We introduce auctions for multiagent systems. Chapter 7.
1 Valuations

2 Simple Auctions
 • Analysis of Auctions
 • Auction Parameters

3 Combinatorial Auctions
 • Centralized Winner Determination
 • Distributed Winner Determination
 • Bidding Languages
 • Preference Elicitation
Valuation

- Private value.
- Common value.
- Correlated value.
Valuation

- Private value.
- Common value.
- Correlated value.

What type of value?

- Non-transferable tickets to a concert.
- Tickets to a concert.
- Collectible stamp.
Valuation

- Private value.
- Common value.
- Correlated value.

What type of value?

- Non-transferable tickets to a concert. **Private**
- Tickets to a concert. **Correlated**
- Collectible stamp. **Common** or **Correlated**
1 Valuations

2 Simple Auctions
 - Analysis of Auctions
 - Auction Parameters

3 Combinatorial Auctions
 - Centralized Winner Determination
 - Distributed Winner Determination
 - Bidding Languages
 - Preference Elicitation
English Auction

- First-price open-cry ascending auction.
- Very common.
- Initial prices is the reservation price.
- Dominant strategy: bid current price plus epsilon until reservation price.
- Winner’s curse if common or correlated.
First-price Sealed-bid Auction

- One bid per person in a sealed envelope are given to the auctioneer who then picks the highest bid.
- Whoever submitted the highest bid wins and pays that price.
- It has no dominant strategy.
- Leads to spying.
Dutch Auction

- Open-cry descending price.
- Equivalent to first-price sealed-bid auction.
- Real-time efficient.

Ontario

Flower Growers Co-op.
Vickrey Auction

- Second-price sealed-bid.
- Bidding true valuation is dominant strategy if private value.
- Eliminates strategizing.
- People don’t like them.

Double Auction

Sell Sell Sell Sell
Buy Buy Buy Buy
Buy

1 2 3 4 5
1 Valuations

2 Simple Auctions
 • Analysis of Auctions
 • Auction Parameters

3 Combinatorial Auctions
 • Centralized Winner Determination
 • Distributed Winner Determination
 • Bidding Languages
 • Preference Elicitation
Revenue Equivalence

- On which auction do sellers make more money?
Revenue Equivalence

On which auction do sellers make more money?

Revenue Equivalence Theorem

All four auctions produce the same expected revenue in private value auctions and with bidders that are risk-neutral.
Revenue Equivalence

On which auction do sellers make more money?

Revenue Equivalence Theorem

All four auctions produce the same expected revenue in private value auctions and with bidders that are risk-neutral.

- If risk-averse then Dutch and First-price are better.
- In common or correlated value English gives higher revenue.
Bidder collusion affects all 4 auctions.

English and Vickrey auctions *self-enforce* collusion agreements.
A lying auctioneer can make money from a Vickrey auction.

He can also place shills in an English auction.
Inefficient Allocation

<table>
<thead>
<tr>
<th>Costs of Doing Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>tasks</td>
</tr>
<tr>
<td>t1</td>
</tr>
<tr>
<td>t2</td>
</tr>
<tr>
<td>t1,t2</td>
</tr>
</tbody>
</table>

- Leads to inefficient allocation if auction t1 then t2.
- Implement full lookahead.
- Use a combinatorial auction.
1 Valuations

2 Simple Auctions
 - Analysis of Auctions
 - Auction Parameters

3 Combinatorial Auctions
 - Centralized Winner Determination
 - Distributed Winner Determination
 - Bidding Languages
 - Preference Elicitation
Decide what control you have.
- Control only the agent.
- Control only the mechanism.
- Control both.

If controlling the mechanism you must decide on:
- Bidding rules.
- Clearing rules.
- Information rules.
1 Valuations

2 Simple Auctions
 - Analysis of Auctions
 - Auction Parameters

3 Combinatorial Auctions
 - Centralized Winner Determination
 - Distributed Winner Determination
 - Bidding Languages
 - Preference Elicitation
In a combinatorial auction agents can place bids for sets of goods.

- M set of items for sale.
- $b_i(S) = \mathbb{R}$ is agent i’s bid for $S \subseteq M$.
- $\bar{b}(S) = \max_{i \in \text{bidders}} b_i(S)$ is the set of relevant bids.
Example

<table>
<thead>
<tr>
<th>Price</th>
<th>Bid items</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1</td>
<td>Beast Boy</td>
</tr>
<tr>
<td>$3</td>
<td>Robin</td>
</tr>
<tr>
<td>$5</td>
<td>Raven, Starfire</td>
</tr>
<tr>
<td>$6</td>
<td>Cyborg, Robin</td>
</tr>
<tr>
<td>$7</td>
<td>Cyborg, Beast Boy</td>
</tr>
<tr>
<td>$8</td>
<td>Raven, Beast Boy</td>
</tr>
</tbody>
</table>
1 Valuations

2 Simple Auctions
 - Analysis of Auctions
 - Auction Parameters

3 Combinatorial Auctions
 - Centralized Winner Determination
 - Distributed Winner Determination
 - Bidding Languages
 - Preference Elicitation
Winner Determination

\[X^* = \arg \max_X \sum_{S \in X} \bar{b}(S) \]

where \(X \) is a set of sets of goods that allocates each good to only one bidder.
Problem Complexity

The number of ways to partition a set of \(n \) elements into \(k \) non-empty sets is the Stirling number of the second kind

\[
S(n, k) = \frac{1}{k!} \sum_{i=0}^{k-1} (-1)^i \binom{k}{i} (k - i)^n
\]

so the total number of allocations of \(m \) goods is

\[
\sum_{i=1}^{m} S(m, i),
\]

which is

\(O(m^m) \) and \(\omega(m^{m/2}) \).
It is Hard

Theorem

Winner Determination in Combinatorial Auction is NP-hard. That is, finding the X^ that maximizes revenue is NP-hard.*
The decision version of the winner determination problem in combinatorial auctions is NP-complete, even if we restrict it to instances where every bid has a value equal to 1, every bidder submits only one bid, and every item is contained in exactly two bids.
If, there is a singleton bid for every item then:

Maximize:

$$\sum_{b \in B} x[b] b^{value}$$

Subject to:

$$\sum_{b | j \in b^{items}} x[b] \leq 1, \forall j \in M$$

$$x[b] \in \{0, 1\}, \forall b \in B,$$

where $x[b]$ is a bit which denotes whether bid b is a winning bid.
If, there is a singleton bid for every item then:

Maximize:

$$\sum_{b \in B} x[b] b^{value}$$

Subject to:

$$\sum_{b \mid j \in \text{items}} x[b] \leq 1, \forall j \in M$$

$$x[b] \in \{0, 1\}, \forall b \in B,$$

where $x[b]$ is a bit which denotes whether bid b is a winning bid.

In practice, these general algorithms are much slower than specialized search algorithms.
The LP problem will solve a combinatorial auction when the bids satisfy any one of the following criteria:

1. All bids are for consecutive sub-ranges of the goods.
2. The bids are hierarchical.
3. The bids are only OR-of-XORs of singleton bids.
4. The bids are all singleton bids.
5. The bids are downward sloping symmetric.
1. Number the goods from 1 to m.
2. Create an empty root node.
3. For each node, add as its children all the bids that
 1. include the smallest good that is not on the path and
 2. do not include any good on the path.
9 leafs versus 52 allocations
Branch and Bound on Branch on Items Tree

\[
\text{BRANCH-ON-ITEMS-CA()} \\
1 \quad r^* ← 0 \quad \triangleright \text{Max revenue found. Global variable.} \\
2 \quad g^* ← \emptyset \quad \triangleright \text{Best solution found. Global variable.} \\
3 \quad \text{BRANCH-ON-ITEMS-CA-HELPER}(1, \emptyset) \\
4 \quad \text{return } g^*
\]

- We will use:

\[
h(g) = \sum_{i \in \text{items not in } g} \max_{S \mid i \in S} \frac{b(S)}{|S|}
\]
BRANCH-ON-ITEMS-CA-HELPER\((i, g)\)

1. if \(i = m\) \hspace{1em} \triangleright \ g \text{ covers all items}
2. then if \(\sum_{b \in g} b_{\text{value}} > r^*\) \hspace{1em} \triangleright \ g \text{ has higher revenue than } r^*
3. then \(g^* \leftarrow g\)
4. \(r^* \leftarrow \sum_{b \in g} b_{\text{value}}\)
5. return
6. for \(b \in \{b \in B | i \in b_{\text{items}} \land b_{\text{items}} \cap \bigcup_{b_1 \in g} b_{1\text{items}} = \emptyset\}\)
7. do \(g' \leftarrow g + b\) \hspace{1em} \triangleright \ b_{\text{items}} \text{ don't overlap } g\)
8. if \(\sum_{b_1 \in g'} b_{1\text{value}} + h(g') > r^*\)
9. then BRANCH-ON-ITEMS-CA-HELPER\((i + 1, g')\)
Branch and Bound on Branch on Bids Tree

BRANCH-ON-BIDS-CA()

1. \(r^* \leftarrow 0 \) \text{ ▷ Max revenue found. Global variable.} \\
2. \(g^* \leftarrow \emptyset \) \text{ ▷ Best solution found. Global variable.} \\
3. BRANCH-ON-BIDS(\emptyset, B) \\
4. \textbf{return } g^*$
Branch and Bound on Branch on Bids Tree

\textbf{BRANCH-ON-BIDS}(g, available-bids)

1. \textbf{if} available-bids = \emptyset \\
2. \textbf{then} return \\
3. \textbf{if} \bigcup_{b \in g} b^\text{items} = M \quad \triangleright \ g \text{ covers all items} \\
4. \qquad \textbf{then} \textbf{if} \sum_{b \in g} b^\text{value} > r^* \quad \triangleright \ g \text{ has higher revenue than } r^* \\
5. \qquad \qquad \text{then} \ g^* \leftarrow g \\
6. \qquad \textbf{then} \ r^* \leftarrow \sum_{b \in g} b^\text{value} \\
7. \qquad \textbf{return} \\
8. next \leftarrow \text{FIRST}(available-bids) \\
9. \textbf{if} next^\text{items} \cap \bigcup_{b_1 \in g} b_1^\text{items} = \emptyset \quad \triangleright \ next's \ items \ do \ not \ overlap \ g \\
10. \quad \textbf{then} \ g' \leftarrow g + next \\
11. \quad \textbf{if} \sum_{b_1 \in g'} b_1^\text{value} + h(g') > r^* \\
12. \quad \textbf{then} \text{BRANCH-ON-BIDS}(g', \text{REST}(available-bids)) \\
13. \text{BRANCH-ON-BIDS-CA-HELPER}(g, \text{REST}(available-bids))
Other Improvements

- Keep only the highest bid for any set.
- Remove provably noncompetitive bids (i.e. they are dominated by another bid or sets of bids).
- Decompose bids into connected sets. Each solved independently.
Results depend a lot on bid distribution and correlation.

Much better than testing allocations.

Thousands of bids doable in seconds.

Newer algorithms order bids for even better performance.

Approximation algorithms are 1-2 orders faster but find only 99% of optimal solution.

Does not divide payment among sellers.
1. Valuations

2. Simple Auctions
 - Analysis of Auctions
 - Auction Parameters

3. Combinatorial Auctions
 - Centralized Winner Determination
 - Distributed Winner Determination
 - Bidding Languages
 - Preference Elicitation
The PAUSE auction.

1. Have simultaneous open-cry auctions for each individual item.
2. For $(k \leftarrow 2; k \leq m; k \leftarrow k + 1)$
3. do Each bidder must place a complete bidset (using his bids or others’ bids) where bids are all of size less than k.
PAUSE Analysis

- Each bid is a complete bidset so auctioneer only needs to check that revenue increases.
- Bidders have an incentive to perform calculation as it means they could get a good deal if they win.
- We have published paper on myopically-optimal bidding algorithm: **PAUSEBID**
PAUSE Analysis

- Each bid is a complete bidset so auctioneer only needs to check that revenue increases.
- Bidders have an incentive to perform calculation as it means they could get a good deal if they win.
- We have published paper on myopically-optimal bidding algorithm: PAUSEBID
- Results: PAUSE + PAUSEBID → usually X^*
Each seller of an item negotiates with other sellers to clear a bid for himself.

We then have a negotiation network, again.
Negotiation Network
1. Valuations

2. Simple Auctions
 - Analysis of Auctions
 - Auction Parameters

3. Combinatorial Auctions
 - Centralized Winner Determination
 - Distributed Winner Determination
 - Bidding Languages
 - Preference Elicitation
OR bids: b_1 OR b_2 OR \ldots OR b_k.

- Cannot represent subadditive valuations
Bidding Languages

- **OR bids**: $b_1 \text{ OR } b_2 \text{ OR } \ldots \text{ OR } b_k$.
 - Cannot represent subadditive valuations

- **XOR bids**: $b_1 \text{ XOR } b_2 \text{ XOR } \ldots \text{ XOR } b_k$
 - Can get very long for seemingly common valuations that can be more succinctly expressed using the **OR** bids.
 - Most algorithms work with **OR** bids.
Bidding Languages

- **OR bids**: $b_1 \text{ OR } b_2 \text{ OR} \ldots \text{ OR } b_k$.
 - Cannot represent subadditive valuations
- **XOR bids**: $b_1 \text{ XOR } b_2 \text{ XOR} \ldots \text{ XOR } b_k$
 - Can get very long for seemingly common valuations that can be more succinctly expressed using the OR bids.
 - Most algorithms work with OR bids.
- **OR* bids**: user OR bids but create dummy items to express xor constraints.
1 Valuations

2 Simple Auctions
 • Analysis of Auctions
 • Auction Parameters

3 Combinatorial Auctions
 • Centralized Winner Determination
 • Distributed Winner Determination
 • Bidding Languages
 • Preference Elicitation
Idea: ask only about information we need to find solution.

Assume free disposal: if $S \subseteq T$ then $v(S) \leq v(T)$.
Preference Elicitation

- **Idea**: ask only about information we need to find solution.
- **Assume** free disposal: if $S \subseteq T$ then $v(S) \leq v(T)$.
PAR algorithm

PAR()
1 fringe ← \{1, \ldots, 1\}
2 while fringe ≠ ∅
3 do c ← first(fringe)
4 fringe ← rest(fringe)
5 successors ← CHILDREN(c)
6 if FEASIBLE(c)
7 then pareto-solutions ← pareto-solutions ∪ c
8 fringe ← successors
9 else for n ∈ successors
10 do if n ∉ fringe
11 if UNDOMINATED \(n, \text{pareto-solutions}\)
12 then fringe ← fringe ∪ n
PAR algorithm

\text{CHILDREN}(\{k_1, \ldots, k_n\})

1. \textbf{for} \ i \in 1 \ldots n
2. \quad \textbf{do} \ c \leftarrow \{k_1, \ldots, k_n\}
3. \quad c[i] \leftarrow c[i] + 1
4. \quad result \leftarrow result \cup c
5. \textbf{return} \ result
Auctions
Combinatorial Auctions
Preference Elicitation

Rank Lattice

\[
\begin{align*}
\{a,b\} & \quad 4 \\
\{a\} & \quad 3 \\
\{b\} & \quad 2 \\
\emptyset & \quad 1
\end{align*}
\]
PAR Algorithm

- PAR algorithm only asks rank questions.
- PAR algorithm finds complete Pareto frontier.
- Cannot determine utilitarian solution since it only asks rank questions.
EBF Algorithm

- Same as PAR but also ask for the values and always expand allocation in fringe with highest value.
- Will find the utilitarian solution.
EBF Algorithm

EBF()

1. \(\text{fringe} \leftarrow \{\{1, \ldots, 1\}\}\)
2. \(\text{if } |\text{fringe}| = 1\)
3. \(\text{then } c \leftarrow \text{first}(\text{fringe})\)
4. \(\text{else } M \leftarrow \{k \in \text{fringe} \mid v(k) = \max_{d \in \text{fringe}} v(d)\}\)
5. \(\text{if } |M| \geq 1 \land \exists d \in M \text{FEASIBLE}(d)\)
6. \(\text{then return } d\)
7. \(\text{else } c \leftarrow \text{PARETO-SOLUTION}(M)\)
8. \(\text{if FEASIBLE}(c)\)
9. \(\text{then return } c\)
10. \(\text{successors} \leftarrow \text{CHILDREN}(c)\)
11. \(\text{for } n \in \text{successors}\)
12. \(\text{do if } n \notin \text{successors}\)
13. \(\text{then } \text{fringe} \leftarrow \text{fringe} \cup \{n\}\)
14. \(\text{goto } 2\)
PAR and EBF Analysis

- Both have running times exponential on number of items.
- Bad performance in practice, ask too many questions.