
Proceedings of the First International Conference on Multi-Agent Systems, pages 125-132, 1995.

Recursive Agent Modeling Using Limited Rationality

José M. Vidal and Edmund H. Durfee∗

Artificial Intelligence Laboratory
University of Michigan

Ann Arbor, Michigan 48109-2122.
{jmvidal,durfee}@umich.edu

Abstract

We present an algorithm that an agent can use for
determining which of its nested, recursive models of
other agents are important to consider when choos-
ing an action. Pruning away less important models
allows an agent to take its “best” action in a timely
manner, given its knowledge, computational capabili-
ties, and time constraints. We describe a theoretical
framework, based on situations, for talking about re-
cursive agent models and the strategies and expected
strategies associated with them. This framework al-
lows us to rigorously define the gain of continuing de-
liberation versus taking action. The expected gain of
computational actions is used to guide the pruning
of the nested model structure. We have implemented
our approach on a canonical multi-agent problem, the
pursuit task, to illustrate how real-time, multi-agent
decision-making can be based on a principled, combi-
natorial model. Test results show a marked decrease
in deliberation time while maintaining a good perfor-
mance level.

Keywords: Algorithms for multi-agent interaction in
time-constrained systems; Conceptual and theoretical
foundations of multi-agent systems.

Introduction

A rational agent that can be impacted by other agents
will benefit if it can predict, with some degree of re-
liability, the likely actions of other agents. With such
predictions, the rational agent can choose its own ac-
tions more judiciously, and can maximize its expected
payoff in an interaction (or over a set of interactions).
To get such predictions, an agent could rely on com-
munication for explicit disclosure by other agents, or
on superficial patterns of actions taken by others, or
on deeper models of other agents’ state. While each
of these approaches has its merits, each also involves
some cost or risk: effective communication requires
careful decision-making about what to say, when to
say it, and whether to trust what is heard (Durfee,

∗ Supported, in part, by NSF grant IRI-9158473.

Gmytrasiewicz, & Rosenschein 1994) (Gmytrasiewicz
& Durfee 1993); relying on learned patterns of action
(Sen & Durfee 1994) risks jumping to incorrect ex-
pectations when environmental variations occur; and
using deeper models of other agents can be more ac-
curate but extremely time-consuming (Gmytrasiewicz
1992).

In this paper, we concentrate on coordinated
decision-making using deeper, nested models of agents.
Because these models allow an agent to fully represent
and use all of its available knowledge about itself and
others, the quality of its decision-making can be high.
As noted above, however, the costs of reasoning based
on recursive models can be prohibitive, since the mod-
els grow exponentially in size as the number of levels
increases. Our goal, therefore, has been to devise an
algorithm which can prune portions of the recursive
structure that can be safely ignored (that do not al-
ter an agent’s choice of action). We have done this by
incorporating limited rationality capabilities into the
Recursive Modeling Method (RMM). Our new algo-
rithm allows an agent to decrease its deliberation time
without trading off too much quality (expected payoff)
in its choice of action. Our contribution, therefore, is
to show how a principled approach to multi-agent rea-
soning such as RMM can be made practical, and to
demonstrate the practical mechanisms in a canonical
multi-agent decision-making problem.

We start by providing a short description of RMM
and the Pursuit task, on which we tested our algo-
rithm. Afterward we present situations as our way
of representing RMM hierarchies, and define their ex-
pected gain. These concepts form the basis of our algo-
rithm, shown in the Algorithm section, which expands
only those nodes with the highest expected gain. The
Implementation section presents the results of an im-
plementation of our algorithm, from which we derive
some conclusions and directions for further work, dis-
cussed in the Conclusion.

RMM and the Pursuit Task: The basic mod-
1

eling primitives we use are based on the Recursive
Modeling Method (RMM) (Gmytrasiewicz 1992;
Gmytrasiewicz, Durfee, & Wehe 1991; Durfee, Gmy-
trasiewicz, & Rosenschein 1994; Durfee, Lee, & Gmy-
trasiewicz 1993). RMM provides a theoretical frame-
work for representing and using the knowledge that
an agent has about its expected payoffs and those of
others. To use RMM, an agent is expected to have a
payoff matrix where each entry represents the payoffs
the agent expects to get given the combination of ac-
tions chosen by all the agents. Typically, each dimen-
sion of the matrix corresponds to one agent, and the
entries along it to all the actions that agent can take.
The agent can (but need not) recursively model others
as similarly having payoff matrices, and them model-
ing others the same way, and so on. . . . The recur-
sive modeling only ends when the agent has no deeper
knowledge. At this point, a Zero Knowledge (ZK)
strategy can attributed to the particular agent in ques-
tion, which basically says that, since there is no way
of knowing whether any of its actions are more likely
than others, all of the actions are equally probable. If
an agent does have reason to believe some actions are
more likely than others, this different probability dis-
tribution can be used. RMM provides a method for
propagating strategies from the leaf nodes to the root.
The strategy derived at the root node is what the agent
performing the reasoning should do.

For example, a simplified payoff matrix for the pur-
suit task is shown in Figure 3. An RMM hierarchy
would have such a matrix for one of the agents (say
P1) at the root. If that agent knows something about
how the other agents represent the situation (their pay-
offs), then it will model them in order to predict their
strategies, so it can generate its own strategy. If it
knows something about what the others know about
how agents model the situation, another nested layer
can be constructed. When it runs out of knowledge, it
can adopt the ZK strategy at those leaves, yielding a
hierarchy like that shown abstractly in Figure 1.

To evaluate our algorithm, we have automated the
construction of payoff matrices for the pursuit task,
in which four predators try to surround a prey which
moves randomly. The agents move simultaneously in a
two-dimensional square grid. They cannot occupy the
same square, and the game ends when all four preda-
tors have surrounded the prey on four sides (“cap-
ture”), when the prey is pushed against a wall so that
it cannot make any moves (“surround”) or when time
runs out (“escape”). The pursuit task has been in-
vestigated in Distributed AI (DAI) and many different
methods have been devised for solving it (Korf 1992)
(Stephens & Merx 1990) (Levy & Rosenschein 1992).

These either impose specific roles on the predators,
spend much time computing, or fail because of lack
of coordination. RMM provides another method for
providing this coordination but, to avoid the “time-
consuming” aspects of game-theoretic approaches, we
must devise a theory to support selective expansion of
the hierarchy.

Theory

The basic unit in our syntactical framework for recur-
sive agent modeling is the situation. At any point
in time, an agent is in a situation, and all the other
agents present are in their respective situations. An
agent’s situation contains not only the situation the
agent thinks it is in but also the situations the agent
thinks the others are in (these situations might then
refer to others and so on . . .). In this work, we have
adopted RMM’s assumption that common knowledge1

cannot arise in practice, and so it is impossible for a
situation to refer back to itself either directly or tran-
sitively.

A situation has both a physical and a mental com-
ponent. The physical component refers to the physical
state of the world and the mental component to the
mental state of the agent, i.e. what the agent is think-
ing about itself and about the other agents around it.
Intuitively, a situation reflects the state of the world
from some agent’s point of view by including what the
agent perceives to be the physical state of the world
and what the agent is thinking. A situation evaluates
to a strategy, which is a prescription for what action(s)
the agent should take. A strategy has a probability as-
sociated with each action the agent can take, and the
sum of these probabilities must always equal 1.

Let S the the set of situations an agent might en-
counter, and A the set of all other relevant agents. A
particular situation s is recursively defined as:

s = (M,f,W, {{(p, r, a)|
∑

p = 1,

r ∈ (S ∪ ZK)}|a ∈ A}) ∈ S

The matrix M has the payoff the agent, in situation
s, expects to get for each combination of actions that
all the agents might take. The matrix M can either be
stored in memory as is, or it can be generated from a
function (which is stored in the agent’s memory) that
takes as inputs any relevant aspects of the physical
world, and previous history. The relevant aspects of
the physical world are stored in W , the physical com-
ponent of the situation. The rest of s constitutes the
mental component of the situation.

1Common knowledge about a fact x means that every-
body knows that everybody knows. . . about x.

t.β2

s

ZK

ZKZKZK

ZK

T
T

\
\

�
�

�
�

\
\

c
cc

�
��

S5S4

S3S2

S1

t.α
��>

ZKZK

t

ZKZK

\
\

�
�

�
�

\
\

c
cc

�
��

S3S2

S1

t.β1

a b
Figure 1: These are graphical representations of (a) a
situation s (the agent in s expects to get the payoffs given
by S1 and believes that its opponents will get S2 and S3,
respectively), and (b) a partially expanded situation t that
corresponds to s. ZK stands for the zero knowledge strat-
egy.

The probabilistic distribution function f(x) gives the
probability that the strategy x is the one that the sit-
uation s will evaluate to. It need not be a perfect
probabilistic distribution; it is merely used as a useful
approximation. We use f(x) to calculate the strategy
that the agent in the situation is expected to choose,
using standard expected value formulas from proba-
bility theory. The values of this function are usually
calculated from previous experience. A situation s also
includes the set of situations which the agent in s be-
lieves the other agents are in. Each agent a is believed
to be in r, with probability p. The value of r can ei-
ther be a situation (r ∈ S) or, if the modeling agent
has no more knowledge, it can be the Zero Knowledge
strategy (r = ZK).

Notation and Formalisms: Our implementation
of limited rationality and our notation closely parallels
Russell and Wefald’s work (Russell & Wefald 1991), al-
though with some major differences as will be pointed
out later. We define a partially expanded situation as
a subset of a situation where only some of the nodes
have been expanded. That is, if t is a partially ex-
panded situation of s, then it must contain the root
node of s, and all of t’s nodes must be directly or indi-
rectly connected to this root by other nodes in t. The
situation t might have fewer nodes than s. At those
places where the tree was pruned, t will insert the zero
knowledge strategy, as shown in Figure 1.

We also define our basic computational action to cor-
respond to the expansion of a leaf node l in a partially
expanded situation t, plus the propagation of the new
strategy up the tree. The expansion of leaf node l
corresponds to the creation of the matrix M , and its
placement in l along with f(x), W , and pointers to the
children. The children are set to the ZK strategy be-
cause we have already spent some time generating M

and we do not wish to spend more time calculating a
child’s matrix, which would be a whole other “step” or
computational action. We do not even want to spend
time calculating each child’s expected strategy since we
wish to keep the computation fairly small. The strat-
egy that results from propagating the ZK strategies
past M is then propagated up the tree of t, so as to gen-
erate the new strategy that t evaluates to. The whole
process, therefore, is composed of two stages. First we
Expand l and then we Propagate the new strategy up
t. We will call this process Propagate Expand(t, l), or
PE(t, l) for short. The procedure PE(t, l) is our basic
computational action.

We define the time cost for doing PE(t, l) as the
time it takes to generate the new matrix M , plus the
time to propagate a solution up the tree, plus the time
costs incurred so far. This time cost is:

TC(t, l) = (c · size of matrix M in l) +
(d · propagate time) + g(time transpired so far)

where c and d are constants of proportionality. The
function g(x) gives us a measure of the “urgency” of
the task. That is, if there is a deadline at time T be-
fore which the agent must act, then the function g(x)
should approximate infinity as x approximates T . We
now define some more notation to handle all the strate-
gies associated with a particular partially expanded sit-
uation.

t: Partially expanded situation, all of the values
below are associated with it. Corresponds to the
fully expanded situation s.

t.α: The strategy the agent currently favors in the
partial situation t.

t.β1···n: The strategies the agent in t believes the
n opponents will favor.

t.leaves: These are the leaf nodes of the partially
expanded situation t that can still be expanded
(i.e. those that are not also leaf nodes in s).

t.α̂l: The strategy an agent expects to play given
that, instead of actually expanding leaf l (where
l ∈ t.leaves) he simply uses its expected value,
which he got from f(x), and propagates this strat-
egy up the tree.

t.β̂1···n
l : The strategies an agent expects the other

agents to play given that, instead of actually ex-
panding leaf l, he simply uses its expected value.

P (t.α, t.β1···n): This is the payoff an agent gets in
his current situation. To calculate it, use the root
matrix and let the agent’s strategy be t.α while
the opponents’ strategies are t.β1···n.

Given all this notation, we can finally calculate the
utility of a partially expanded situation t. Let t′ be
situation t after expanding some leaf node l in it, i.e.
t′ ←PE(t, l). The utility is the payoff the agent will
get, given the current evaluation of t′. The expected
utility of t′ is the utility that an agent in t expects to
get if he expands l so as to then be in t′.

U(t′) = P (t′.α, t′.β1···n)

E(U(t′)) = P (t.α̂l, t.β̂
1···n
l)

Note that the utility of a situation depends on the
shape of the tree below it since both t.α and t.β are
calculated by using the whole tree. There are no util-
ity values associated with the nodes by themselves.2

Unfortunately, therefore, we cannot use the utilities of
situations in the traditional way, which is to expand
leaves so as to maximize expected utility. Such tradi-
tional reasoning in a recursive modeling system would
mean that the system would not introspect (examine
its recursive models) more deeply if it thought that do-
ing so might lead it to discover that it in fact will not
receive as high a payoff as it thought it would before
doing the introspection. Ignoring more deeply nested
models because they reduce estimated payoff is a bad
strategy, because ignoring them does not change the
fact that other agents might take the actions that lead
to lower payoffs. Thus, we need a different notion of
what an agent can “gain” by examining more deeply
nested knowledge.

The point of the agent’s reasoning is to decide what
its best course of action is. Thus, expanding a situ-
ation is only useful if, by doing so, the agent chooses
a different action than it would have before doing the
expansion. And the degree to which it is better off
with the different action rather than the original one
(given what it now knows) represents the gain due to
the expansion. More specifically, the Gain of situation
t′, G(t′), is the amount of payoff an agent gains if it
previously was in situation t and, after expanding leaf
l ∈ t.leaves, is now in situation t′. Since t′ ←PE(t, l),
we could also view this as G(PE(t, l)). The Expected
Gain, E(G(t′)), is similarly E(G(PE(t, l))), which
is approximated by G(Propagate(E(Expand(t, l)))) in
our algorithm. We can justify this approximation be-
cause Propagate() simply propagates the strategy at
the leaf up to the root, and it usually maps similar
strategies at the leaves to similar strategies at the root.
So, if the expected strategy at the leaf, as returned by
E(Expand(t, l)), is close to the real one, then the strat-
egy that gets propagated up to the root will also be

2This is in contrast to Russell’s work, where each node
has a utility associated with it.

close to the real one.3 The formal definitions of gain
and expected gain are:

G(t′) = P (t′.α, t′.β1···n)− P (t.α, t′.β1···n)
− TC(t, l)

E(G(t′)) = P (t.α̂l, t.β̂
1···n
l)− P (t.α, t.β̂1···n

l)
− TC(t, l)

Notice that E(G(t′)) reaches a minimum when t.α =
t.α̂l, since t.α̂l is chosen so as to maximize the payoff
given t.β̂1···n

l . In this case, G(t′) = −TC(t, l). This
means that the gain will be negative if the possible ex-
pansion l does not lead to a different and better strat-
egy.

Algorithm
Our algorithm starts with the partially expanded root
situation, which consists only of the payoff matrix for
the agent. ZK strategies are used for the situations of
other agents, forming the initial leaves. The algorithm
proceeds by expanding, at each step, the leaf node that
has the highest expected gain, as long as this gain is
greater than K. For testing purposes, we set K = 0,
but setting K to some small negative number would
allow for the expansion of leaves that do not show an
immediate gain, but might lead to some gains later on.
The function Expected Strategy(l) takes as input a
leaf node situation l and determines the strategy that
its expansion, to some number of levels, is expected to
return. It does this by calculating the expected value
of the corresponding f(x). The strategy is propagated
up by the function Propagate Strategy(t,l), which
returns the expected t.α̂l and t.β̂1···n

l . These are then
used to calculate the expected gain for leaf l. The leaf
with the maximum expected gain, if it is greater than
K, is expanded, a new strategy propagated, and the
whole process is repeated. Otherwise, we stop expand-
ing and return the current t.α.

The algorithm, shown in Figure 2, is started with
a call to Expand Situation(t). Before the call, t
must be set to the root situation, and t.α to the strat-
egy that t evaluates to. The strategy returned by
Expand Situation could then be stored away so that
it can be used, at a later time, by Expected Strategy.
The decision to do this would depend on the particu-
lar implementation. One might only wish to remember
those strategies that result from expanding a certain
number of nodes or more, that is, the “better” strate-
gies. In other cases, it could be desirable to remem-
ber all previous strategies that correspond to situa-
tions that the agent has never experienced before, on

3 Test results show that this approximation is, indeed,
good enough.

Expand Situation(t)
max gain ←−∞; max sit ←nil; t′ ← t
For l ∈ t.leaves /* l is a structure */

t′.leaf ← l
l.α ← Expected Strategy(l)

t.α̂l, t.β̂1···n
l ← Propagate Strategy(t, l)

t′.gain ← P (t.α̂l, t.β̂
1···n
l)− P (t.α, t.β̂1···n

l)− TC(t, l)
If t′.gain > max gain Then

max gain ←t′.gain
max sit ←t′

If max gain > K Then
t ← Propagate Expand(max sit)
Return(Expand Situation(t))

Return(t.α)

Propagate Expand(t) /* l is included in t.leaf */
leaf ← t.leaf
leaf.α ← Expand(leaf)
t.α, t.β1···n ← Propagate Strategy(t, leaf)
t.leaves ← New Leaves(t)
Return(t)

Propagate Strategy(t, l)
Propagates l.α all the way up the tree and returns
the best strategy for the root situation, and the
strategies for the others.

Expand(l)
Returns the strategy we find by first calculating the
matrix that corresponds to l, and then plugging the
zero-knowledge solution for all the children of l.

New Leaves(t)
Returns only those leaves of t that can be expanded
into full situations.

Figure 2: Limited Rationality RMM Algorithm

the theory that it is better to have some information
rather than none. This is the classic time versus mem-
ory tradeoff.

Time Analysis: For the algorithm to work cor-
rectly, the time spent in metalevel thinking must be
small compared to the time it takes to do an actual
node expansion and propagation of a new solution (i.e.
a PE(t, l)). Otherwise, the agent is probably better off
choosing nodes to expand at random without spending
time considering which one might be better.

A node expansion involves the creation of a new ma-
trix M . If we assume that there are k agents and each
one has n possible actions, then the number of elements
in the matrix will be nk. Each one of these elements
represents the utility of the situation that results after
all the agents take their actions. In order to calculate
this utility, it is necessary to simulate the new state
that results from all the agents taking their respective
actions (i.e. as dictated by the element’s position in the

2

1

P

Old Situation
N

E
W

I

N

EW
W

I I

2

1
P

Prey

P1

P2
New Situation3

Utility

Figure 3: Given the old situation, each one of the el-
ements of the matrix corresponds to the payoff in one of
the many possible next situations. Notice that, sometimes,
the moves of the predators might interfere with each other.
The predator calculating the matrix has to resolve these
conflicts when determining the new situation, before calcu-
lating its utility.

matrix) and then calculate the utility, to some partic-
ular agent, of this new situation (see Figure 3). The
calculation of this utility can be an arbitrarily complex
function of the state, and must be performed for each
of the nk elements in the matrix.

The next step is the propagation of the expected
strategy. If we replace one of the ZK leaf strategies
by some other strategy, then the time to propagate
this change all the way to the root of the tree depends
both on the distance between the root and leaf, and
the time to propagate a strategy past a node. Because
of the way strategies are calculated, it is almost cer-
tain that any strategy that is the result of evaluating
a node will be a pure strategy4. If all the children of
a node are pure strategies, then the strategy the node
evaluates to can be found by calculating the maximum
of n numbers. In other words, the k-dimensional ma-
trix collapses into a one-dimensional vector. If c of
the children have mixed strategies, we would need to
add nc+1 numbers and find the maximum partial sum.
In the worst case, c = k − 1, so we need to add nk

numbers.
We can conclude that propagation of a solution will

require a good number of additions and max functions,
and these must be performed for each leaf we wish to
consider. However, these operations are very simple
since, in most instances, the propagation past a node
will consist of one max operation. This time is small,
especially when compared to the time needed for the
simulation and utility calculation of nk different pos-
sible situations. A more detailed analysis can only
be performed on an application-specific basis, and it
would have to take into account actual computational

4In a pure strategy one action is chosen with probability
1, the rest with probability 0.

Method Avg. Nodes Avg. Time to
Expanded Capture/Surround

BFS 1 Level 1 ∞/Never Captured
BFS 2 Levels 4 23.4
BFS 3 Levels 13 22.4
BFS 4 Levels 40 17.3
LR RMM 4.2 18.5
Greedy NA 41.97

Table 1: Results of implementation of the Pursuit prob-
lem using simple BFS to various levels (i.e. regular RMM),
using our Limited Rationality Recursive Modeling algo-
rithm, and using a simple greedy algorithm, in which each
predator simply tries to minimize its distance to the prey.

times5.
Implementation Strategies: A strategy we adopt

to simplify the implementation is to classify agents ac-
cording to types. Associated with each type should
be a function that takes as input the agent’s physi-
cal situation and generates the full mental situation
for that agent. This technique uses little memory and
is an intuitive way of programming the agents. It
assumes, however, that the mental situation can be
derived solely from the physical. This was true in
our experiments but need not always be so, such as
when the mental situation might depend on individ-
ual agent biases or past experiences. The function
Expected Strategy, which calculates the expected
value of f(x), can then be implemented by a hash ta-
ble for the agent type. The keys to the table would be
similar physical situations and the values would be the
last N strategies played in those situations. Grouping
similar situations is needed because the number of raw
physical situations can be very big. The definition of
what situations are similar is heuristic and determined
by the programmer.

Implementation of Pursuit Task

The original algorithm has been implemented in a
simulation of the pursuit task, using the MICE sys-
tem (Montgomery & Durfee 1990). The experiments
showed some promising results. The overall perfor-
mance of the agents was maintained while the total
number of expanded nodes was reduced by an order of
magnitude.

We designed a function that takes as input a physical
situation and a predator in that situation and returns
the payoff matrix that the predator expects to get given
each of the possible moves they all take. This function
is used by all the predators (that is, we assumed all

5Some basic calculations, along these lines, are shown
in the results section.

15

20

25

30

35

40

0 0.005 0.01 0.015 0.02 0.025 0.03

T
ot

al
 T

im
e

Time to Expand One Node

BFS 2 Levels
BFS 3 Levels
BFS 4 Levels

LR RMM

Figure 4: Plot of the total time that would, on average,
be spent by the agents before capturing the prey, for each
method. The x axis represents the amount of time it takes
to expand a node as a percentage (more or less) of the time
it takes the agent to take action.

predators were of the same type). A predator’s pay-
off is the sum of two values. The first value is the
change in the distance from the predator to the prey
between the current situation and the new situation
created after all agents have made their moves. The
second value is 5k, where k is the number of quadrants
around the prey that have a predator in them in the
new situation. The quadrants are defined by drawing
two diagonal lines across the prey (Gasser et al. 1989;
Levy & Rosenschein 1992).

Since the matrices take into account all possible com-
binations of moves (5 for each predator and 4 for the
prey), they are five-dimensional with a total of 2500
payoff entries. With matrices this big, even in a simple
problem, it is easy to see why we wish to minimize the
number of matrices we need to generate. We defined
the physical situation which the predator is in as its rel-
ative position to the prey and to the other predators.
These situations were then generalized such that dis-
tances greater than two are indistinguishable, except
for quadrant information. This generalization formula
served to shrink the number of buckets or keys in our
hash table to a manageable number (from 4.1 · 1011 to
around 3000). Notice also that the number of buckets
remains constant no matter how big the grid is.

Results: We first ran tests without our algorithm
and using simple Breadth First Search of the situation
hierarchy. When using BFS to one level, the preda-
tors could not predict the actions of the others and so,
they never got next to the prey. As we increased the
number of levels, the predators could better predict
what the others would do, which made their actions
more coordinated and they managed to capture the
prey. The goal for our algorithm was to keep the same
good results while expanding as few nodes as possible.
For comparison purposes, we also tested a very simple

greedy algorithm where each predator simply tries to
minimize its distance to the prey, irrespective of where
the other predators are.

We then ran our Limited Rationality RMM algo-
rithm on the same setup. We had previously compiled
a hash table which contained several entries (usually
around 5, but no more than 10) for almost all situa-
tions. This was done by generating random situations
and running RMM to 3 or 4 levels on them to find
out the strategy. The results, as seen in Table 1, show
that our algorithm managed to maintain the perfor-
mance of a BFS to 4 levels while only expanding little
more than four nodes on the average. All the results
are the averages of 20 or more runs.

Another way to view these results is by plotting the
total time it takes the agents, on average, to surround
the prey as a function of the time it takes to expand a
node. If we assume that the time for an agent to make a
move is 1 unit and we let the time to expand a node be
x, the average number of turns before surrounding the
prey be ts, and the average number of nodes N , then
the total time T the agents spends before surrounding
the prey is approximately T = ts · (N ·x+1), as shown
in Figure 4. LR RMM is expected to perform better
than all others except when the time to expand a node
is much smaller (.002 times smaller) than the time to
perform an action.

Conclusions

We have presented an algorithm that provides an ef-
fective way of pruning a recursive model so that only a
few critical nodes need to be expanded in order to get
a quality solution. The algorithm does the double task
of delivering an answer within a set of payoff/time cost
constraints, and pruning unnecessary knowledge from
the recursive model of a situation. We also gave a for-
mal framework for talking about strategies, expected
strategies, and expected gains from expanding a recur-
sive model.

The experimental results proved that this algorithm
works, in the example domain. We expect that the
algorithm will provide similar results in other prob-
lem domains, provided that they show some correspon-
dence between the physical situation and the strategy
played by the agent. The test runs taught us two main
lessons. Firstly that there is a lot of useless informa-
tion in these recursive models (i.e. information that
does not influence the agent’s decision). Secondly, they
showed us how much memory is actually needed for
handling the computation of expected strategies, even
without considering the agent’s mental state. This
seems to suggest that more complete implementations
will require a very smart similarity function for detect-

ing which situations are similar to which others if we
want to maintain the solution quality. We are cur-
rently investigating which techniques (e.g. reinforce-
ment learning, neural networks, case-based reasoning)
are best suited for this task.

Given what we have learned from our tests, there is
a definite set of challenges that lie ahead in terms of
improving and expanding the algorithm. First of all,
we have to determine how we can include the mental
state of an agent into the hashing function, which now
contains only the generalized physical situation. This
enhancement, along with the addition of more hash
tables for different agent types, would be very useful
for moving the algorithm to more complex domains.
Also, we are studying possible methods that an agent
can use for determining which strategy to play when it
has little or no knowledge of it’s opponents’ behavior,
except for whatever observations it has managed to
record.

References
[Durfee, Gmytrasiewicz, & Rosenschein 1994]
Durfee, E. H.; Gmytrasiewicz, P. J.; and Rosenschein,
J. S. 1994. The utility of embedded communications
and the emergence of protocols. In Proceedings of the
13th International Distributed Artificial Intelligence
Workshop.

[Durfee, Lee, & Gmytrasiewicz 1993] Durfee, E. H.;
Lee, J.; and Gmytrasiewicz, P. J. 1993. Overeager
reciprocal rationality and mixed strategy equilibria.
In Proceedings of the Eleventh National Conference
on Artificial Intelligence.

[Gasser et al. 1989] Gasser, L.; Rouquetter, N. F.;
Hill, R. W.; and Lieb, J. 1989. Representing and using
organizational knowledge in distributed AI systems.
In Gasser, L., and Huhns, M. N., eds., Distributed
Artificial Intelligence, volume 2. Morgan Kauffman
Publishers. 55–78.

[Gmytrasiewicz & Durfee 1993] Gmytrasiewicz, P. J.,
and Durfee, E. H. 1993. Toward a theory of honesty
and trust among communicating autonomous agents.
Group Decision and Negotiation 2:237–258.

[Gmytrasiewicz, Durfee, & Wehe 1991]
Gmytrasiewicz, P. J.; Durfee, E. H.; and Wehe, D. K.
1991. A decision-theoretic approach to coordinating
multiagent interactions. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelli-
gence.

[Gmytrasiewicz 1992] Gmytrasiewicz, P. J. 1992. A
Decision-Theoretic Model of Coordination and Com-
munication in Autonomous Systems (Reasoning Sys-
tems). Ph.D. Dissertation, University of Michigan.

[Korf 1992] Korf, R. E. 1992. A simple solution to pur-
suit games. In Proceedings of the 11th International
Distributed Artificial Intelligence Workshop.

[Levy & Rosenschein 1992] Levy, R., and Rosen-
schein, J. S. 1992. A game theoretic approach to the
pursuit problem. In Proceedings of the 11th Interna-
tional Distributed Artificial Intelligence Workshop.

[Montgomery & Durfee 1990]
Montgomery, T. A., and Durfee, E. H. 1990. Us-
ing MICE to study intelligent dynamic coordination.
In Proceedings of IEEE Conference on Tools for AI.

[Russell & Wefald 1991] Russell, S., and Wefald, E.
1991. Do The Right Thing. Cambridge, Mas-
sachusetts: The MIT Press.

[Sen & Durfee 1994] Sen, S., and Durfee, E. H. 1994.
Adaptive surrogate agents. In Proceedings of the 13th
International Distributed Artificial Intelligence Work-
shop.

[Stephens & Merx 1990] Stephens, L. M., and Merx,
M. B. 1990. The effect of agent control strategy on
the performance of a DAI pursuit problem. In Pro-
ceedings of the 9th International Distributed Artificial
Intelligence Workshop.

[Vidal & Durfee 1994] Vidal, J. M., and Durfee, E. H.
1994. Agent modeling methods using limited rational-
ity. In Proceedings of the Twelfth National Conference
on Artificial Intelligence, 1495.

	Introduction
	Theory
	Algorithm
	Implementation of Pursuit Task
	Conclusions

