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ABSTRACT

We introduce the Generic Agent Architecture (GAA) along
with Biter—an implementation of our GAA for the RoboCup
domain. The GAA incorporates an elegant object-oriented
design meant to handle the type of activities typical for an
agent in a multiagent system. These activities include reac-
tive responses, long-term behaviors, and conversations with
other agents. We also show how small modifications in the
GAA implementation can lead to a subsumption agent or
to a BDI agent. Finally, we present our Biter implementa-
tion as a proof of concept and use it to illustrate the added
functionality that a user of the GAA must implement in a
specific domain in order to utilize our GAA.

1. INTRODUCTION

When building an agent that will be part of a multia-
gent system one is faced with a challenging set of obstacles.
The agent must be able to initiate and carry out conversa-
tions with other agents, to carry out long-term behaviors, to
take immediate actions when necessary, and to handle error
conditions such as missing messages or noisy input. Further-
more, the agent implementation should follow the standard
software engineering practices of data abstraction and speci-
fication. A good design allows one to easily distribute imple-
mentation responsibilities among developers and to quickly
add new functionalities at some later date.

For example, imagine that we are building a team of soft-
ware agents that will participate in a simulated soccer tour-
nament, such as the Robocup challenge. We decide to imple-
ment a coordination protocol which will sometimes require
the players to send and receive several messages in a row,
maintaining a conversation. Our players must also imple-
ment long-term behaviors, such as dribbling the ball and
finding an open teammate, which consist of several atomic
actions. Finally, we want an implementation that will make
it easy to add new functionality as we learn more about the
problem domain. This set of requirements is common to

USC CSCE TR-2002-011

Paul Buhler
College of Charleston
Computer Science Dept.
66 George Street
Charleston, SC 29424

pbuhler@cs.cofc.edu

many multiagent domains.

Faced with this set of requirements, it becomes clear that
an agent architecture is needed to structure the program-
ming task. We can choose from a number of agent architec-
tures. The subsumption architecture 7] and the Belief De-
sires Intentions (BDI) architecture [6] are among the most
popular.

The subsumption architecture is a reactive architecture
which, if implemented so as to faithfully follow the original
design, is completely reactive. That is, it does not main-
tain any state. It supports the use of many behaviors and
provides a way to specify how behaviors inhibit each other.
These inhibition relationships are used to determine which
behavior is executed at each time.

The BDI architecture provides a more complex control
mechanism. A BDI agent has a set of desires and a set of
plans associated with each desire. The agent also has a set
of beliefs which include everything it knows about the state
of the world and the agents in it, as well as the agent’s inter-
nal state. The BDI control mechanism then chooses which of
the plans to intend by first finding the current desires, then
the set of plans that satisfy these desires, and then choos-
ing one of them. Once a plan is intended the BDI control
mechanism has some rules to determine how long it will stay
intended. A few of the many BDI implementations include
the Procedural Reasoning System (PRS) [14], the Univer-
sity of Michigan PRS (UM-PRS) system [17], and dMARS
|10]. Each one implements different ways of choosing which
plan to execute, some use fixed priorities while others use
meta-reasoning or other methods.

These architectures provide us with a solid foundation
for building an agent. But, there are still several major
stumbling blocks that one faces when trying to implement
an agent, for a multiagent system, using an object-oriented
language.

1. We need a way to easily implement conversations and
long-term behaviors. BDI plans provide some support
for this but they are not explicit enough.

2. We need a detailed object-oriented design to guide
our implementation. Subsumption implementations
are usually hardware-based, while BDI implementa-
tions are usually based on logic and rule-based pro-
gramming |12, or implement a new language and its
interpreter—as done by UM-PRS. In general, it is very
hard for novices to translate the subsumption and BDI
descriptions given in textbooks (e.g., [25]) into a co-
herent object-oriented implementation.
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3. We need a structured way of dealing with error condi-
tions such as lost messages and lost sensor readings.

4. We might not wish to deal with the complexities of
a BDI control system, while a purely reactive system
might not be enough for our needs. Also, as our agent
matures the requirements might change. Therefore,
we need an architecture that can be modified to act
as purely reactive, purely goal-driven, or anywhere in
between.

In this article we will present our Generic Agent Archi-
tecture (GAA) which provides support for conversations,
long-term behaviors, and reactive behaviors, all in a mod-
ular way which separates behavior knowledge from control
knowledge. That is, it separates the code that tells the agent
how to do something, from the code that tells it when to ap-
ply each behavior. The GAA is meant as a general design
for those who are new to agent-oriented software engineer-
ing and who wish to implement their whole system from
scratch. Those who do not want to build their own system
can instead use one of the many existing agent systems (see
Section @

Section [2| gives a summary of the architecture. Section
shows how that GAA can be used to implement a subsump-
tion architecture, while Section @shows how to implement a
BDI architecture. Section[f]introduces Biter—an implemen-
tation of the GAA for the Robocup domain, and describes a
typical use of the GAA for a specific problem. Finally, Sec-
tion [6] presents some related work and Section [7] summarizes
our contribution.

2. THEGENERICAGENTARCHITECTURE

The GAA [24] provides a general design for building agents,
using an object-oriented language, which will participate in
a multiagent system. Specifically, the agents are assumed to
receive input from the environment at discrete intervals and
take discrete actions. That is, we envision an agent that
receives readings from its sensors and takes actions using
its effectors. This is a common way to model autonomous
agents [25, Chapter 1] and captures many agent applica-
tions. We also assume the environment is non-deterministic
and the agent can have near real-time requirements. For ex-
ample, the agent might be required to take an action within
a certain time window.

The GAA provides a mechanism for scheduling activities
each time the agent receives some form of input. The var-
ious input types are described in Section 2:I] An activity,
described in Section is defined as a set of actions to be
performed over time. The action chosen at any particular
time might depend on the state of the world and the agent’s
internal state. The two types of activities we have defined
are conversations and behaviors. Conversations are series of
messages exchanged between agents. Behaviors are actions
taken over a set of time steps. The ActivityManager, pre-
sented in Section determines which activity should be
called to handle any new input.

2.1 Input

An agent is propelled to act only after receiving some form
of input. That is, after the activity manager receives a new
object of the Input class. This class has three sub-classes:
SensorInput, Message, and Event. Their relationships are
shown by the UML [5] class diagram in Figure

A SensorInput is a set of inputs that come directly from
the agent’s sensor. We generally assume there exists a pars-
ing function that transforms the input from its original for-
mat into an object of this class. In most implementations
a class hierarchy should be created under this class in order
to differentiate between the various types of sensor inputs.

The Message class represents a message from another agent.
That is, we assume that the agent has an explicit commu-
nications channel with the other agents and the messages
it receives from them can be distinguished from other sen-
sor input. This is possible in almost all domains, but there
might be cases where it is not trivial to distinguish a message
from just a feature of the environment as, for example, if the
agents communicate by moving objects on a landscape. In
these cases the use of messages and, as a consequence, con-
versations is not recommended.

Finally, the Event class is a special form of input that
represents an event the agent itself created. Events are like
alarms set to go off at a certain time. They are important
because they provide a way to implement timeouts. Time-
outs are used when waiting for a reply to a message, when
waiting for some input to arrive, or when repeatedly taking
an action in the hope of generating some effect.

2.2 Activities

The Activity class represents our basic building block. A
GAA agent is defined by creating a number of activities and
letting the activity manager schedule them as needed. The
Activity class has three main member functions: canHandle,
handle, and inhibits. The relationships between activities
and the activity manager is shown by the UML class diagram
on Figure[2]

The canHandle member function receives an input object
as an argument and returns true if the activity can handle
the input, that is, if it can execute as a consequence of re-
ceiving that input. This function could not only consider
the contents of the input, but it could also consider the
agent’s current internal state, or the agent’s world model,
etc. Since this is a generic framework, we do not constrain
the canHandle function to only access a certain subset of the
available data. That decision is left to the software engineer
who wants to refine our architecture. The only requirement
we make is for the function to be speedy since it will need
to be called after each new input has arrived.

The handle member function is called when the activity
is chosen to handle that input. It gets called when the ac-
tivity manager wants it execute with the given input. This
function usually generates one or more atomic actions, sets
some member variables, and returns. A call to the han-
dle function executes the next step in the activity, the step
that corresponds to the received input. The function can
set member variables as a way to maintain a state between
successive invocations. This state allows the activity to im-
plement multi-step plans and other complex long-term be-
haviors. The handle function will return true when the ac-
tivity is done, at which point it will be deleted. We expect
that most agents will have a set of persistent activities that
are never be done.

Finally, the inhibits member function receives an Activity
object as a parameter and returns true if that activity is
inhibited by the current one. This function implements the
control knowledge which the activity manager will use to de-
termine which activity to execute. The use of this function
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Figure 1: UML class diagram of the Input hierarchy.

mirrors the use of subsuming behaviors in the subsumption
architecture. However, the function can also consult state
variables in order to calculate its value, thereby extending
the functionality. Since the activities are organized in a hi-
erarchy, this function is able to easily inhibit whole subtrees
of that hierarchy. This would allow us to add new activities
without having to modify all existing ones.

A significant advantage of representing each activity by its
own class, and with the required member functions, is that
we enforce a clear separation between the behavior knowl-
edge and the control knowledge. That is, the handle func-
tion implements the knowledge about how to accomplish
certain tasks or goals. The canHandle function tells us un-
der which conditions this activity represents a suitable solu-
tion. Meanwhile the inhibits function incorporates some
control knowledge that tells us when this activity should be
executed. This separation is a necessary requirement of a
modular and easy to expand agent architecture.

2.2.1 Behavior

The Behavior class is an abstract class that groups all
long-term behaviors of the agent. We define these behaviors
as series of atomic actions. For example, a robotic behavior
might be to “avoid obstacles”, while a software agent might
have a “gather data from sources” behavior. Behaviors can,
like all activities, create new activities and add them to the
set of activities.

We expect that users will define their own behavior hierar-
chy under this class, starting with a general class and defin-
ing progressively more specialized behaviors. The general
behavior class will typically include a few utility functions
that have proven useful for the particular problem domain.
The subclasses of this class will serve as a way of grouping
similar behaviors. For example, in the robotic soccer domain
we might have a general abstract “soccer” behavior, followed

by a “dribble” behavior, followed by a “dribble when near
an opponent” behavior. The “soccer” behavior would im-
plement the utility functions, while the “dribble” behavior
would implement an actual physical behavior which “dribble
when near an opponent” specializes.

2.2.2 Conversation

The Conversation class is an abstract class that serves as
the base class for all the agent’s conversations. We define
a conversation as a set of messages sent between the agent
and other agents for the purpose of achieving some goal,
e.g, the purchase of an item, the delegation of a task, etc. A
GAA implementation defines its own set of conversations as
classes that inherit from the general Conversation class. For
example, if an agent wanted to use the contract-net protocol,
it would implement a contract-net class that inherits from
Conversation.

Conversations implement protocols. Most protocols can
be represented with a finite state machine where the states
represent the current status of the conversation and the
edges represent the messages sent between agents (see [21]
for specific proposal that extends UML to cover agent con-
versations). In some protocols each agent will play one of
the available “roles”. For example, in the contract-net pro-
tocol agents can play the role of contractor or contractee.
The conversations will, therefore, implement a finite state
machine.

Multiple conversations can be handled by having the ex-
isting conversation add a new one to the set of activities. For
example, if a message that starts a new conversation (e.g., a
request-for-bids) is received by an agent the canHandle func-
tion of the appropriate conversation will return true even if
the conversation is already busy, that is, even if it is not
in its starting state. When the handle function is called
with the new message the conversation will recognize that
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Figure 2: UML class diagram of the activities and activity manager.

its busy and create a new conversation, add it to the action
manager, call the new conversation’s handle method with
the new input, and return. In this way, a new conversation
object is created to handle the new message. Behaviors can
use the same method to initialize a conversation. For exam-
ple, a “move to point” behavior might realize that another
agent is blocking the path and start a conversation with that
agent in an effort to convince it to move out of the way.

Allowing all activities to create new activities can lead to
some unfortunate situations. For example, an agent might
generate two contract-net conversations which end up com-
promising the agent to do two tasks at the same time. This
type of problem arises because the various activities are as-
suming they have a resource, such as the agent’s time, avail-
able to them. The standard solution to this problem is for
the activities to reserve or lock the resource, so that others
cannot use it.

Another way to control the number and type of conversa-
tions that are active at any time is by using a conversation
factory |13 Factory Method]. With this method a conver-
sation asks the factory to create a new conversation, giving
it the needed parameters such as role, initial message, etc.
The factory can then decide what type of conversation to
create and whether or not the proposed new conversation
will interfere with an ongoing conversation. If there is a
problem, the factory can refuse to create a new instance.

The agent conversations also need to be fault tolerant.
They need to function well in the presence of errors. These
errors can take many forms: a message lost by the transmis-
sion medium, an agent that stops functioning, a malicious
or malfunctioning agent that sends too many messages or
fails to reply, a message that takes too long to arrive, etc.
In an agent that implements many conversations, we do not
want to have to implement the error handling logic in each

one of them. One proposed solution to this problem is the
creation of exception handling agents that monitor the net-
work and the agents’ conversations [9]. Our solution is to
provide all agents with a simple exception handling code
that all conversations can use.

Specifically, all the errors mentioned above manifest them-
selves as either a failure to receive a message or the receipt
of too many messages. Under the GAA, whenever a con-
versation sends a message for which it expects a reply from
another agent it also creates a special event which it adds
to the priority queue. When the reply arrives the agent re-
moves the event. However, if the reply takes longer than the
time specified in the event then the conversation will receive
the event before any reply. The receipt of this event indi-
cates to the conversation that it has timed-out on waiting
for the reply.

The received timeout event signifies that there could be
any number of problems: the reply message could have been
lost in transit, the agent could have died, or the agent could
be refusing to answer. Depending on the particular system,
it might be possible to differentiate between these situations.
For example, in a networked environment we could keep
track of the network load and deduce the probability that
the packet was lost, or in a closed system we could inquire
as to whether or not a particular agent is still active or has
been certified as a member of the system.

Of course, we do not want each conversation to re-implement
such error handling and verification code. Instead we can
define a handleError function in the Conversation class and
place the error handling code there. Whenever a conversa-
tion times out on a reply it simply calls this function which
will instruct it on what to do next, such as re-sending the
message or aborting the conversation.

The arrival of unexpected messages can also be consid-



pq = new PriorityQueue of Event
loop
while (next = pg.top().time) < current time do
handle(next)
end while
input = get data from sensors
handle(input)
end loop

Figure 3: ActivityManger.run()

ered an error. For example, a rogue agent might be sending
a lot of messages in the hopes of overwhelming other agent,
a situation specifically relevant to open systems. Therefore,
we suggest that the creation of new conversations be mon-
itored with calls to the error handling function. That is, if
the activities spawn new conversations by themselves, they
should only do so if a call to handleError determines that
this is safe. On the other hand, if a factory produces the
new conversations then it is the factory’s responsibility to
call the error handling function. In either case, the error
handling function can keep a list of the agents that have re-
quested new conversations and block any agents that seem
to be abusing the system.

2.3 Activity Manager

The ActivityManager picks one of the activities to exe-
cute for each input the agent receives. It implements the
agent’s control loop. The manager runs in its own thread,
where it receives input from the sensors and dispatches it to
the appropriate activity. The run method of the manager
in shown in Figure [3]

Most of the work, however, is done by the handle function,
shown in Figure [d] which determine which of the activities
will actually handle the input. The algorithm it implements
echoes the type of control mechanism implemented by sub-
sumption and BDI architectures. The function first finds
all activities that can handle the input, from this group it
chooses one which is not inhibited by any other one in the
group and asks it to handle the input. Since the inhibition
function can be arbitrarily defined by its activity, the or-
dering becomes very flexible. That is, the user of the GAA
has options ranging from no organization (no activity in-
hibits any other activity), to a static organization (activities
inhibit a fixed type of activities), to a dynamic organiza-
tion (activities inhibit based on many other factors). As an
agent matures, the user can choose to increase the organiza-
tional complexity without re-implementing the architecture.
Multi-step activities must make sure they implement their
canHandle functions so as to enable them to be selected on
successive time steps.

Each agent that implements a GAA needs to instantiate
one copy an activity manager object. The agent then adds
the desired activities to this object. These are the activities
that define its overall behavior. It then calls the run method
on the activity manager in order to start it running. At
this point the manager takes complete control and enter its
infinite loop, choosing which behavior to execute every time.
A user of the GAA architecture should not need to modify
the manager. All the control knowledge is stored in the
canHandle and inhibits methods of the activities the user
must define.

input = the new input
activities = set of all activities
matches = new Vector()
for all i in activities do
if i.canHandle(input) then
matches.addElement(7)
end if
end for
uninhibited = new Vector()
for all 7 in matches do
inhibited = false
for all j # i in matches do
if j.inhibits(a) then
inhibited = true
end if
if not inhibited then
uninhibited.addElement(i)
end if
end for
end for
chosen = pick randomly from uninhibited
if chosen.handle() then
removeActivity(chosen)
end if

Figure 4: ActivityManager.handle(Input input)

3. THEGAAAS ASUBSUMPTION ARCHI-
TECTURE

The GAA, while object-oriented and modular, can be
made to function as a pure subsumption architecture [7]
without any changes to the design, only requiring the user to
be careful when defining activities. The GAA already imple-
ments a subsumption mechanism via the use of the inhibits
function, so we only need to make sure that the agent does
not maintain a state. Since the architecture is not responsi-
ble for the implementation of the actual activities, it is the
user’s responsibility to make sure that none of the activities
maintains any state variables that keep their values across
successive invocations. Also, the inhibits function should
make its decisions based solely on the type of other activity.
In this way, we arrive at a function that is equivalent to the
one use in subsumption architectures.

4. THE GAA AS A BDI ARCHITECTURE

The GAA can also function as a BDI architecture, once
some simple extensions are made to the basic architecture.
Specifically, a desires container class is needed to hold the set
of active desires for the agent. This class should implement
access functions to carry out basic tasks such as adding a
new desire, removing a desire, and determining if a given
desire is active. The agent should have a reference to this
class.

Once a desire container has been implemented, the user
of the GAA must make sure that the canHandle method of
each activity returns true only if the goal that the activity
achieves is part of the set of active desires. Also, once the
activity achieves the desire, it is responsible for removing it
before returning. That is, each activity is associated with
a desire, and the activity itself is responsible for firing only
when that desire is active and for removing the desire once



it has been achieved.

The GAA architecture does not impose any intention se-
mantics. There exist many BDI logics with various intention
semantics, and there exist many BDI-based systems each of
which implements different methods for determining when
an intention should be dropped and when a new intention
should take priority. The GAA does not claim to imple-
ment any such method. It is up to the user to decide which
method is best for his application and to implement it. For
example, a user might decide to associate a priority num-
ber with each desire/goal and then modify the inhibits
methods of his activities so that activities inhibit each other
based on the priority of the goal they achieve. For example,
an activity can inhibit all other activities that achieve goals
of lower priority.

5. BITER: AN IMPLEMENTATION OF A
GAA FOR ROBOCUP

The goal of the RoboCup initiative is to spur fundamen-
tal research in the areas of AI and intelligent Robotics, by
providing a standard problem of both sufficient complexity,
and near universal familiarity. This goal is met with the
game of soccer, which is played worldwide. The success of
RoboCup in achieving its goal can be inferred by the growing
participation at the RoboCup world championship compe-
tition. These RoboCup competitions are partitioned into
several leagues. These leagues include legged, medium and
small robots, and one for software simulation. The Biter
framework was designed as a GAA implementation of a soc-
cer player for the simulation league, to be used as part of a
graduate University course in multiagent systems.

The RoboCup simulation league allows teams, composed
of software agents, to compete in head-to-head competition.
The architecture of the simulation league consists of a cen-
tralized server, a monitor application, and individual agents,
which are the players of the game. The server manages game
play and provides sensory input to the players via a mes-
saging service built on UDP communications. This sensory
input consists of messages that contain visual information,
auditory information, and information from the referee. In
response to this sensory stimulus from the simulated field
of play, a player takes action through a message-based set
of effectors that notify the server of the player’s activity. A
player can indicate that it is kicking the ball, dashing on the
field, and shouting information to other players. A detailed
description of the RoboCup simulation league architecture
and messaging protocol can be found in the Soccerserver
Manual [11].

The field of multiagent systems traces its historical roots
to a broad array of specialties and disciplines in the fields
of Al logics, cognitive and social sciences, among others.
Within the academic setting, pedagogical approaches are
needed that provide opportunities for students to perform
meaningful experimentation through which they can learn
many of the guiding principles of multiagent systems de-
velopment. The Biter framework was designed to enable a
project-based curricular component that facilitates the use
of RoboCup within the classroom setting. Since Biter is an
instantiation of the GAA, it allows students to explore both
strong and weak notions of agency|[26]|. Biter also provides
a number of low-level ball handling skills as well as higher-
level skill based behaviors. Additionally, many functional

utility methods are provided which allow students to focus
more directly on planning activities. Biter is written in Java
2. The primary features of the language leveraged by the
Biter code are a native support for multiple threads, a built-
in network communications capability, and a 2-dimensional
graphics library.

5.1 Biter's World Model

Any implementation of the GAA will need a way to rep-
resent the objects in that agent’s world. Since the type of
objects vary greatly from domain to domain, the GAA can-
not specify how they should be represented. In the RoboCup
domain, for example, it has become clear that agents need
to build a world model [23].

This world model should contain slots for both static and
dynamic objects. Static objects have a field placement that
does not change during the course of a game. Static objects
include flags, lines, and the goals. In contrast, dynamic ob-
jects move about the field during the game. They represent
the players and the ball. A player receives sensory input,
relative to his current position, consisting of vectors that
point to the static and dynamic objects in his field of view.
Since static objects have fixed locations, they are impor-
tant in calculating a player’s absolute position on the field
of play. If a player knows his absolute location, the relative
positions of the dynamic objects in the sensory input, can
be transformed into absolute locations.

The Biter framework provides a world model that contains
both static and dynamic objects. Static objects are held
within a HashMap data structure, while dynamic objects
are stored in an ArrayList. Both HashMap and ArrayList
are provided as part of the Java 2 collection classes. The
following sections will further describe the implementation
of Biter’s world model.

5.1.1 World Model Update

As previously mentioned, Biter was designed to provide
a framework for student exploration with the theory and
techniques of multiagent systems. Due to this considera-
tion, Biter’s world model needs to support the both state
and stateless agent architectures. At first blush, it seemed
difficult to resolve these conflicting goals within a unified
framework; however, when one realizes that a stateless agent
simply implies that it maintains no state history, a straight-
forward implementation becomes obvious. As sensory infor-
mation, about dynamic objects, is placed into Biter’s world
model it is time stamped. Biter implements a command-line
argument which indicates the maximum age of world model
data. If world model information is not allowed to age, it
is discarded from the player’s memory during each update
cycle. Additionally, this timestamp allows for the easy de-
tection of stale data within the world model. Stale data is
defined to be a world model element that was reported at
some time in the past, but has not been updated in subse-
quent cycles. When stale world model elements surpass the
age threshold they are removed. By allowing the specifica-
tion of this threshold at run-time, students can experiment
with this parameter and see how it impacts the behavior of
their player.

5.1.2 World Model Access

Access to world model data should be simple; however,
approaching this extraction problem too simplistically leads



to undesirable cluttering of code. This code obfuscation oc-
curs with access strategies that litter loop and test logic
within every routine that accesses the world model. Biter
utilizes a decorator pattern [13] which is used to augment
the capabilities of Java’s ArrayList iterator. The underlying
technique used is that of a filtering iterator. This filtering it-
erator traverses another iterator, only returning objects that
satisfy a given criteria 3, pp. 162-164]. Biter utilizes reg-
ular expressions for the selection criteria. For example, de-
pending on proximity, the soccer ball’s identity is sometimes
reported as "ball’ and other times as 'Ball’. If our processing
algorithm calls for the retrieval of the soccer ball from the
world model, we would initialize the filtering iterator with
the criteria [bBJall to reliably locate the object. Since the
filtering criterion is regular expression based, we are able
to construct powerful extraction routines without incurring
the complexity of coding error-prone compound condition-
als. For example, the algorithm for computing the player’s
absolute field position requires access to the flag and goal
objects in the sensory input. Specifying the filtering criteria
as ([fF]lag—[gGJoal).+ creates an iterator that only returns
the desired elements. Accessing the world model elements,
with the aid of a filtering iterator, has helped to reduce the
overall complexity of student-authored code. Simplification
of the interface between the student’s code and the world
model, allows students to focus more directly on building
behavior selection and planning algorithms.

5.1.3 World Model Display

Although access to the world model has been streamlined,
creating more concise and algorithm-revealing code, it re-
mains difficult to fully understand the behavior of the play-
ers. At times it seems the only way to understand moments
of unexplainable behavior is to have access to the players
world model. Dumping the contents of the world model to
a file for later interpretation is unnecessarily complex and
unwieldy. To attack this problem, Biter provides a run-
time visual display of a player’s internal view of his environ-
ment. The Java language, having built in windowing rou-
tines and 2-dimensional graphics primitives, simplified the
development of this display capability. When a Biter agent
is started, a command-line parameter is used to enable the
graphical display of the world model. The display is served
by an independent thread and utilizes double buffering for
smooth animation. The overhead view of the field shows all
static objects and the dynamic objects currently found in
the player’s world model. Whenever stale elements are en-
countered, an algorithm is run which merges its display color
with the background color of the field. Visually, this has the
effect of having stale elements fade away as they age. The
graphical display of a player’s world model can be compared
to the soccer monitor’s display for purposes of independent
verification and validation of the player’s world model con-
tents. This powerful debugging feature has saved students
countless hours of fruitless troubleshooting and helps them
focus on other multiagent system implementation issues.

5.2 Experiences with Biter

Our University has taught a graduate level course in mul-
tiagent systems for several years. The RoboCup soccer sim-
ulation problem domain has been adopted for instructional,
project-based use for the past two semesters. During the
first semester, students spent the majority of their time writ-

ing support code that could act as scaffolding from which
they could build a team of player agents. Multiagent sys-
tems theory and practice took a back-seat to this required

foundational software construction. At the end of the semester,

teams competed, however the majority were reactive agents
due in part to the complexity of creating and maintaining a
world model. The Biter framework was an outgrowth from
this experience.

With Biter available for student use, the focus of team
development has been behavior selection and planning. The
GAA allows students to have hands-on experience with both
reactive and BDI architectures. Students are no longer fo-
cused on the development of low-level skills and behaviors,
but rather on applying the breadth and depth of their newly
acquired multiagent systems knowledge. Biter provides a
platform for flexible experimentation with various agent ar-
chitectures. The software, as well as full UML diagrams and
a Javadoc API, is available for download [1|. We are inter-
ested in receiving feedback from others who choose to use
Biter in an academic setting.

6. RELATED WORK

While there are many agent architectures in the litera-
ture, most of them implement a specific agent system. The
user of these systems is expected to download the provided
software and build his agents as extensions to the system.
Sometimes these architectures take the form of software li-
braries that the user can link to, such as JATLite[16] and
JAFMAS [8], other times they provide graphical user in-
terfaces which the user is expected to use for building his
agents, such as ZEUS [19]. As such, these agent architec-
tures provide a finished product which commits the user to
a specific structure, a specific language, and a specific set of
limitations. Our GAA, in contrast, is meant as a general de-
sign to be implemented by the user using any object-oriented
language he desires. Of course, our GAA borrows some of
the best ideas from all the existing agent systems and tries
to present them to the user in their simplest form.

The JADE agent framework [4], for example, implements
a FIPA-compliant agent system. Like the FIPA standards
|20], JADE focuses on providing inter-agent communication
services such as the Agent Management System and Direc-
tory Facilitator required by FIPA, as well as the code neces-
sary for interfacing with these services. Such communication
services are orthogonal to the functionality we provide with
the GAA. That is, it would be feasible to use them with
a GAA agent. However, JADE goes further and provides
a scheduler, akin to our ActivityManager, which schedules
behaviors. The JADE scheduler, however, only “carries out
a round-robin non-preemptive policy among all behaviors
available in the ready queue.” That is, it does not allow for
behaviors to inhibit each other and does not provide support
for more complex dynamic behavior selection. The JADE
system also does not provide explicit support for conversa-
tions.

These systems present just a sampling of the available
agent architectures, other systems include the Cougaar Cog-
nitive Agent Architecture [2], the Open Agent Architecture
|18], the ZEUS agent building toolkit [19], and the MadKit
platform |15], among many others. There are also many
commercial systems now available for the implementation
of agent systems, as analyzed in [22]. All these systems
provide complete solutions which, by necessity, commit the



user to a particular way of implementing communications
or, in some cases, of implementing the internal control flow
of the agents. They are useful for users that desire a quick
solution and whose needs closely match the features by the
software. The GAA, on the other hand, should be used by
those who wish to implement a complete agent, or who find
that none of the existing software solutions are satisfactory,
or who are not sure what type of control mechanism will be
best suited to the domain and want a flexible architecture
that will accommodate future changes in requirements.

7. SUMMARY

We have introduced our Generic Agent Architecture along
with Biter—an implementation of the GAA for the RoboCup
domain. The GAA incorporates an elegant object-oriented
design meant to handle the type of interactions that an agent
in a multiagent system can expect. The type of interactions
include reactive responses, long-term behaviors, and conver-
sations with other agents. We have also shown how the GAA
is generic enough so small modifications in its implementa-
tion can lead to a purely reactive agent or to a BDI agent.
The GAA is meant to be used by designers and researchers
who want to implement a complete agent and want the flexi-
bility of changing control semantics as the project progresses
while still maintaining a clean separation between behavior
and control knowledge. It is also useful as a didactic tool for
teaching multiagent systems design. Finally, our Biter im-
plementation serves as a proof of concept and illustrates the
added functionality that a user of the GAA must implement
for a specific domain.
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