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ABSTRACT
We study the benefits of teaming and selflessness when us-
ing multiagent search to solve task-oriented problems. We
start by presenting a formal framework for multiagent search
which, we show, forms a superset of the task-oriented do-
main, coalition formation, distributed constraint satisfac-
tion, and NK landscape search problems. We focus on
task-oriented domain problems and show how the benefits
of teaming and selflessness arise in this domain. These ex-
perimental results are compared to similar results in the
NK domain—from which we import a predictive technique.
Namely, we show that better allocations are found when the
dynamics of the multiagent system lie between order and
chaos. Several other specific findings are presented such as
the fact that neither absolute selfishness nor absolute self-
lessness result in better allocations, and the fact that the
formation of small teams usually leads to better allocations.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence, Multiagent Systems

General Terms
Multiagent Search

1. INTRODUCTION
Multiagent systems are especially suited to solve problems in
which individual decision-makers with localized information
are able to affect their local state in the hopes that the
system will eventually reach a global state of either optimal
or at least satisfactory utility. Classic example scenarios
include distributed sensor monitoring [2], distributed task
allocation [5], and coalition formation [6]. In these problems,
each agent perceives some part of the global state and takes
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actions that modify some part of this state. The agents
act to maximize some local utility function. The function’s
details, e.g., how “selfish” it is, as well as the interaction
protocols among the agents are left to the system designer.
The designer must engineer these so that locally optimal
decisions give rise to the best possible global state. We refer
to these types of problems as instances of a more general
multiagent search problem.

In this paper we first introduce a formal framework for multi-
agent search that, we show, forms a superset of task-oriented
domain, coalition formation, distributed constraint satisfac-
tion, and Kauffman’s NK landscapes [3]. The grouping of
all these different problems into one framework allows us to
leverage results from one domain and use them in another.
As an example this power in Section 3 we present our results
on the effectiveness of cooperation via team formation and
selflessness in task-oriented domains. This approach was in-
spired by the successful use of “patches” in the search of
NK landscapes in a two-dimensional grid instantiation [4].

From our experiments we were able to derive several inter-
esting results. We show how agents that form teams and
engage in limited forms of selfless behavior find solutions
that are of a higher global utility. We show that the best
solutions are found in systems that exhibit dynamics that
are at the phase transition between order and chaos. These
results lead us to suggest that further study should be de-
voted to the study of coordination protocols that do not
converge to a stable solution but instead continue to change.
We believe that such protocols shall result in better (from
a global perspective) emergent behaviors in multiagent sys-
tems. We also present several specific findings such as the
fact that neither absolute selfishness nor absolute selflessness
result in better allocations, and the fact that the formation
of small teams usually leads to better allocations.

2. MULTIAGENT SEARCH FRAMEWORK
In this section we present a formal framework for describing
multiagent search problems. These problems are character-
ized by a global state composed of the aggregation of the
value of many local variables. Each agent perceives the val-
ues some of the variables, modifies the value of some of the
variables, and receives a utility that depends on the value of
some of the variables. By limiting which variables the agents
perceive, modify, or derive utility from, we can instantiate
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various well-known multiagent problem domains.

The global state is denoted by S. It is formed by the union
of a fixed set of local variables {s1, s2, . . . , s|S|}, each one
with a finite domain. The set of agents is A ≡ {1, 2, . . . , n},
where n is the number of agents. Each agent i ∈ A has an
utility function ui : di → R that provides a mapping between
a subset of state variables di ⊆ S and a real number. An
agent’s relationship with its environment is captured by the
set of local variables on which its utility depends, the set of
local variables whose value it modifies, and the set of local
variables whose value it views. Specifically, for agent i we
define di to be the set of variables upon which its utility
depends, mi is the set of variables which it can modify, and
vi is the set of variables it can view. The agents modify
the state of the variables in their respective mi sets but
only if these modifications satisfy the constraints imposed
by P : S × S → {0, 1}. For example, agent i can only
change S into S′ if p(S, S′) = 1, where p ∈ P , and the
state variables it modifies are in mi. If a constraint function
evaluates to 0 it means that the particular state change is
not allowed.

We now define a multiagent search problem as the tuple
{A, S, U, D, M, V, P} where A ≡ {1, 2, . . . , n} is the set of
agents, G ≡ {S1, S2, . . . , S|G|} is the set of all possible global
states such that S ∈ G, U is the set of all agent utility
functions where ui ∈ U and ui : di → R, di ∈ D, mi ∈ M ,
vi ∈ V , and P is the set of constraints, as defined above.

This formalization of multiagent search states the problem
but does not provide a solution. The goal of an agent-
based software engineer is to implement agent behaviors
that will enable the quick discovery of the globally opti-
mal solution. That is, the system should converge to s∗ =
argS∈G max

∑
i∈A ui(S). A common approach is the use of

individual hill-climbing. In it, each agent modifies its lo-
cal variables mi to maximize its utility ui. It is expected
that doing so will also increase the sum of everyone’s utility.
Unfortunately, this approach usually leads to sub-optimal
states. In Section 3 we extend this idea by allowing the for-
mation of teams and the use of partially selfless agents and
show the benefits of that approach.

2.1 Task-Oriented Domain
The Task-Oriented Domain (TOD) formalization studied by
Rosenschein and Zlotkin [5] is an instance of a multiagent
search problem. They define a TOD problem as a set of
tasks T , a cost function c : τ → R, where τ ⊆ T , and
a set of agents A. The tasks are assigned to the agents.
Each agent tries to exchange some of its assigned tasks with
other willing agents. The authors restrict the agents to act
rationally. They define a rational agent as one which only
accepts a deal (i.e., a set of task assignments) if its costs
are equal or less in the new deal than in the current deal.
One example instance of a TOD problem is the Delivery
Problem where a set of letters must be delivered by a set
of mail-carriers. Each mail-carrier is initially responsible for
the delivery of a subset of letters. Each mail-carrier then
trades letters with others in order to decrease the length of
the route needed to make all his deliveries.

A multiagent search problem can be reduced to a TOD

problem by choosing the appropriate mapping. Each task
becomes a state variable whose value is the agent that is
assigned to carry out that task. The global state then be-
comes S = {s1, s2, . . . , s|T |} where st corresponds to task t.
Since all tasks can be handled by all agents, we have that
mi = di = S for all agents. The value of vi will depend on
the particular solution algorithm used. That is, the TOD
formulation does not specify how much the agents know
about the current task assignments. If the agents know who
is responsible for every task then vi = S, otherwise it might
be that vi changes dynamically. Finally, the agents’ limita-
tions in the changes each one can make to the global state
are captured by p(S, S′) which is 1 when ∀i∈Aci(S

′) ≥ ci(S)
where ci(S) is the cost that agent i incurs in global state S
(by handling all the tasks assigned to it in that state). The
S and S′ are also limited to differ by the value of only one
variable because only one task can be transferred between
agents at each step.

Different instances of TOD problems may have different cost
functions, as well as different restrictions on the types of
interactions the agents can engage in. These restrictions
are represented by different p functions. The designer of
a multiagent system for a TOD problem must design the
interaction protocols such that the best possible global state
is reached in the shortest amount of time. Although we do
not believe that there exists a general approach which will
solve all TOD problems optimally, we show in Section 3
how teaming can improve the quality of the solution found
in TOD multiagent search problems.

2.2 NK Landscapes
Kauffman’s NK landscapes [3], originally intended for the
study of evolution’s search over gene instances, may also be
considered a special case of our multiagent search formal-
ization. An NK landscape consists of N binary “genes”.
The fitness of each gene depends on its state (zero or one)
and the state of K other genes. An instantiation of an NK
landscape sets N and K to integer values, where K < N ,
and randomly assigns to each gene a fitness function that
depends on the state of the gene and the state of K other
genes. An NK model can be reduced to multiagent search
by setting mi = {si}, di = si ∪ {K other state variables},
vi = di, and p(S, S′) = 1.

This reduction is especially interesting because it allows us
to leverage research on the characterization of NK land-
scapes and the effectiveness of genetic searches over this
space. That is, even though multiagent problems are dif-
ferent from NK landscapes, we can try to map some of the
theorems and results in that domain to the more complex
multiagent search domains.

2.3 Distributed Constraint Satisfaction
A distributed constraint satisfaction problem, as presented
in [10], is defined as a set of n variables x1, . . . , xn, where
the value of xi is taken from some domain Di, and a set
of constraints pk(xk1 , . . . , xkj ) that operate over these vari-
ables. The constraints are boolean functions that must eval-
uate to true for the problem to be solved. Under a typical
distributed algorithm, each agent in the system is assigned
one variable. The agent is then responsible for setting its
variable to a value that does not violate any constraints.



A straight-forward mapping of this problem to our multi-
agent search framework is possible. We simply map each
variable xi to one of our local variables si. Each agent i is
assigned one of the variables so that mi = si. Each agent
i’s utility depends on the set of all variables that share a
constraint with i’s variable. That is, di is the set of all
variables for which there exists a constraint between that
variable and si. Similarly, agent i can either view the state
of all variables (vi = S) or be limited to those variables that
share a constraint with its variable (vi = si). Finally, we
define ui to be one when all the constraints that involve si

are satisfied and zero otherwise.

By translating a distributed constraint satisfaction problem
into a multiagent search problem we are implicitly assum-
ing that solutions which violate fewer constraints are better.
However, in a strict interpretation of distributed constraint
satisfaction all solutions that violate any number of con-
straints are equally undesirable.

Finally, we point out that the use of cooperation for solving
constraint satisfaction problems has been found to be suc-
cessful [1], although under a different model than the one
used here. Those results are in accordance to the results we
present for the TOD in Section 3. However, more research
is needed in order to bring the two results together under
the multiagent search umbrella.

2.4 Coalition Formation
Coalition formation search can also be considered an in-
stance of multiagent search. This should not be a surprise
since it has already been shown [7] that coalition formation
and task allocation are related problem domains. The reduc-
tion is achieved by assigning an agent to each state variable.
The domain of the state variables is a number between 1 and
n, the number of agents. It represents the coalition that this
agent belongs to. We then define mi = si, di = A, vi = A,
and p(S, S′) = 1 for all agents i and states S and S′.

3. TEAMING AND MULTIAGENT SEARCH
IN A TOD

Common techniques to speed up multiagent search in task-
oriented domains include communication, delegation (e.g.,
using contract-net [8]), and the use of auctions [9]. These
and other grouping methods align an agent’s desires with
those of a larger team. However, we do not have any a priori
evidence to make us believe that teaming will lead to better
solutions for the system as a whole. Namely, we do not know
whether the best solution, from a global perspective, will
be found by selfish agents, by selfless agents, or by agents
somewhere in between.

In this section we instantiate our multiagent search formal-
ism in a task-oriented domain an perform a series of exper-
iments that demonstrate the inherent benefits of teaming
and that determine the situations in which selfless behavior
is better from a global perspective.

3.1 TOD Problem Specification
We set out to study the benefits of cooperation in a TOD
problem, as described in Section 2.1, by randomly grouping
agents into teams. The teams are non-overlapping and of a

fixed and equal size. The team sizes vary from individual
teams where each agent is a team to the grand team where
all agents belong to the same team. Agents in a team take
actions that maximize the team’s utility. We define team(i)
to be the set of agents in i’s team, including i. We then
define the utility that agent i receives in global state S as

teamUtil(i, S) =
1

|team(i)|
∑

j∈team(i)

uj(S). (1)

Finally, we also vary the number of tasks that each agent can
do. In the standard TOD problem specification all agents
are able to do all the tasks. A common variation is to al-
low agents the ability to perform only a subset of the tasks.
This variation simulates problem domains with heteroge-
neous agents where some tasks can only be done by some
agents. We limit the set of tasks an agent can do by modify-
ing mi. At one extreme every task can be done by only one
agent, in which case the task allocation problem is trivial.
At the other extreme all the agents are able to do all the
tasks thereby expanding the size of the search space. As
such, it is very time-consuming to find an optimal solution
for this case.

3.2 Search Algorithm
In order to determine the effectiveness of team formation
in TOD we developed a simulator that searches the space
of possible states S. Figure 1 shows the main loop of our
search algorithm. For each run we randomly generate a new
cost function and new starting state. Each step in a run
consists of first randomly selecting one agent. This agent
then determines which is the best action it can take. The
available actions to the agent are to either give one of its
tasks to another agent or to take one task from another
agent. The agent will consider all possibilities and choose
the one with the highest team utility for the agent’s team.
Also, an agent can only give a task to or take a task from
another agent if that agent’s utility loss is no greater than
the maximum loss L, a parameter which we vary from zero,
for purely selfish agents, to one, for agents that are willing to
take whatever deal is offered to them. That is, if the system
is on state S then agent i will only accept a new state S′ if
willingToDo(i, S, S′) is true, which we define as

willingToDo(i, S, S′) = teamUtil(i, S)−teamUtil(i, S′) ≥ L.
(2)

Agents with a maximum loss of zero (L = 0) are not willing
to accept any deal where their new team utility is less than
their current team utility. These are the rational agents from
[5]. On the other hand, agents with a maximum loss of one
(L = 1) are willing to take whatever deal the other agent
offers since the maximum utility loss can never be more than
one. These agents could be said to be completely selfless.

3.3 Random Landscape Shared Cost Function
Results

For the first set of tests we defined one cost function to be
shared by all the agents. The cost for doing every task sub-
set is set to be a random value between zero and one. This
means that the costs functions are neither additive nor sub-
additve. The lack of correlation among the costs of similar
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Figure 2: Results for 16 agents and 32 tasks when all agents share the same cost function.

task subsets makes it harder to search this space than if
they were correlated. Section 3.4 shows the results when
each agent has its own cost function.

Our first experiments involve 16 agents and 32 tasks. For
each experiment we changed the number of tasks that each
agent can do. Within each experiment we varied the max-
imum loss parameter (L), as well as the number of teams
allowed. These varied from one grand team—everyone on
the same team—to 32 individual teams—every agent is in
a team by itself. For each combination we executed 1000
runs, each of 500 steps, and plotted the average total cost
of the last five states searched. We used numbers of teams
that are powers of two so that all teams would be of the
same size. We noticed that after 500 steps the cost of the
states being visited had usually stabilized so we chose 500 as
a suitable number of steps to carry out before stopping the
algorithm. The way we have defined our search algorithm
it can often keep searching forever, never getting stuck at a
local optimum. As such, we had to stop it at some arbitrary
point and check the utility of the solution it had found.

The results of our first tests can be seen in Figure 2. It shows
the average final total cost for various tests. For each test
we ran various populations each with a different maximum
loss which is represented with the letter “L” in the figures.

The total cost is simply the sum of the costs for all agents.
An agent’s cost for a particular state is equal the negative
of its utility for that state. Figure 3 displays the standard
deviation for one of these results, showing that our results
are statistically significant. The error bars do not overlap
for many of the cases.

Notice how all the curves in the various graphs on Figure 2
have the same value for the case where there is only one
team, regardless of the value of L. This is to be expected.
Upon examination of our algorithm we notice that an agent
that is chosen to act will only pick an S′ which has a higher
teamUtil than the current state S. As such, it does not
matter if the other agent is willing to allow a new state with
lower utility since, as both agents are on the same team,
the lower utility state will not be chosen by the first agent.
The agent will rather stay at S than move to an S′ with
lower teamUtil. In other words, when all the agents are on
the same team the algorithm degenerates into hill-climbing
on the global search space. That is, the total cost of S′ is
always greater than or equal to the total cost of S regardless
of L.

The first interesting feature of Figure 2 is the fact that the
minimum cost, no matter how many teams are used or how
many tasks the agents can do, is always attained by using



S ← Randomly chosen state
for step = 1 to 500 do

maxUtility ← −∞
maxState ← S
i← chooseRandom(A)
for t ∈ T do

if st = i then // i is doing t
for j ∈ A− {i} do

S′ ← S
s′t ← i
if t ∈ mj ∧ willingToDo(j, S, S′) then

tmp ← teamUtil(i, S′) - teamUtil(i, S)
if tmp > maxUtility then

maxUtility ← tmp
maxState ← S′

end if
end if

end for
else // i not doing t

if st = i then // i could do t
j ← argj∈A sj = t // j is doing t

S′ ← S
s′i ← t}
if willingToDo(j, S, S′) then

tmp ← teamUtil(i, S′) - teamUtil(i, S)
if tmp > maxUtility then

maxUtility ← tmp
maxState ← S′

end if
end if

end if
end if

end for
S ← maxState // Move to best state.

end for

Figure 1: The main loop in our TOD search simu-
lations.

a maximum loss value of between .4 and .6. That is, if the
agents are either completely selfish (L = 0) either as an in-
dividual or as a group, or completely selfless (L = 1), the
group as a whole does not do as well as if the agents are
somewhere in between, regardless of the number of teams
or abilities of the agents. The most interesting result comes
from the fact that the selfish agents (L = 0) do the worst
of all regardless of the number of teams in almost all cases.
This is highly counter-intuitive. One excepts that since self-
ishness prevents the agent’s team utility from ever going
down and the global utility is nothing more than the sum of
these team utilities, that the team search would be guaran-
teed to proceed monotonically down in the cost and, there-
fore, more likely to reach a lower cost for all. However, it
seems that allowing the team search to sometimes go up in
cost also allows the discovery of even better solutions. On
the other hand, if we allow these moves to be too severe, as
happens when L = 1, then the gains from the extra explo-
ration are lost. Once explained in this way, one immediately
recognizes that this is similar to simulated annealing, except
that the moves there are completely random. We therefore
conclude that partial team-selflessness in multiagent search
provides it with some of the benefits of “temperature” in a
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Figure 3: Standard deviation error plot for one case
with 16 agents and 32 tasks. The error bars repre-
sent on standard deviation.

simulated annealing algorithm, thereby lowering the cost of
the final solution.

The second interesting feature of Figure 2 is that it seems
like there is no easy way to predict which combination of
teams and L values will achieve the minimum total cost.
In general it seems like the minimum cost is usually found
when using somewhere between two and eight teams. How-
ever, this is a large range and we would like a more specific
prediction. Fortunately, in [4], Kauffman et. al. have stud-
ied a similar problem in NK landscapes and found a possible
predictor for that domain. Since, as we have shown in Sec-
tion 2.2, NK landscapes can also be considered an instance
of multiagent search we have reason to believe that their
results might bear some relevance to ours.

Their experiments consist of agents in a 2-dimensional NK
landscape, each agent connected to its four nearest neigh-
bors. The area is divided into square patches. Each agent
decides whether to flip its state based on the utility that its
patch will receive. After carrying out a series of experiments
in this domain Kauffman et. al. found that the optimal so-
lution is found when the patch size is such that the system’s
dynamics are between the ordered and the chaotic regimes.
That is, large patches make the system quickly converge to
a solution state; small patches lead the system into chaotic
dynamics where the state is constantly changing. These two
diametrically opposite dynamics are also present in our sys-
tem as we vary the number of teams from 1 to 32. We, there-
fore, started to suspect that the same phenomena should be
present in some way in our domain. Neither we nor [4] can
offer a good explanation as to why better solutions are found
on systems whose dynamics are at the edge of chaos.

We can show that the best solution is found when the sys-
tem dynamics are at the edge of chaos by looking at the
percentage of runs that converged to a local optimum as a
function of the final cost for that run. Figure 4 shows such
data for one of the graphs in our first experiment. We notice
that, as the number of teams varies from 1 to 16, the sys-
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Figure 4: Final cost as a function of the percent-
age in the number of runs that converged to a fixed
point.

tems’ dynamics vary from static to chaotic, except for the
case where L = 0. These dynamics arise because when only
one team exists the system is simply doing a hill-climbing
search on the global cost landscape. On the other hand,
when each agent is its own team it is much more likely that
any one global state will not be a local optimum for one
of the agents. This agent, if chosen to act, will move that
global state away from the otherwise local optimum. As
such, it is hard for the system to ever converge to a local
optimum.

This result is extremely important because it suggests that
the best multiagent search algorithms, from a global util-
ity perspective, are those whose dynamics are at the edge
of chaos. Current research in multiagent systems’ protocols
centers around the idea of reaching an equilibrium where
each agent knows what to do and does not have any incen-
tive to change its allocation. This bias comes from the strong
influence of game theory and economics on multiagent sys-
tems design. However, there are cases where an equilibrium
solution will not find the best solution. In fact, as we have
shown, in this task-oriented domain the equilibrium solution
is guaranteed to be inferior.

It is also interesting to note that our results diverge from [4]
in the case where the maximum loss is 0, which would seem
to be the case that most closely matches their simulation
since their patches never cooperate with each other. That
is, their patches act like teams with L = 0. An agent in a
patch never surrenders some of its utility for the benefit of
an agent in another patch. However, their patches overlap so
that one agent can be part of two patches. We believe that it
is this overlap that changes their dynamics to act more like
our L > 0 cases. That is, overlapping team memberships
seems to have similar effects as selflessness.

A third interesting and encouraging feature of Figure 2 is
the fact that small teams of size one and two can do well,
if the maximum loss is adequately chosen. Specifically, the
maximum loss needs to be about .4 for this scenario. This

result is encouraging because it is these smaller team sizes
which more faithfully replicate the physical constraints of
most multiagent systems. In many multiagent systems there
is little to no communication among agents. In the domain
we are simulating, an agent needs to know the state of all
the other agents in its team in order to calculate the util-
ity of the team. Therefore, the larger the team the more
communication that will be necessary. We conclude that, in
general, we should be able to construct effective multiagent
systems with small teams and low communications overhead
if we allow these teams to act somewhat selflessly.

Similarly, another encouraging feature from Figure 2 may be
discerned by drawing on each graph a horizontal line that
crosses the point that all curves intersect when the number
of teams is zero. Any points that fall below this line are cases
where breaking the system into smaller teams actually re-
sults in a lowering of the final cost. That is, these are all the
cases where subdividing the problem helps the system find a
better solution (even without taking into account the added
benefits that might accrue from the reduced inter-agent com-
munication). Subdividing the problem clearly helps in the
majority of cases. The graphs also show that as agents are
able to do more and more tasks the number of points be-
low this line decreases. That is, as the agents become more
homogeneous in their abilities to carry out certain tasks the
benefits of teaming are reduced. This result has direct im-
plications to the design of multiagent systems.

A fourth feature of Figure 2, one that is related to the pre-
vious one, is the fact that the curves with L = 1 show better
values for the cases where the agents are able to do fewer
tasks. That is, acting selflessly (L = 1) helps the system
reach a better solution when the agents are heterogeneous.
It is not clear to us why this happens. One can hypothe-
size that when the agents can only achieve a limited number
of tasks then there are fewer agents that can do each task.
That is, if an agent that can do a task is willing to do it even
if it means its team will get lower utility then the system as a
whole will be able to move to another new state. Otherwise,
if the agents are not willing to take a task then the system
is much more likely to get stuck early in the search. Simi-
larly, when the agents can do many tasks then we have many
agents that can do any one of the tasks. As such, even if
one agent is unwilling to take on some particular task there
is a good chance that another agent will be willing to do so.
The search would then move to another state.

A fifth feature of note is the fact that very often the L = 0
and L = 1 curves are the worst performing. This indicates
that neither extreme is ever the best choice for a system.
That is, agents should never be completely selfish or com-
pletely selfless. Some degree of local responsibility and coop-
eration are needed in order to arrive at a good system-wide
solution.

Finally, in order to make sure that these results remain the
same as we increase the number of agents we carried out the
same experiments but using 32 agents and 64 tasks. Figure 5
shows how similar those results are to the one we just found.
Of course, the time needed to carry out these experiments
was much longer so we were able to do only a few cases.
These and other experiments we have performed make it
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Figure 5: Results for 32 agents and 64 tasks.

clear that the insights we have gained from our initial ex-
periments are not an artifact of that particular setting but
are indeed a general phenomena which we expect to see for
a wide variety of agent and task instantiations.

3.4 Random Landscape Individual Cost Func-
tions Results

We repeated the tests from the previous sections but this
time giving each agent its own cost function. This change
has the effect of drastically increasing the size of the search
space the agents must search. Whereas before the only as-
pect of a state that figured in the calculation of the total
utility was the division of tasks into subsets, now we must
also consider the assignment of these subsets to particular
agents. The results from these experiments are shown in
Figure 6.

One difference that we notice from the previous experiments
is that the overall minimum is lower. This is a striking result
since the search space for this case is much bigger. However,
we believe that even thought the search space is bigger, the
search is helped by the fact that each agent has its own
cost function means that the effective branching factor is
larger. By this we mean that while the number of states that
can be reached from any one state remains the same (i.e.,
the branching factor) the number of different global utilities
that those states represent is much larger (i.e., the effective
branching factor). This means that the search algorithm has
more options with different cost from each state that it is in.
We believe that with more options available the algorithm
is more likely to find a lower cost state.

On the other hand, most of the features from the experi-
ments with a shared cost function remain unchanged. In
both cases the best solution seems to be found when the sys-
tems’ dynamics are at the edge of chaos; the benefits from
teaming are apparent in most of the cases; and the L = 0
and L = 1 graphs are often the worst performing. As such,
we must conclude that giving each agent its own randomly-
generated cost function does not have a significant impact
on the features we discussed and, therefore, the lessons we
learned still apply for this case.

4. CONCLUSION
We have studied the benefits of teaming and selflessness for
agents engaged in multiagent search in task allocation prob-
lem spaces with randomly generated cost functions. The
experimental results showed several interesting results. We
found that the best solution is usually attained with a max-
imum loss of between .4 and .6, that is, when the agents
act somewhat selflessly. These parameter values allow the
search to make more exploratory moves. These values seem
to have similar effects to the temperature parameter in sim-
ulated annealing. We found that an even better predictor
of the effectiveness of the multiagent search is the dynamics
of the agents’ behavior. Specifically, we found that the best
global solution is always found when the systems’ dynamics
lie between the ordered and chaotic regimes. That is, as we
vary the value of the parameters that represent the max-
imum loss, the number of teams, and the number of tasks
that agents can do, the systems dynamics vary from ordered,
where most of the runs quickly converge to some state, to
chaotic, where none of the runs seems to ever converge. The
best solutions were found for those cases where only a small
percentage of the runs converge. We also found that small
teams generally lead to better solutions and that teaming,
in general, improves the quality of the result. Finally, we
showed that neither complete selfishness nor selflessness are
the best solution in almost all cases.

These results are important for the design of multiagent sys-
tems. Specifically, our results on the dynamics of multiagent
systems seem to suggest that further research into multia-
gent coordination protocols should not concentrate on pro-
tocols that lead to a “clean” fixed solution but should in-
stead study open protocols whose interactions might never
end. Open-ended interaction protocols seem more likely to
enable the system arrive at a better global solution. Of
course, the computational and communications cost might
make this a sub-optimal solutions. The final tradeoff would
seem to be domain dependent.

Finally, we also hope that this article will establish a founda-
tion for the careful mathematical study of multiagent search
problems. As we have shown, these problems often appear
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Figure 6: Results for 16 agents and 32 tasks when each agent uses its own cost function.

under different names such as task allocation, constraint sat-
isfaction, and coalition formation. Our framework provides
a rigorous platform for the comparison of multiagent coordi-
nation techniques in all these domains. We believe there is
much to be gained by leveraging results from these disparate
areas, as we have done in this paper.
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