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ABSTRACT
Agent-based models are increasingly being used to simulate
and analyze various transportation problems, from traffic
flow [15] to air traffic control [1]. One transportation in-
dustry that has not received as much attention from the
multi-agent systems community is seaport container termi-
nals. It can be argued that the operations that take place
at a container terminal are as complex as that of an airport.
A seaport container terminal faces a myriad of operational
challenges such as optimizing berth space, minimizing ship
turnaround time, maximizing use of resources, and reducing
wait time of drayage trucks. Due to environmental con-
cerns, terminal operators and port planners are focusing on
the problem of reducing the in-terminal wait time of drayage
trucks. In this paper, we present our multiagent model of a
container yard operation, its implementation using NetLogo,
and some initial test results. We model yard cranes as op-
portunistic utility-maximizing agents using several different
utility functions for comparison purposes. By using a repre-
sentative layout of a terminal our simulation model allows us
to analyze the behavior of the cranes and evaluate the col-
lective performance of the system. We demonstrate that it
is possible to build a realistic and useful model of yard crane
operation. Our test results show that utility functions that
give higher precedence to nearby trucks lead to much bet-
ter results than those that favor serving trucks on a mostly
first-come first-serve order.
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1. INTRODUCTION

Cite as: Building Agent-Based Models of Seaport Container Terminals,
José M. Vidal and Nathan Huynh, Proc. of 6th Workshop on Agents
in Traffic and Transportation, Kluegl, Ossowski, Chaib-Draa and
Bazzan (eds.), May, 11, 2010, Toronto, Canada

Agent-based models have been often used to analyze auto-
mobile and air traffic. In this paper we continue that trend,
but focus on an entirely topic: supply chain and logistics. In
particular, we build an agent-based model of a seaport con-
tainer terminal. These terminals facilitate the movement of
containers between the sea and land. Once import contain-
ers are discharged from a vessel, they are stored in a con-
tainer yard (see Figure 1). Rubber-tired gantry cranes (see
Figure 2) or commonly known as “yard cranes” then move
these containers onto the trucks. The problem faced by the
crane operators is deciding which truck to service first since
many arrive at the same time. The process whereby a truck
goes to a seaport terminal to pick up or deliver a container
with both the trip origin and destination in the same urban
area is known as drayage.

Drayage activities play an important role in supply chain
and logistics. From seaport terminals, drayage drivers and
trucks transport import containers to first receivers where
consolidation, stripping, transfers, and intermodal activities
are undertaken. They also deliver containers to final re-
ceivers directly or via key rail intermodal terminals across
the nation. This process is reversed for export containers.
Drayage operations are now widely recognized as a criti-
cal emissions, congestion, and capacity issue for major con-
tainer ports and rail intermodal terminals. Public agencies
are rapidly developing policies and programs to reduce re-
lated emissions.1 Concurrently, drayage firms and terminal
operators are working to improve drayage operations that
are highly inefficient at the present. Despite the relatively
short distance of the truck movement compared to the rail
or barge haul, drayage accounts for a large percentage (be-
tween 25% and 40 %) of origin to destination expenses [9].
In turn, high drayage costs seriously affect the profitability
of an intermodal service.

The seaport container terminals have long been identi-
fied as bottlenecks and sources of delay for port drayage.
The time drayage trucks spent in the queue at the entry
gate, container yard, and exit gate are often exceedingly
long during peak times at busy terminals. Drayage trucks
are diesel-fueled, heavy-duty trucks that transport contain-
ers, bulk, and break-bulk goods to and from ports and in-
termodal rail yards to other locations2. Truck idling in the
queues is a contributing source of emissions and noise at
terminals. High truck turn time is the result of demand ex-

1For example see www.epa.gov/cleandiesel.
2See the California Environmental Protection Agency
www.arb.ca.gov/msprog/onroad/porttruck/drayage
truckfactsheet.pdf



ceeding supply. Truck turn time refers to the time it takes a
drayage truck to complete a transaction such as picking up
an import container or dropping off an export container. It
is a measure of a terminal’s efficiency in receiving and deliv-
ering containers. For terminals that stack their containers,
demand is mainly the number of drayage trucks coming to
the terminal to pick up or drop off containers. Supply is
the number of yard cranes available to serve these drayage
trucks. Supply is typically low on high volume vessel days
because the majority of the yard cranes are assigned to work
the vessel. In such a scenario, drayage drivers must wait for
a longer period of time before a yard crane is available to
perform the load or unload move. This waiting process can
take a considerable amount of time.

The solution of adding more yard cranes to reduce truck
turn time may seem obvious for terminals that stack their
containers. However, the high initial investment, plus main-
tenance and operating costs of these cranes often prohibit
terminals from freely buying more. Also, once a drayage
truck arrives at its destination in the yard, its turn time
is not only dependent on the number of cranes available,
but also the service strategy in which the cranes follow. To
date, no study has adequately examined the effect of crane
service strategy on truck turn time. The challenging issues
inherent in this problem, coupled with the limitation of ex-
isting research, motivate this study. In addition, this study
addresses the practical challenges of increasing supply chain
efficiency while reducing the carbon footprint. Specifically,
this study investigates how to deploy yard cranes in an ef-
fective manner to reduce drayage trucks in-terminal wait
time. Reducing the drayage trucks in-terminal dwell time
is equivalent to reducing local and regional particulate mat-
ter (PM 2.5), nitrogen oxides (NOx), and greenhouse gas
(GHG) emissions. PM 2.5 emissions from diesel engines are
recognized by the Environmental Protection Agency (EPA)
as a serious health issue.

The following describes the study’s innovative, decentral-
ized approach to modeling yard cranes by using agent-based
modeling and utility maximization to investigate the effec-
tiveness of different crane service strategies. While agent-
based models have been widely used in many different disci-
pline, they are relatively unexplored in the area of drayage
and port operations.

2. LITERATURE REVIEW
Much of the research directly related to yard cranes’ work

schedule has been carried out using mathematical program-
ming techniques (e.g integer programs or mixed integer pro-
grams). As such, these studies seek to optimize the work
flow of cranes for a given set of jobs with different ready
times in the yard. The “jobs” considered vary from study
to study, and they could be either drayage trucks, or other
yard handling equipment such as prime movers and internal
transfer vehicles. Given that the scheduling problem is NP-
complete, many studies proposed algorithms or heuristics in
order to solve the real-world large-scale problem in a reason-
able amount of time, including dynamic programming-based
heuristic [10], branch and bound algorithm [11], Lagrangean
relaxation [19], and simulated annealing [7]. In the study by
Kim et al. [6], a simulation study was performed to compare
the performances of several heuristic rules:

First-come-first-serve: trucks are served in the order of
their arrival time at the yard. Uni-directional travel: a yard

Figure 1: Illustration of bay, row, and tier in a yard
block.

crane travels in one direction and serves trucks until there
are no more trucks remaining in the direction of the travel.
After serving all the trucks in the direction of travel, the
yard crane starts to travel in the opposite direction. Near-
est truck first: a yard crane serves the truck that is located
nearest to it. Shortest processing time: a yard crane serves
the truck with the shortest transfer time, which is the sum
of the travel time and the time for transferring the corre-
sponding container to and from the truck. The transfer time
includes the time for re-handling containers on top of the
target container in the case of a delivery operation.

This study differs from the aforementioned mathematical
programming related work in several ways. First, it takes a
decentralized view instead of a centralized one. That is, the
resulting cranes work flow is not governed by one optimal
schedule. Rather the work flow stems from the individual
decisions made by the crane operators. Second, it does not
make any assumption regarding the ready times of the jobs.
In this study, the number of drayage trucks that arrive to the
yard is assumed to be Poisson distributed. Lastly, this study
relies on agent-based simulation instead of a mathematical
program. The agent-based feature also differentiates this
study from the work of Kim et al. [6]. Moreover, each agent
(i.e. crane operator) makes his decision based on a utility
and not a prescribed heuristic rule.

Within the agent-based modeling community there have
been some attempts at building simulations of container
ports, but these address different parts of the problem. For
example, in [2] the authors try to find optimal solutions for
the placement of containers in the yard while assuming that
the cranes use a fixed policy. In contrast, our research fo-
cuses on finding the optimal strategies for the cranes to use
to minimize the trucks’ wait time given random truck ar-
rivals. Some preliminary work on simulating the ships and
their allocation is presented in [12], and similarly in [14].
Most recently, the work of Henesey et al investigates the
movement of containers from the ship into the yard [5], and
looks at various policies for the sequencing of ships, berth
allocation, and the use of simple stacking rules [4]. Their
SimPort implementation demonstrates that a sophisticated
agent-based simulation of a container port can be used to
make prescriptive recommendations on how to manage the



system. Our research differs from these attempts in that we
do not try to model the full system, from ships to trucks, nor
do we try to make recommendations on how the complete
system would work best. Instead, we focus on one small part
of the problem—the yard cranes’ service strategies—which
we believe can be improved. We believe it is unlikely that
a seaport will completely change their workflow because of
the results of a simulation. On the other hand, small in-
cremental changes that have been shown to have immediate
positive effects on the bottom line are likely to be adopted.
Our research aims to work within the real-world constraints
of a working seaport, improving its overall efficiency via con-
tinuous small improvements.

There has also been some research done in building agent-
based models of traffic system. For example, some have built
simulations of automated intersections [1], or of air traffic
control systems [15, 16], or studied other agent-based meth-
ods for solving the urban traffic problem [3, 17]. Our simu-
lations thus take us one step further towards being able to
build complete models of transportation systems, including
vehicular traffic, freight, and intermodal facilities.

3. PROBLEM DESCRIPTION
A typical drayage move involves either a delivery of an

export container to the seaport terminal or pickup of an
import container. A drayage driver arriving to pick up a
loaded import container may encounter one of three basic
systems.

1. At wheeled terminals the driver will simply locate and
retrieve the container on its chassis in the parking area.

2. At stacked terminals, the driver will usually first re-
trieve a chassis and then position the chassis in the
container storage stacks to receive the container from
a lift machine (typically yard crane).

3. At some stacked and straddle carrier terminals, the
drayage driver will retrieve a chassis and then proceed
to a designated transfer zone. A lift machine then
brings the container to the waiting driver.

At stacked terminals, the containers are stacked on top
of one another in separate yard blocks. Each yard block
has about 80 20-foot bays, each bay has 6 rows, and each
row has 4 tiers (Figure 1). A yard block is used for stor-
ing import containers, export containers, or both. Import
containers are typically stored in the available blocks desig-
nated for imports and where it is most convenient for the
stevedores to facilitate the vessel operations. As import con-
tainers are discharged from a vessel, they are stacked in the
allocated space without any segregation. Export containers,
on the other hand, are methodically segregated by 1) vessel,
2) port of discharge, 3) size, and 4) weight. This is done so
that when export containers are transferred from the yard
to the vessel, no re-handling (i.e. reshuffling of containers to
retrieve the desired one) is required. Note that both the im-
port and export processes are done in a manner to minimize
the turn-around time of vessels.

Most U.S. seaport terminals use rubber-tired gantry (RTG)
cranes, often referred to as yard cranes, to load and unload
containers in the yard blocks. Figure 2 shows a cross section
view of a yard block, and it illustrates how a yard crane is
positioned in a block. On any given day, the yard cranes are

Figure 2: Yard crane working the stacks.

assigned to either support the vessel operation or support
the road operation. Vessel operation has higher priority, so
the number of yard cranes available to support road opera-
tion is the total number of yard cranes available minus the
number of yard cranes assigned to vessel operation. Road
operation refers to the landside process where drayage trucks
come to drop off export containers and/or pick up import
containers. Vessel operation refers to the waterside process
where import containers are transferred from a vessel to the
yard and export containers are moved from the yard to the
vessel.

A typical import process involves a drayage driver mov-
ing a loaded container from the seaport terminal to the con-
signee location and then returning an empty to the terminal.
The process of taking a loaded container out of the termi-
nal begins with the shipping line in charge of the container
requesting drayage service. The manifest is transferred to
the drayage company and at the same time to the terminal.
The drayage company then creates a pickup order and sub-
sequently dispatches the driver. In order to take a loaded
container out of the terminal the driver first arrives at the
terminal gate. At this stage, the driver must scan or show
his driver’s license and then provide the container number
to the gate clerk. He must also specify whether he needs to
pick up a chassis. If there are no issues with his transaction,
the driver receives a pick-up ticket and is cleared to enter
the terminal. If the driver does not need a chassis, he then
proceeds to the pre-designated pick up area and waits to be
serviced by a yard crane (Figure 3).

Depending on the availability of yard cranes and their ser-
vice strategies, this wait can be a source of extensive delay.
Once the yard crane arrives at the bay where the truck has
been waiting, the crane operator must locate the requested
container and must often re-handle other containers on top
before reaching the target container. After the container
is loaded onto his truck, the driver must verify that it is
the correct container and undamaged. He then must lock
the chassis and proceed to the radiation inspection station.
After the radiation inspection by Customs and Border Pro-
tection (CBP), the driver scans or shows the pick-up ticket
and waits for the clerk to perform the damage inspection of
the container and issues an Equipment Interchange Report
(EIR), ending the out procedure and allowing the truck to
exit the terminal.
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Figure 4: Service strategy for yard cranes at the port of Houston.

Figure 3: Yard crane deposits container on a truck.

The yard cranes are operated by operators who are given
the freedom to make judgment calls on how to go about the
yard to serve drayage trucks. At the Port of Charleston,
the operators generally aim to minimize the trucks’ wait
time. However, they are given the flexibility to pick the
next truck that makes the best sense based upon all the
information they may know. At the Port of Houston, crane
operators are also given the flexibility to use their judgment.
In a series of interviews with different operators there, they
appear to follow a strategy that is more distance-oriented
(Figure 4).

To analyze the effectiveness of different yard crane ser-
vice strategies, our initial models focus on stacked terminals
equipped with RTGs and on the import drayage process.
Also, we focus entirely on the container yard. We do not
model the operations at the gate and berth (see Figure 5).
We assume standard 40 foot long containers and yard blocks
composed of 40 40-foot bays.

4. MODEL DESCRIPTION
We model the yard as a 2-dimensional grid where each cell

fits exactly one container, which would make them about 40
feet wide by 10 feet tall. The yard contains 4 blocks each one



Figure 5: Typical operations and processes at seaport container terminals.

Figure 6: Screenshot of our agent-based model of yard cranes at a seaport container terminal.

with 40 bays, each bay has 6 rows of containers which can be
stacked up to 4 high. The cranes move only on a specified
track. The trucks appear below the bay where their desired
container is located and are assumed to not interfere with the
movement of the cranes. Figure 6 shows a screenshot of our
implemented agent-based model. Notice that the cranes are
represented by arrows which represent the direction in which
the crane is moving. The track on which the cranes can
move is represented by the gray lanes. Notice that the crane
path allows the cranes to service all 4 blocks. Although not
shown in Figure 6, our model includes several plots and other
GUI elements which allow us to better understand what is
happening in the program and to control its behavior.

Initially, the field is populated with randomly-placed con-
tainers. At run time the trucks arrive with a probability
given by a Poisson distribution and each is assigned to a
randomly chosen container. If the bay for that container is
free then the truck is placed on that bay, otherwise the truck
is placed on a waiting area. When the bay is freed, because
the truck on the bay has been given the container it wanted,
then the waiting truck is immediately moved to the bay.

We model the crane operators as utility-maximizing agents
that can constantly re-evaluate their utility function. More
formally, we say that there is a set C of cranes so that each
crane c ∈ C has a utility function uc(t) over all trucks t ∈ T
in the yard. We consider several different utility functions,
all of which weigh different aspects of the world. One of
those factors is the shortest path between the crane and the
truck. As can be seen in Figure 6, there are a number of dif-
ferent paths that a crane can take to get to a container,
some much longer than others. Thus, we let path(c, t)
be the shortest path between crane c and truck t. Simi-
larly, we define distance(p) to be the distance of a path
p, has-turn?(p) to be a Boolean function that returns 1 if
path p requires the crane to turn, that is, move from one
of the top two blocks to one of the bottom two blocks or
vice-versa, and other-crane?(p, c) to be a Boolean func-
tion that returns 1 if p passes over the current location of
some crane other than c.

In our model, each crane c has a current goal gc which can
be either empty (∅) or contain a truck t, which means that
the crane’s current goal is to go to the location of truck t,
or it can have the value deliver -container , which means the
crane is currently trying to move a container from the stack
onto the truck. The cranes are opportunistic but we also
implement a decommitment-penalty which can be set to 0
for completely opportunistic behavior or to larger numbers
to make the cranes more committed to their current goal.
Specifically, if gc = ∅ or gc = t from some t, then the crane
updates its goal at every time by first determining the op-
timal truck to service (t∗) and then switching to that truck
only if its utility beats that of the current goal by more than
the decommitment-penalty , as such:

t∗ ← argt∈T max uc(t) (1)

gc ←


t∗ if uc(t∗) > uc(gc) + decommitment-penalty
gc otherwise,

(2)
where we let uc(∅) = 0.
We consider three specific utility functions. The first one

is a distance-based utility function which tries to capture
the effective distance between the crane and a truck, giving
higher priority to trucks that are closer to the crane. This
distance is mostly just the path length between the crane
and the truck, but also includes elements that consider the
need for making a turn (as these take a longer time), the
fact that there is another crane in the path (since then the
path is blocked), whether or not the crane needs to change
direction, and whether this crane is indeed the closest one
to the truck. That last term provides the cranes with a
slight implicit form of coordination. We believe that this
utility function roughly captures what an operator means
when he says he intends to always serve the closest truck.
More formally, we define this utility as



udistance
c (t) = −distance(path(c, t))

− p1 · other-crane?(path(c, t))

− p2 · has-turn?(path(c, t))

− p3 · change-heading?(path(c, t))

− p4 · not-closest?(c, t),

(3)

where the p1 · · · p4 are fixed penalty constants. Their val-
ues are set to be high enough such that a crane will never
choose a truck for which any one of the terms are true (that
is, there is another crane on the way, or the crane must take
a turn, or it must change its heading, or there is another
crane closest) if there is another truck somewhere in the
yard for which all terms are false. Note that the distance
has a negative sign because the more a crane has to travel
the less utility it receives from that delivery. Also, we let
change-heading?(p) be a Boolean function which returns
1 if the crane needs to change its current heading in order
to follow path p, and we let not-closest?(c, t) return 1 if
crane c is not the one currently closest to t, or 0 otherwise.

Similarly, we define a time-based utility function that
gives higher priority to the trucks that have been waiting
the longest, but also taking into account the other terms.
Formally, the time-based utility is given by

utime
c (t) = wait-time(t))

− p1 · other-crane?(path(c, t))

− p2 · has-turn?(path(c, t))

− p3 · change-heading?(path(c, t))

− p4 · not-closest?(c, t),

(4)

where wait-time(t) is the time that truck t has been wait-
ing.

Finally, we define a time-and-distance utility function
which merges these two into one, as such:

utime-distance
c (t) = −distance(path(c, t)) + utime

c (t) (5)

In modeling the yard crane gantry speed and handling
times, actual or empirical data are used. A typical yard
crane can gantry (i.e. traverse along the yard block) at
a speed of 135 meters per minute [13]. Thus, it takes a
crane about 6 seconds to gantry from one 40-foot bay to
the next. As mentioned previously, a truck’s wait time is a
combination of the time it takes a crane to arrive at the bay
where the truck is parked and the time it takes the crane to
perform both rehandling and delivery moves. The steps in-
volved in performing a rehandle are as follows. These steps
are repeated for every container that is sitting on top of the
target container.

1. Position spreader bar on top of container to be rehan-
dled

2. Lower the spreader bar

3. Lock the spreader bar to the container

4. Hoist the container

5. Trolley to the desired stack

6. Lower the container

7. Unlock the twist lock

8. Bring the spreader bar back to its normal position

The steps involved in performing a delivery move are sim-
ilar to a rehandle move. The key difference is in step 5 where
instead of setting a container onto a stack, the crane opera-
tor sets the container onto the truck, which could take much
longer time if the truck is not properly positioned. If the tar-
get container is at the bottom of a stack that is four high,
then a crane will need to perform three rehandling moves
and one delivery move. Data gathered previously by the au-
thors show that the average rehandling time to be about 40
seconds and the delivery time to be about 87 seconds.

4.1 Solution Concepts
Given the problem definition, there are several solution

concepts we might consider. The most obvious one is max-
imizing the throughput of the port. That is, servicing the
most trucks possible in a given fixed amount of time. By
definition, this measure is the same as minimizing the total
wait time of the trucks in that same fixed amount of time.
However, it is possible that a solution that minimizes the
total wait time does so at the expense of one, or a few, un-
lucky trucks who must spend a very long time in the truck.
Thus, another solution concept tries to minimize the maxi-
mum wait time of a truck. This solution is more egalitarian
and might thus be preferred by the truck drivers. A third
possibility, one which we have not explored yet, would to
try to even out the amount of work each crane performs so
that they all do about the same amount of work.

5. MODEL IMPLEMENTATION
Our model is implemented in NetLogo [18], an agent-based

simulation platform and programming language. We mod-
eled four yard blocks, each one with 40 bays of 40-foot con-
tainers, and each stack has six rows of containers that can be
stacked up to four high. The cranes can move around these
four blocks and can position themselves at any bay. The
model is implemented to work for any number of cranes. The
containers are distributed randomly across the four blocks
and are never stacked more than four high in any one row.
No new containers are added during a run since we are only
concerned with evaluating the cranes’ strategies. We also
implemented trucks, each of which is assigned a randomly
chosen container. If there is another truck already waiting at
the bay where the container resides then the truck is made
to wait in a holding area until the other truck is serviced
and departed, thus clearing the spot for the waiting truck.
The waiting truck then takes its position on the next tick.

Our model implements a discrete simulation where every
tick corresponds to one second of real-world time. At ev-
ery tick, the model creates and positions any new trucks
that might have arrived during that tick, asks the cranes to
perform their chosen action for that tick, and updates the
graphs and plots. Since the cranes’ actions take more than
one second to execute, our implementation incorporates wait
times for each action. For example, it takes six seconds for
the crane to move from one stack to the next one. Instead of
having the crane move one sixth of the distance each time,
our implementation makes it wait for the first five seconds
and then perform the move on the sixth second. This delay
technique is used for all other actions: moving a container



main()

1 while user has not stopped program
2 do generate truck arrivals
3 for c ∈ C
4 do gc ← ∅
5 c.go()
6 tick ← tick +1

go()

1 if gc ∈ T or gc = ∅
2 then t∗ ← argt∈T max uc(t)
3 if uc(t∗) > uc(gc) + decommitment-penalty
4 then gc ← t∗

5 gt
c ← ticks-to-move

6 if gt
c 6= 0

7 then gt
c ← gt

c − 1
8 return
9 if gc ∈ T

10 then move to the first in path(c, t)
11 if we are at gc

12 then gc ← deliver -container
13 gt

c ← ticks-to-deliver
14 else
15 gt

c ← ticks-to-move
16 elseif gc = deliver -container
17 then take step in delivery
18 if container delivered
19 then gc ← ∅

Figure 7: Implementation methods. main is the
main loop and go is a method implemented by every
crane c. Note that ux(∅) is assumed to be 0.

from one row to another (40 seconds) and moving a con-
tainer from a row to the truck (87 seconds). By using this
wait technique, it is easy to change the times each action
takes to suit the real-world data. It also lets the simulation
display an accurate representation of what is happening in
the model.

The implementation algorithm is shown in Figure 7. At
every tick we first create any new trucks that might have ar-
rived and assign them to their appropriate spots. The cranes
are then asked to go(). First, crane uses its function to de-
termine which is the best truck for it to service. If the crane
has a current goal of serving a truck or no goal and there
is a truck with a utility greater that decommitment-penalty
then the crane switches to that one, thus implementing (2),
as shown in lines (1) – (5). Lines (6) – (8) implement the
time delay (skipped ticks) required for some of the longer
actions. In lines (9) – (15) the crane moves one step in the
path towards its chosen goal and then either re-sets its goal
or changes its goal to one of delivering the container to the
truck. Finally, in lines (16) – 19 the crane has the goal
of delivering a container and takes a step in delivering it.
This step might require the crane to move other containers
around in its current bay if the desired container lies under
other containers. In these cases the crane will require more
ticks to deliver the container.

Our current implementation is fast enough for our needs,
but it could be improved. Our analysis shows that line (2)

Table 1: Simulation results for 2-crane scenario.

Distance-based (3)

De-commitment Average Wait Min of Max
Penalty Time (minutes) wait time (minutes)

0 14.37 41.30
100 15.42 37.93

10,000 15.04 45.65

Time-based (4)

De-commitment Average Wait Min of Max
Penalty Time (minutes) wait time (minutes)

0 68.97 68.95
100 65.49 72.58

10,000 53.84 56.18

Time-and-distance-based (5)

De-commitment Average Wait Min of Max
Penalty Time (minutes) wait time (minutes)

0 68.04 86.38
100 65.42 67.97

10,000 52.24 56.77

of the go() procedure is where the simulation spends most
of its time as it has to check every single truck in the yard.
Of course, we do not need to check every truck as there are
some fairly simple heuristics that could be used to eliminate
some trucks from consideration. Future version of our im-
plementation will include such heuristics, thus enabling us
to test much larger yards in the same amount of time.

6. SIMULATION RESULTS
Our first tests simply made sure that the program will

be fast enough to be usable. Our current implementation
running on a standard PC is able to simulate a whole day (8
hours) in just a few seconds, as long as the graphics display
is turned off. Showing the animation of the cranes moving
around the field significantly slows down the simulation, but
this is not a problem as the visualization is only used for
debugging when we do need it to go slow enough so we can
see what the cranes are doing.

We mentioned several solution concepts for this problem
in Section 4.1. For our initial tests we decided to focus on
the average wait time of the trucks and the wait time of the
truck that waits the most. The lower the average wait time
the more trucks are being served in a day, as we keep the
arrival rates constant. The maximum wait time tells us how
the least quickly served truck had to wait. We varied the
decommitment-penalty from 0, which implies a completely
opportunistic crane, to 100, to 10, 000 which implies a crane
that once committed to a truck will never drop it for another
one. Tables 1 and 2 show the average results from 100 runs
for the various utility function and de-commitment penalties
with trucks arriving following a Poisson distribution of with
a mean of 40 trucks/hour. The tables show the average truck
waiting time and the minimum of the maximum waiting
time in each one of the runs, that is, the minimum of the
list containing the maximum wait time for each run.



Table 2: Simulation results for 3-crane scenario.

Distance-based (3)

De-commitment Average Wait Min of Max
Penalty Time (minutes) wait time (minutes)

0 6.53 19.05
100 6.82 20.78

10,000 6.77 19.90

Time-based (4)

De-commitment Average Wait Min of Max
Penalty Time (minutes) wait time (minutes)

0 8.75 21.95
100 8.51 24.47

10,000 7.85 21.27

Time-and-distance-based (5)

De-commitment Average Wait Min of Max
Penalty Time (minutes) wait time (minutes)

0 7.85 21.07
100 7.88 22.37

10,000 8.11 19.58

In Table 1 we note the surprising result that the average
wait time for the time-based and time-and-distance-based
utility functions is nearly four times as large as that of the
distance-based utility. The reason for this is evident when
viewing the simulation. When crane operators worked to
minimize trucks’ waiting time, they ended up making long
runs from one end of the yard to another while ignoring
nearby trucks. The model indicates that, on average, the two
cranes covered a total distance of 16.25 miles when following
the distance-based utilities and 25.41 miles when following
the time-based utilities. The resulting effect is that many
more trucks end up waiting longer.

Another surprising discovery from this study is how effec-
tive the distance-based utility is in minimizing the maximum
waiting time across all the runs. It was expected that the
time-based utility with the de-commitment penalty set to
10,000 would yield the lowest min-max wait time because
the cranes would effectively “chase” after these longer wait-
ing trucks. As shown in the third column of Table 1, the
min-max wait times of the time-based utilities are higher
than that of distance-based utilities. As explained above,
when the cranes“chase”after the longer waiting trucks, they
are less efficient because they are spending more time travel-
ing to their target trucks. It would have been more efficient
if they use that time to serve nearby trucks.

Table 2 shows the wait time and min-max wait time results
when there are three cranes available. Note the significant
drop in the average wait time and min-max wait time across
all three utility types. It is also interesting to note that with
three cranes, the performance of the time-based utilities is
very close to that of the distance-based utilities. This is
because cranes do not have to cover as much distance with
three cranes. The model indicates that, on average, the three
cranes covered a total distance of 13.65 miles when follow-
ing the distance-based utilities, 15.47 miles when following
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Figure 8: Average truck waiting time (over 100
runs) as a function of arrival rate for the three util-
ity functions, with a decommitment-penalty of 0 and 2
cranes. The x-axis is the mean of a Poisson arrival
process. The error bars represent the maximum and
minimum wait time from all 100 runs.
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Figure 9: The same experiment as Figure 8 but with
3 cranes instead.

the time-based utilities, and 16.46 miles when following the
time-and-distanced-based utilities.

After establishing that the distance-based utility performed
the best overall, we were curious as to how it would fare
as the truck arrival rate changed. Thus, we performed the
same experiments as with 2 cranes but we varied the truck
arrival rate from .4 trucks/minute to 1 truck/minute, where
our previous results used a fixed rate of .667 trucks/minute
(40 trucks/hour). The results of our tests are shown in Fig-
ure 8. As expected the distance-based utility performs best
but it is noteworthy how flat its curve is while the other
time-based utility functions explode as trucks arrive faster.
On the other hand, as the arrival rate is made smaller, to .4,
the difference between the various utility functions almost
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Figure 10: Distribution of average wait times with
an mean truck arrival rate of .5.
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Figure 11: Distribution of average wait times with
an mean truck arrival rate of .3.

disappears. The qualitative aspects of these results are not
surprising. However, by using our agent-based model we
can quantify exactly how much better one utility function
is over the others given the specifics of the problem. Thus,
terminal operators can use the data generated by our model
to make business decision on how to direct their cranes.

Similarly, Figure 9 shows the results of the same experi-
ment but with 3 cranes instead. As we might expect, three
cranes are able to handle higher truck arrival rates thus
there is a smaller, but still significant, difference between
the distance-based utility function and the other ones.

Our final experiment shows the wait time distribution
among the trucks. Figure 10 shows how many trucks, av-
eraged over 100 runs, had to wait 0-5, 5-10, 10-15 minutes
and so on till 55 minutes, the maximum wait time. We see
that for the distance utility a great number of trucks does
not have to wait more than 10 minutes, and only a small
percentage has to wait more than 20 minutes. The time

utilities, on the other hand, distribute wait times a bit more
evenly. That is, a greater number of trucks have to wait
longer. In Figure 11, we decreased the arrival rate to 0.3.
As we saw in earlier results, for such low arrival rates we
can expect the average wait times to be the same. The dis-
tributions largely confirm this; however, we do see that the
distance utility yields about 20 more trucks with a wait time
of less than 5 minutes. Another interpretation of this result
is that when following the time utilities, in their effort to
serve trucks in a first-come first-serve manner, the cranes
miss the opportunities to serve nearby trucks.

7. CONCLUSION
This study introduced an agent-based utility maximiza-

tion approach to modeling yard cranes at seaport container
terminals to study how different service strategies affect truck
turn time. The developed model provides a powerful tool
terminal operators could use to assess the performance of
various contemplated crane service strategies as well as the
effect of having additional cranes or fewer cranes due to
mechanical problems and/or scheduled maintenance. This
study has identified a set of utility functions that properly
captured the essential decision making criteria of crane op-
erators in choosing the next truck to provide service to. Sim-
ulation results showed that if crane operators choose trucks
that are closest to them without requiring the cranes to turn
often (a time consuming process) and reverse heading, then
the overall system performance in terms of average waiting
time and the maximum waiting time of any truck will be
better than if there were to choose trucks based on their
waiting times.

Implementing the mentioned agent-based simulation model
revealed some important lessons in modeling cranes as agents.
Initially, we implemented the crane behaviors as procedures
(e.g. choose nearest truck or choose longest waiting truck).
While these procedures were easy to implement in NetLogo,
as we incorporated additional complexities into the oper-
ators’ decision making process, the procedures became un-
wieldy. The procedures ended up implementing ad-hoc rules
which we could not fully explain or justify. For these rea-
sons, we changed our approach to use utility functions and
made the cranes utility-maximizing agents. By using util-
ity functions we can clearly and explicitly capture how the
cranes balance the various priorities: distance to truck, time
truck spent waiting, etc. A caveat here is that the utility
functions can make it harder to implement certain proce-
dural knowledge, like “move to the closest truck and then
keep going in that direction if there are more trucks wait-
ing right behind that one.” In this study, we have identified
a set suitable utility functions and built a first model that
implements these.

In future work, we plan to extend the model to handle
larger yards and include explicit coordination with the in-
coming trucks, perhaps in the form of reservations or auc-
tions. We hope to eventually build a detailed simulator of
several yards as well as the trucks moving between them
and their respective delivery sites. Such large-scale simula-
tion will give us the ability to model truck traffic across a
wide geographic span and see how it affects, or is affected
by, seaport operations.
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