representation of agent tasks, using TÆMS.
- Quantitative coordination relationships among tasks.
Key Concepts

- Coordination as distributed optimization—quantitative view of coordination.
- Family of coordination mechanism for situation-specific control.
- Domain-independent representation of agent tasks, using TÆMS.
- Quantitative coordination relationships among tasks.
- Multiple goals of varying worth. Different deadlines and alternative ways of being solved.
Key Concepts

- Coordination as distributed optimization—quantitative view of coordination.
- Family of coordination mechanism for situation-specific control.
- Domain-independent representation of agent tasks, using TÆMS.
- Quantitative coordination relationships among tasks.
- Multiple goals of varying worth. Different deadlines and alternative ways of being solved.
- Modular interface between local agent control (planning and scheduling) and coordination mechanisms.