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Abstract

COMBINATORIAL AUCTIONS are a great way to represent and solve distributed allocation prob-
lems. Unfortunately, most of the winner determination solutions that exists are centralized. They

require all agents to send their bids to a centralized auctioneer who then determines the winners. The
PAUSE auction, in contrast, is an increasing-price combinatorial auction in which the problem of winner
determination is naturally distributed amongst the bidders. We present PAUSEBID, a bidding algorithm
for agents in a PAUSE auction which always returns the bid that maximizes the bidder’s utility. Our test
results show that a system where all agents use PAUSEBID finds the revenue-maximizing solution at least
95% of the time. Run time, as expected since this is an NP-complete problem, remains exponential on
the number of items.

1. Bidding in the PAUSE Auction

A PAUSE AUCTION for m items has m stages. Stage 1 consists of having simultaneous ascending
price open-cry auctions for each individual item. During this stage the bidders can only place indi-

vidual bids on items. At the end of this stage we know what is the highest bid for each individual item and
who placed that bid. In each successive stage k = 2,3, . . . ,m we hold an ascending price auction where
the bidders must submit sets of bids that cover all goods but each one of the bids must be for k goods or
less. The bidders are allowed to use bids that other agents have placed in previous rounds when placing
their bid, thus allowing them to find better solutions. Also, any new bidset has to have a sum of bid prices
which is bigger than the currently winning bidset. That is, revenue must increase monotonically.

Formally, let each bid b be composed of bitems which is the set of items the bid is over, bvalue the value or
price of the bid, and bagent the agent that placed the bid. The agents maintain a set B of the current best
bids, one for each set of items of size≤ k. At any point in the auction, after the first round, there will also
be a set W ⊆ B of currently winning bids. This is the set of bids that currently maximizes the revenue,
where the revenue of W is given by

r(W ) = ∑
b∈W

bvalue. (1)

Agent i’s value function is given by vi : S→ℜ where S is a subset of the items. Given an agent’s value
function and the current set of winning bids W we can calculate the agent’s utility from W as

ui(W ) = ∑
b∈W |bagent=i

vi(bitems)−bvalue. (2)

Given that W is the current set of winning bids, agent i must find a g∗ such that r(g∗)≥ r(W )+ ε and

g∗ = argmax
g⊆2B

ui(g), (3)

where each g is a set of bids all taken from B and g covers all items. The goal of the PAUSEBID algorithm
is to find this g∗.

2. Pausebid

PAUSEBID(i,k)
1 my-bids← /0 � Will contain a bid for every S for which vi(S) > corresponding bid in B.
2 their-bids← /0 � Will contain rest of bids from B.
3 for b ∈ B
4 do if bagent = i or vi(bitems) > bvalue

5 then my-bids← my-bids+new Bid(i,bitems,vi(bitems))
6 else their-bids← their-bids+b
7 for S ∈ subsets of k or fewer items such that

vi(S) > 0 and ¬∃b∈Bbitems = S
8 do my-bids← my-bids+new Bid(i,S,vi(S)) � Set my-bids to my valuation.
9 bids← my-bids+ their-bids � bids has best bid for every set, or my valuation if greater.

10 g∗← /0 � Global variable.
11 u∗← ui(W ) � Global variable.
12 h(S)← max revenue on items from S given B, for all S.
13 PAUSEBIDSEARCH(bids, /0) � The function that does the actual search.
14 surplus← ∑b∈g∗ |bagent=i bvalue−W (bitems)
15 if surplus = 0
16 then return g∗

17 my-payment← vi(g∗)−u∗ � How much I need to pay to make g∗ win.
18 for b ∈ g∗ |bagent = i � Distribute surplus among my bids.
19 do if my-payment ≤ 0
20 then bvalue← 0
21 else bvalue←W (bitems)+my-payment ·b

value−W (bitems)
surplus

22 return g∗

Figure 1: The PAUSEBID algorithm which implements a branch and bound search. i is the agent and k is
the current stage of the auction, for k ≥ 2.

PAUSEBIDSEARCH(bids,g)
1 if bids = /0 � A branch-and-bound algorithm.
2 then return
3 b← first(bids)
4 bids← bids−b
5 g← g+b
6 if g does not contain a bid from i � None of my bids means no utility for me, so quit.
7 then return
8 if g includes all items � We are at a leaf node: feasible bidset.
9 then min-payment←max(0,r(W )+ ε− (r(g)− ri(g)),∑b∈g |bagent=i B(bitems))

10 max-utility← vi(g)−min-payment
11 if r(g) > r(W ) and max-utility≥ u∗

12 then g∗← g � Found a new best.
13 u∗← max-utility � Set our new bound.
14 PAUSEBIDSEARCH(bids,g−b) � b is Out.
15 else max-revenue← r(g)+h(items not in g)
16 if max-revenue≤ r(W ) � Can’t beat current best so b is Out.
17 then PAUSEBIDSEARCH(bids,g−b)
18 elseif bagent 6= i � All bids left belong to someone else. Is it still worth it?
19 then min-payment← r(W )+ ε− (r(g)− ri(g))−h(items not in g)
20 max-utility← vi(g)−min-payment
21 if max-utility > u∗ � Seems promising so b is In.
22 then PAUSEBIDSEARCH({x ∈ bids |xitems∩bitems = /0},g)
23 PAUSEBIDSEARCH(bids,g−b) � b is Out.
24 else � Do complete search over my bids.
25 PAUSEBIDSEARCH({x ∈ bids |xitems∩bitems = /0},g) � b is In.
26 PAUSEBIDSEARCH(bids,g−b) � b is Out.
27 return

Figure 2: The PAUSEBIDSEARCH recursive procedure where bids is the set of available bids and g is the
current partial solution.
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S v0(S) B(S) in W? h(S)

(0) 198 0: 131 Yes 131
(1) 44 0: 40 No 135
(2) 62 0: 45 No 135

(0,1) 849 No NA
(1,2) 1: 270 Yes NA

r(W ) = 131+270 = 401

Figure 3: Sample search tree produced by PAUSEBIDSEARCH for agent 0 given the values on the table
at the top right. We assume that ε = 1. The nodes are bids of the form “agentid : (items) price”.

3. Tests
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Figure 4: Distribution of the times it took to run
each auction, for 1000 runs with 6 agents and 5
items. The y-axis is the number of runs that took

at most x time units.
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Figure 5: Average number of nodes expanded as
a function of the number of items in the auction.
Number of bids is exponential on items.

In at least 95% of the cases the solution found was the revenue-maximizing solution.
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