Distributed Computing and Object Systems

José M. Vidal
Thu Feb 12 11:47:57 EST 2004

This talk is based, in part, on:

e Jim Farley, |Java Distributed Computing!, Chapter 3.

1 Computing
e Monolithic computing: computer is alone and only uses its own resources.
— Multiple users allowed via timesharing.

e Distributed computing: multiple computers, each with its own CPU and memory, con-
nected via a network.

— Cooperative computing: a form of distributed computing where a program is split
among computers. (SETI, distributed.net).

— Grid Computing?: buzzword duJour.

”Grid computing can be differentiated from almost all distributed computing
paradigms by this defining characteristic: The essence of grid computing lies in
the efficient and optimal utilization of a wide range of heterogeneous, loosely
coupled resources in an organization tied to sophisticated workload management
capabilities or information virtualization.”

also, see the Globus toolkit?.

e Parallel computing: more than one CPU executes the same program.

1.1 Why Distributed Computing
Arguments for:
e Computers are cheap, network is available.
e Architecture mirrors that of organization and resource availability.
e It can, sometimes, scale well by adding more machines.
e If a machine breaks we can replace it with a new one.
Arguments against:

e A distributed system is one in which the failure of a computer you didn’t know existed can
render your own computer unusable. — Lamport

e It adds a lot of new security headaches.

http://www.oreilly.com/catalog/javadc/chapter/ch03.html
http://www-106.ibm.com/developerworks/grid/library/gr-heritage/?ca=dgr-lnxw01GridNextGen
http://www.globus.org/

1.2

1.

1.3

Interprocess Communications
At their root, all IPC systems contain:
Send:
Receive:
Connect: for connection-oriented systems, TCP requires connection. UDP does not.

Disconnect:

These have to be properly interleaved or they could lead to a lot of synchronization problems.
You use either synchronous (blocking) operations or asynchronous (nonblocking) opera-

tions.

Synchronization Techniques

Synchronous send and receive: if receive is expecting more data than was sent, it can block,
which can then lead to deadlock.

Asynchronous send and synchronous receive: good if sender does not care about reception.
Synchronous send and asynchronous receive: the receive can be implemented in various ways

1. Receive returns immediately with either data or null.

2. Receipt triggers a call-back.
Asynchronous send and receive: requires the IPC to implement a queue.

Even under synchronous we don’t wait forever. There is often a timeout.

Distributed Computing Paradigms

In message passing data is sent between two processes via send/receive.

In the client-server model the server provides services and waits for clients to connect to it.
Clients issue requests. (Web)

— Network services extend the idea by providing location transparency. (Jini?).
In peer-to-peer all play equivalent roles (both client and server). (JXTAP, Jabberf).

In message-oriented middleware an intermediary messaging system handles all messages.
It can do so either

— point-to-point using a message repository, or

— with publish-subscribe where receivers subscribe to the type of messages they want.

The remote procedure call (RPC) is a function call that gets executed at some other
machine. (DCE RPC7, SOAP).

The distributed objects® paradigm. (Java RMI, CORBA)

In object spaces the objects are located in a common object space that all can access.
(Linda”, JavaSpaces'® part of Jini).

— Groupware and Blackboard applications extend this idea by providing added shared
functionality.

http://wwws.sun.com/software/jini/
http://www.jxta.org
http://www.jabber.org
http://www.opengroup.org/publications/catalog/c706.htm
http://jmvidal.cse.sc.edu/talks/distobjects/dos.xml
http://www.cs.yale.edu/Linda/linda.html
http://java.sun.com/developer/Books/JavaSpaces/introduction.html

e The mobile agents idea is to write code that moves from host to host. (Tracy!!).

Note:

Message-passing is the simplest of all models as it is essentially just a socket abstraction. Client-
server models are by far the most popular application model due in large part to the fact that most
applications seem well suited to the restrictions of this model. That is, it is often the case that a
service needs to be provided by one machine to other machines because the machine in question
either has a lot more CPU power than the rest, or a lot more hard drive space, or access to some
special data, etc. Client-server is also easier to implement since all we need to do is make the server
do a synchronous receive. The idea of making these services location-independent has been floating
around for decades and implemented in various systems, most notably Jini. It is not easy to achieve
location independence, especially in the presence of faults (lost messages, broken servers, etc.), so
every implementation needs to make certain concessions on how often the service search will work
versus how long and how many resources it will take.

Peer-to-peer systems hold the most promise for the development of robust and agile distributed
systems. However, we do not yet have algorithms that will support their growth. The problem lies in
open p2p systems where all the peers are selfish agents. These systems require mechanisms that can
align the individual selfishness of the peers with the global needs of the system. These algorithms
are being developed by researchers in multiagent systems.

Message-oriented middleware adds some often-needed functionality to the basic message-passing
paradigm. These systems are usually small utility libraries. RPC was the first departure from
message passing. It was the first step in integrating distributed computation into the programming
language. Unfortunately, the libraries that exist mostly don’t work well with each other so you can
only RPC to a similar host.

The idea of shared tuple spaces was popularized by the Linda language. Implementing these
spaces presents several problems. The tuple-space needs to be physically distributed and yet available
in its entirety to all the agents, even in the presence of failures. The searches for a particular tuple
need to be performed by some agent, but we also do not want to overload any one agent. Finally,
read-write permissions might need to be implemented in these objects. The Linda papers explain
how these were implemented in their systems, but there exist many algorithms for achieving these
goals, all of them, of course, have different strengths and weaknesses.

Mobile agents have been characterized as a solution looking for a problem. They do, however,
have a place in systems were communication costs are very high and a lot of computation is required
using the local data. Unfortunately, these type of constraints do not seem to appear often (or, at
all?) in the real world, so mobile agent systems are still only studied by academic researchers.

2 Distributed Objects

e The idea: Let the object reside anywhere, transparently.
e To distribute applications easily. No need to develop a new protocol.

— To distribute resources: data, CPU power, physical constraints, etc.
— Redundancy.

— To be near user for faster access.
e No need to add new messages or design a new language.
e No need to deal with data conversion.
e Make re-distribution easier.

e Make it easier to change where the split (between what’s local and what’s remote) happens at
a later time.

e Its easier to implement fine-level security and access restrictions.

http://mobile-agents.org/

2.1

Isn’t this easy to do?

Our goal is something like:

//w resides on some other machine
Widget w = new Widget();

//this function is executed on that other machine.
w.calculate();

In order to do achieve this small miracle we need many things.

We need a protocol for creating new objects remotely, invoking methods on them, getting the
results back, and deleting unused objects.

In order to do this we must send

— Class references
— Object references.

Method references.

Method arguments and return values.

2.2 Using the ClassLoader
e We can use the java.lang.ClassLoader to start building a DOS.
e The ClassLoader is an abstract interface to loading classes. To implement it we must imple-
ment:
— loadClass(String classPath, boolean resolve)
— readClass(String classPath)
e We could define a new ClassLoader which can load classes over the network (Applets already
do this).
e We can decide that class references will be of the form machine-name:classname.
2.3 Object References
e First, remember the difference between objects and classes! An object does not contain the
methods.
e We can send an object by using the Serializable interface and writing it on a socket. Easy!
e But, an object reference somehow needs to point back to the machine:object so that a
method call on that object reference will call the appropriate machine.
e We can achieve this by building an object lookup table on the client.
Client m.sc.edu (Server)
Object Machine Obj ID Obj ID Object
o m.sc.edu 101 —new o()— 101 o

+—m.sc.edu:01-

—101:calc()—

2.4 Methods and Arguments

e We can handle method references by simply sending the method number, rather than the
name as in the previous slide.

e Method arguments and return values can be handled by serializing them and sending them
along with the method call.

Client m.sc.edu (Server)
Object Machine Obj ID Obj ID Object
o m.sc.edu 101 - 101 o}
101:calc(F f)—

e Upon receipt of this method call, the Server must determine if £ is a local or remote object.
If its remote, it must go back to the client (which is now a Foo server) and to access f’s data
and method members.

e This is getting very hard!

— Both end up being client and server.

— How does one program find the machines that are server for a particular object? We
should have some kind of naming service.

— In our scheme, a return-by-value forces the client to create a new object, which the server
also did (double work).

e Luckily, Java RMI, CORBA, and DCOM, are all implemented solutions to this problem. So,
use them!

2.5 General Features of DOS

Registration Object -~
Service Skeletons Object
Storage
) Server .
rmpre!rjrenrarmn [Object Manager }
/
Object
Interface [I
Specification Naming Service
Client stub
interface .
T
Client Application

e All Distributed Object Systems (DOS)
They all share some features.

e Object specification is used to generate

include RMI, CORBA, DCOM, but not SOAP.

1. skeleton: an interface between object implementation and the communications code

provided by the DOS.

2. stub: an interface between the client and the communications code.

the stub is the object.

The client thinks

e The main idea is that we want only one class interface definition.

2.6

Runtime Transactions

Server Object
Implementations

4. Object
interactions

2. Resoive
object

Object
Skeletons

Object Manager Naming

3. Object

handle Object
Stubs
1. Reguest

object

Client Application

2.7

Example

e We start with one definition of our widget interface.

//This is a pretend example

interface Widgets {
double getStrenth();
void tickle(int times);
String getWisdom();

}

2.8

2.9

From this code, we run a program that generates both a stub and a skeleton.
The skeleton is placed in the object server, which stands ready to serve and service copies.
The stub is placed in the name service and, somehow, finds its way to the client.

In CORBA the programs can be written in different languages and platforms.

Object Manager

The object manager is the heart of the server since it manages object skeletons and references
(ORB, registry service).

— It handles creation of new object using skeleton, store it, send back referral.

— Handles method calls routing to object.
— Handles deletion.
It might handle dynamic object (de)activation and persistent objects.
It might reside on the host serving the objects, partitioned between clients and server, or on

a third host.

Naming Services

The naming service maintains the mapping between interfaces and servers.
It uses this information to answer questions from clients.

At its simplest, it does name matching. New, more semantically complex, description languages
are being developed which will provide near-matches.

e At its simplest, it returns the name of a host. New technologies hope to provide redundancy
and choice.

e The object communication protocol handles the object and method references, as well as
the marshaling of basic data types.

2.10 Security

e The client must be authenticated (use passwords and PKE).

e Is the client allowed to get a new reference to this object?

e Is the client allowed to access this method?

e If the client passes the object’s reference to another client, does the new client inherit the old
one’s privileges?

e Can a stub somehow compromise the client’s security by executing illegal code locally? The
stubs need to be verified.

e Are man in the middle attacks possible? Can someone pretend to be someone else and make
client calls on a server? What about someone pretending to be the server?

e Each of the architectures addresses, or fails to address, these issues in a different way.

Notes
Hhttp://www.oreilly.com/catalog/javadc/chapter/ch03.html]
http://www-106.ibm.com /developerworks/grid /library /gr-heritage/?ca=dgr-lnxw01GridNextGen|
http://www.globus.org/|
http: //wwws.sun.com /software/jini /|
Shttp://www.jxta.org|
Shttp://www.jabber.org|
http: //www.opengroup.org/publications/catalog/c706.htm|
http://jmvidal.cse.sc.edu/talks/distobjects/dos.xml|
Ihttp://www.cs.yale.edu/Linda/linda.html|
http://java.sun.com/developer/Books/JavaSpaces /introduction. html|
Hihttp: //mobile-agents.org/

This talk is available at http://jmvidal.cse.sc.edu/talks/distobjects

Copyright © 2004 Jose M Vidal. All rights reserved.

http://jmvidal.cse.sc.edu/talks/distobjects

	1 Computing
	1.1 Why Distributed Computing
	1.2 Interprocess Communications
	1.3 Synchronization Techniques
	1.4 Distributed Computing Paradigms

	2 Distributed Objects
	2.1 Isn't this easy to do?
	2.2 Using the ClassLoader
	2.3 Object References
	2.4 Methods and Arguments
	2.5 General Features of DOS
	2.6 Runtime Transactions
	2.7 Example
	2.8 Object Manager
	2.9 Naming Services
	2.10 Security

