
“Trusting Agents for trusting Electronic Societies”, Rino Falcone, Suzanne
Barber, Jordi Sabater and Munindar Singh editors. 2005.

A Protocol for a Distributed Recommender
System

José M. Vidal

University of South Carolina, Columbia SC 29208, USA,
vidal@sc.edu,

http://jmvidal.cse.sc.edu

Abstract. We present a domain model and protocol for the exchange
of recommendations by selfish agents without the aid of any centralized
control. Our model captures a subset of the realities of recommendation
exchanges in the Internet. We provide an algorithm that selfish agents
can use for deciding whether to exchange recommendations and with
whom. We analyze this algorithm and show that, under certain common
circumstances, the agents’ rational choice is to exchange recommenda-
tions. Finally, we have implemented our model and algorithm and tested
the performance of various populations. Our results show that both the
social welfare and the individual utility of the agents is increased by
participating in the exchange of recommendations.

1 Introduction

In the last few years we have seen the proliferation of recommender systems [1].
Almost every web retailer seems to have software that can recommend an item
for purchase. These recommendations are made based on the users’ purchasing
and browsing history, that is, what everyone bought and what everyone looked
at. The popularity of recommender systems confirms their effectiveness in rec-
ommending items that the users find appealing. However, we find one major
drawback with these systems—they are all centralized implementations. This
design choice leads to several problems.

– The central server becomes a central point of failure and a central target for
attack by those seeking to gather information about all users.

– It assumes that users are willing to give the information to the central server.
Users do not receive anything in return for this information.

Our goal is to find ways to enable the emergence of a truly distributed recom-
mender system in an Internet populated by selfish agents. To achieve this goal
our system must provide the agents with an incentive to trade recommendations
with each other and a protocol for enabling this trade. We also eschew the idea
of a system where agents buy and sell recommendations for several reasons.

– The processing of payments adds a large cost to the transaction and requires
the use of a trusted third party, which leads us back to a semi-centralized
solution.

c© Springer-Verlag 2005.

http://jmvidal.cse.sc.edu

Table 1. Summary of notation.

D set of documents, d ∈ D.

A set of agents, i ∈ A.

Li(d) a proposition that is true if i likes d.

Ri(d) a proposition that is true if i has read d.

Pr the payoff for reading a liked document.

Cr the cost of reading a document.

Cm the cost of sending a message.

– Users have historically been reticent to allow automated agents to spend real
money unless the agents are given very specific rules of behavior.

Instead, we plan to use information itself as a currency. Since agents are already
presumed to have access to the user’s preferences they can trade these preferences
with other agents for more recommendations that might be useful to the user.
The problem then becomes that of ascertaining the value of a recommendation.
That is, we need to determine the utility an agent can expect to derive from
giving one of its recommendations to another agent. Or, more specifically, under
which circumstances should an agent give a recommendation to another.

To better understand this problem and identify situations under which this
economy of information might arise we have developed a formal model which we
describe in Section 2. We use this model to derive some analytical results. The
model simulation and test results are shown in Section 4. Section 5 shows some
work related to our research. Finally, we present our conclusion in Section 6.

2 The Model

We envision a world populated with a finite set of agents A and a much larger
but still finite set of documents D, where d ∈ D is some document. For each
agent i ∈ A we define Li(d) to be true if and only if agent i likes document d.
An agent does not have direct access to its L set—it can only find out which
documents it likes by actually reading them. We use the notation from [2] for
representing an agent’s knowledge. Specifically, if i knows that it likes d, then
we say that KiLi(d) is true. Also, the set of documents that i knows that it likes
is given by Li

i ≡ {d ∈ D |KiLi(d)}. Similarly, the set of documents that i knows
that j ∈ A likes is given by Lj

i ≡ {d ∈ D |KiLj(d)}. In our model agents initially
do not know which documents they like. An agent has to read a document in
order to determine whether it likes it or not.

We also establish some costs and payoffs for our model. Pr is the payoff an
agent receives for reading a document it likes, that is, i reads a document d
for which Li(d) is true. Cr is the cost of reading a document. We assume that
it takes the same amount of resources to read any document. We also assume
that Pr > Cr so the agent will always derive a positive utility from reading a
document that it likes. Finally, Cm is the cost of sending a message. These costs

i

j
Nothing Send

N 0, 0 xi(j),−Cm

S −Cm, xj(i) xi(j)− Cm, xj(i)− Cm

Fig. 1. Payoff matrix that two agents face when they meet.

are all valued in terms of the agent’s utility. As such, we can say that the utility
i receives for reading d is given by

Ui(d) =
{

Pr − Cr if Li(d)
−Cr otherwise.

(1)

The agents’ interactions are kept as simple as possible so that we may study
the system’s dynamics. Specifically, the agents meet in pairs and have a chance
to concurrently send each other a recommendation. That is, if i and j meet then
i can choose to tell j about some d that i knows is in Li, similarly j can choose
to tell i about some other d′ that j knows is in Lj . Of course, each one could
also choose to say nothing.

When two agents meet each must decide whether to tell the other about
a document it likes. Since each one of them has two choices we can represent
this decision with the game matrix shown in Figure 1. The matrix shows that if
the agents decide to do nothing they will receive no utility. If one agent decides
to send a message but receives no message from the other one then his payoff
is simply −Cm because this is the cost of sending a message. We ignore all
long-term implications of an agent’s actions since these will be considered when
exploring the dynamics of the system; at this time we are only interested in the
immediate payoffs to the agents.

The utility value represented by xi(j) captures the utility that agent i ac-
crues when it receives a recommendation from agent j, similarly for xj(i). While
we cannot calculate an exact value for xi(j), we can calculate its expected value
using some probability calculations. Specifically, we can determine that if i re-
ceives a message from j stating that it likes d then the payoff i can expect to
receive by reading d is given by

xi(j) = ri(j)(Pr[Li(d) |Lj(d)] · (Pr − Cr)
+ (1−Pr[Li(d) |Lj(d)]) · (−Cr)),

(2)

where ri(j) is defined as the probability that i will receive a document from j that
i has not read. This equation states that the payoff is equal to the probability
that j will send a document d which i has not read times the expected payoff.
This expected payoff is given by the probability that i likes d given that j likes
d times the payoff for reading a liked document plus the probability that i does
not like d given that j likes d times the cost of reading a disliked document.
Notice that we can consider xi(j) to be the expected value of Ui(d) given that

d is a document sent from j to i. The value of xj(i) is calculated in a similar
manner to xi(j). We also note that

Pr[Li(d) |Lj(d)] =
Pr[Li(d), Lj(d)]

Pr[Lj(d)]
, (3)

by using Bayes Theorem. As such, xi(j) will be equal to xj(i) if Pr[Li(d)] =
Pr[Lj(d)], that is, if the prior probability for the agents’ liking a document
is the same. This means that, if we can assume that all agents are equally
discriminating in their taste then we can also assume that xi(j) = xj(i). If these
facts are common knowledge in the system then the fact that xi(j) = xj(i)
should also be common knowledge.

While the value of (3) can only be determined with knowledge of Li and Lj ,
i can try to approximate it given its knowledge. That is, i can assume that its
sampling of the document space is even and that j’s recommendations are also
even and, therefore, the likelihood that a new recommendation from j will also
be liked by i will reflect the past behavior. Specifically, i can assume that

Pr[Li(d), Lj(d)]
Pr[Lj(d)]

≈ |Li
i ∩ Lj

i |
|Lj

i |
. (4)

Using this approximation and assuming that ri(j) = 1, a safe assumption if there
are a lot of documents or if we can assume that j knows the documents that i
has read, we can determine that

xi(j) ≈
|Li

i ∩ Lj
i |

|Lj
i |

· (Pr − Cr) +

(
1− |Li

i ∩ Lj
i |

|Lj
i |

)
· (−Cr). (5)

All the values in this equation can be calculated by i. An agent can, therefore, use
this equation to determine its expected payoff at runtime, as long as |Lj

i | > 0. If
|Lj

i | = 0 then i has no information about j’s likes so the best it can do is assume
that a recommendation by j will have the same expected utility as reading a
randomly chosen document1.

If xi(j) > 0 and xj(i) > 0 then the payoff matrix of Figure 1 becomes
a Prisoner’s Dilemma matrix. As such, we would expect Tit-for-Tat to be the
evolutionary stable strategy [3]. In a population of Tit-for-Tat players this means
that all players will choose to send. We can also determine that xi(j) > 0 as
long as

|Li
i ∩ Lj

i |
|Lj

i |
≥ Cr

Pr
. (6)

Once an agent decides that it is going to tell the other one about a document
that it likes, it must choose a document. That is, which d from among the KiLi(d)
should i send to j? There are three possible ways for i to choose a document. It
could choose randomly from either one of the following sets:
1 Our ongoing research explores the possibility of having agents recommend other

agents, a technique which can provide the agent with a better estimate of the ex-
pected utility from unknown agents.

1. {d ∈ D |KiLi(d)},
2. {d ∈ D |KiLi(d) ∧ ¬KiLj(d)},
3. {d ∈ D |KiLi(d) ∧ ¬Rj(r)}.

The first choice is the simplest to implement since it only requires choosing
randomly from a set of documents. The second choice can be implemented if i
keeps track of all the recommendations it has received in each encounter. The
third choice can only be implemented if i knows all the documents that j has
read. This knowledge could be acquired either via direct communication or by
having all agents “post” a list of all the documents they have read, without
specifying whether they liked them or not, on a place that all others can access,
for example, in a web page. In the tests given on the next section we assume
that agents do post these lists. It is also clear that each of these methods will
perform better than the next one since each one has a reduced probability of
providing already-known information to the other agent. That is, in the third
choice agent i is guaranteed to choose a document that the other agent has not
read, in the second choice there is a small probability that the chosen document
will have already been read by j (but i does not know that j likes it), and in the
first choice this probability is even greater.

As an aside, we also note how (2) captures the need for agents to have
correlated preferences in order to enable some cooperation. That is, if i and j
have completely uncorrelated preferences then

Pr[Li(d) |Lj(d)] =
Pr[Li(d)] ·Pr[Lj(d)]

Pr[Lj(d)]
= Pr[Li(d)] (7)

and
xi(j) = Pr[Li(d)] · (Pr − Cr) + (1−Pr[Li(d)]) · (−Cr). (8)

Therefore, if i and j have uncorrelated preferences then i’s payoff does not depend
on j’s recommendation and simply reflects i’s discriminating taste in documents,
that is, Pr[Li(d)]. As such, j’s recommendation to i has the same expected value
for i as simply choosing a document at random so i will choose not to ask j for
a recommendation since that incurs an extra Cr cost.

In summary, our analysis leads us to several conclusions.

– The agents need to explore their domain by reading randomly chosen docu-
ments and exchanging recommendations with randomly chosen agents, oth-
erwise they will fail to explore the whole space.

– It is probably safe for the agents to assume that xi = xj since it is likely
that all agents will be equally selective.

– The value of xi can be approximated with (5) which can be determined from
the agent’s observations.

– If xi > 0 and we assume that xi = xj then the agents are faced with
Prisoner’s Dilemma payoffs so we can expect the system to evolve towards
a Tit-for-Tat strategy.

– If the two agent’s preferences are not correlated the agents will rather choose
documents randomly than engage in exchange.

2.1 An Agent’s Choice

An agent in our model is presented with a series of choices. It must first decide
whether it wants to randomly choose a document that it has not read or ask
another agent for a recommendation. If it decides to read a randomly chosen
document d it can expect a utility of

Pr[Li(d)] · (Pr − Cr) =
|{d ∈ D |Li(d)}|

|D|
· (Pr − Cr). (9)

The agent will not know the value of this probability since it does not know
Li. It could, however, try to estimate it based on its past experience by using
the ratio of Li

i to the total number of documents i has read (Ri). That is, use
|Li

i|/|Ri| as an approximation of the |Li|/|D| ratio. If, on the other hand, the
agent chooses to communicate with another agent then it must choose whether
to pick an agent at random or try to maximize its expected utility given what
it knows about the other agents. By choosing an agent at random the agent’s
expected utility will be once again given by (9), except that the agent will also
possibly add to its Lj

i knowledge which might be useful on future interactions.
On the other hand, the agent could choose to pick the agent which in the past
has given him the best recommendations. That is, choose the j that maximizes
(5). The expected payoff will be the value of xi(j) for that j. For the cases where
i does not know anything about the documents that j likes, i assumes that the
expected utility will be given by (9).

Notice that both of the choices that the agent has to make—whether to
choose a document at random or ask some agent, and whether to ask an agent
at random or pick the one that maximizes the expected utility—are instances of
the classic explore versus exploit problem in machine learning (also referred to as
the n-armed bandit problem). The consensus solution to this problem consists of
having the agent explore with a small probability. If the environment is fixed then
this probability can be slowly reduced over time. Our environment is not fixed
since the other agents will also be changing their behaviors and new documents
are found all the time. Therefore, agents in our environment will likely choose
to always explore with a small but non-zero probability.

When i receives a request from another agent j to exchange documents, i
must determine which document to send, if any. This decision can also be made
by comparing xi(j) with Cm. If it will cost i more to send the message than it
expects to receive from the recommendation then it is better off not sending the
message.

All this reasoning is captured by the algorithm shown in Figure 2. The al-
gorithm’s use of Rj means that it assumes that agents have access to the list of
documents that other agents have. We envision agents that post a list of the doc-
uments they have read, without including whether they liked them or not. This
list could also include documents about which the agent has no interest in receiv-
ing any recommendations. For example, using an indexing mechanism such as
the Dewey decimal system or the Digital Object Identifier System (doi.org), an
agent could state that it is not interested in some subset of documents. All other

doi.org

agents would simply pretend that the agent had already read those documents
and will not recommend any of them to the agent.

when acting:
if random 1.0 < document-explore then

read a randomly chosen document
else if random 1.0 < agent-explore then

exchange recommendations with a randomly chosen agent
else

for all j ∈ A− {i} do
if |Lj

i | = 0 then

pi(j)← |Li
i|

|Ri|
· (Pr − Cr)

else
pi(j)← xi(j) // as defined in (5)

end if
end for
j ← argj max pi(j)
if xi(j) > Cm then

send random d from {d |KiLi(d) ∧ ¬KiRj(d)}
else

read a randomly chosen document
end if

end if

when j requests exchange:
if xi(j) > Cm then

send random d from {d |KiLi(d) ∧ ¬KiRj(d)}
else

send nothing
end if

Fig. 2. Decision algorithm for agent i.

3 Modeling User Preferences

We now present our experimental model. It is important that this experimen-
tal model not be confused with basic model we introduced in Section 2. The
experimental model is meant to be used as a way to simulate the possible be-
haviors of agents that represent real users. Since we cannot perform the necessary
experiments on hundreds of real users, we have instead built an experimental
model that hopes to capture the type of preferences and preference relationships
between agents that we might see in the real world.

We represent each document with an n-dimensional binary vector d. One
can imagine that each of the elements in the vector represents a feature of the

Fig. 3. Graphical user interface for our distributed recommendation simulation.
The triangles represent the agent. The 2-dimensional field represents all possi-
ble preferences vectors so that an agent’s position in the field corresponds to
its preference vector. The documents are represented by points whose position
represents their location in the preference space. The lines emanating from an
agent show the documents it has already read. The picture also shows a couple
of graphs which are updated dynamically as the program runs and show the
total utility and individual gains from exchange.

document in question. Each agent also has an n-dimensional binary preference
vector pi. We say that Li(d) if and only if

d · pi

n
≤ r, (10)

where r is some arbitrary but constant number between 0 and 1. We can envi-
sion agent i’s preferences denoted by a point pi in n-dimensional space. All the
documents that i likes are within a distance r of this point. If j’s pj is close to
pi then the agent will like many of the same documents.

4 Implementation and Test Results

Our theoretical analysis lead us to the conclusion that our simple exchange
mechanism will be incentive-compatible for the agents as long as the agent’s

-5000

 0

 5000

 10000

 15000

 0 5000 10000 15000 20000 25000

T
ot

al
 U

til
ity

Time

c
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 4. Total utility over time assuming a fixed number of documents (1000).
Each curve corresponds to a difference value of c, the clustering probability.

preferences are similar enough. However, we still do not know how likely it is that
we will see situation where agents are similar enough, how the agent’s exploration
rate affects the system, or what characteristics do the dynamics of the system
exhibit. In order to answer these questions we implemented a simulation of our
distributed recommender system protocol using NetLogo [4]. You can run our
applet and examine the source code for these experiments at http://jmvidal.
cse.sc.edu/netlogomas/distributedrec.html. NetLogo facilitated the quick
prototyping of our model. The facilities it provides for GUI creation also allowed
us to explore many different parameter combinations. We only report the most
interesting results.

Unless otherwise noted, all the experiments consist of 50 agents with 2-
dimensional preference vectors in a toroidal space (i.e., a square space were the
top and bottom edges are connected as well as the left and right edges), 1000
documents, r = 1/6, Pr = 10, Cr = 2, Cm = 0.1, and both agent-explore and
document-explore (from Figure 2) fixed at 0.1.

4.1 Standard Agents

Our first experiment was designed to explore the relationship between the agents’
similarities and the expected utility gain from exchanging recommendations.
However, in order to perform such a test we first has to determine how the agents’

http://jmvidal.cse.sc.edu/netlogomas/distributedrec.html
http://jmvidal.cse.sc.edu/netlogomas/distributedrec.html

interests would be clustered. We developed a simple algorithm for generating
clustered preference vectors. In our algorithm, the first vector is chosen randomly
with a uniform probability distribution. Each vector after this one is chosen by a
simple rule. With a probability of c, which we call the clustering probability,
the vector is chosen to lie in a randomly chosen location that is somewhere
within a small distance of an existing and randomly chosen vector, otherwise it
is placed on a random location. The algorithm generates one large grouping of
agent preferences when c = 1 and a completely random placement of preferences
when c = 0.

The results of our first experiment can be seen in Figure 4 which shows the
total utility over time. The total utility is the sum of all the agents’ accrued
utilities. Each one of the curves in the graph corresponds to a different value of
c. We notice that in all the curves there is an initial dip into negative utility. This
dip exists because the agents have no initial knowledge about the other agents so
they start by randomly choosing agents and exchanging recommendations with
them. It is only after some time that agents learn which other agents provide
good recommendations. We see how the learning turns around the total utility
for the cases where c ≥ .6. However, for cases where c ≤ 5 the total utility for
the system spends little time in positive territory, if at all. We can deduce that
in these type of scenarios the agents, on average, would not have an incentive to
trade recommendations.

For comparison, we can calculate that the probability that an agent will like
a document is equal to π/36 since r = 1/6. Therefore, an agent that reads all
1000 documents, say by choosing one randomly each time, will be expected to
accumulate a utility of 1000(π/36 · (Pr −Cr) + (1− π/36) · (−Cr)) which in our
examples works to be 94, so the total utility of 50 of these agents would be 4719.
By contrast, the total utility for c = .9 and c = .8 climbs to 5000, and 10000 for
c = 1.

Another interesting feature of the curves in Figure 4 are the upswings and
downswings in the total utility. That is, we notice that sometimes the utility
seems to be monotonically increasing for a long time and other times it is de-
creasing for a long time. This emergent behavior is explained by the system’s
search for new documents. As time passes the agents in a cluster become more
and more likely to exchange recommendations with each other but these recom-
mendations end once they have recommended to each other all the documents
that they know about. At this time the agents go back to simply reading docu-
ments at random which, on average, causes their utility to decrease. But, when
one of the agents discovers a new document that it likes this recommendation
starts to propagate throughout the cluster, increasing the utility each time.

The fact that the total utility for all agents ends up decreasing for all the
curves in Figure 4 might seem to contradict our claims that the agents have an
incentive to engage in recommendation exchanges but the utility decline is simply
an artifact of the use of a fixed number (1000) of documents. In Figure 5 we show
the results for an identical experiment but, in this case, at each time step we add
a new randomly generated document to the system with a probability of 1/10.

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5000 10000 15000 20000 25000

T
ot

al
 U

til
ity

Time

c
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 5. Total utility over time assuming we start with 1000 documents and then
add, on average, one more every 10 time steps.

That is, the system still starts with 1000 documents and a new document are
added, on average, every 10 time steps. We can see that in this case the curves do
not decline. In fact, the total utility in these cases is expected to keep increasing
with a slope roughly proportional to the arrival rate of new documents.

While the total utility measures are a useful way to measure the expected
utility for an agent, they do not answer the individual agent’s question of whether
or not it should bother to exchange recommendations. That is, will an agent in
fact receive more utility if it agrees to exchange recommendations? We define
the utility gain of an agent to be the utility it received from obeying a recom-
mendation it received, which would be Pr − Cr if the agent liked it and −Cr

otherwise, minus the expected utility the agent would get if it chose a document
at random and read it. We show the utility gain for every one of the 50 agents
in Figure 6, which uses c = 1. We can see that 49 of the agent accrued a positive
utility gain and only 1 agent had a negative utility gain. Therefore, there is an
overwhelming probability that agents who exchange documents will gain extra
utility by doing so.

One expects that the probability of gaining utility by exchanging documents
will decrease as the clustering probability decreases. Figure 7 confirms this ex-
pectation. It shows the utility gain for 50 agents using c = .9. We notice that
there are now 33 agents with positive utility gain and 17 with negative gain. An

-50

 0

 50

 100

 150

 0 5000 10000 15000 20000 25000

U
til

ity
 G

ai
n

Time

gain

Fig. 6. Total utility gain for every agent over time, using c = 1. We continue to
add a document each time with probability 1/10

analysis of this system showed that it was those agents that lie within a cluster
which overwhelmingly received the utility gain. We can conclude that even in
cases where not all agents are in a cluster, those that are in the cluster will
benefit from the exchange of recommendations.

4.2 Greedy Agents

Once agent designers have access to the results we presented in the previous
sections they should be convinced that, as long as they expect their preferences to
be close to those of a sizable subset of agents, that the best strategy is to provide
and accept recommendations. However, a designer might wish to further improve
on this strategy by creating a “greedy” agent which tries to exploit the knowledge
of others. An exceptionally greedy agent would not provide any recommendations
to any other agent—simply accepting recommendations from them. This strategy
will surely and quickly backfire as the agent becomes ostracized by the others who
learn that it does not provide useful recommendations. A more reasonable greedy
strategy would be to reduce the agent-explore rate to a very low number. Such
a low exploration rate would lead an agent to keep exchanging recommendations
with the best agents that it has found. It would only search for new agents to
exchange recommendations with when it had used up all the recommendations
from the agents it knows provide good recommendations.

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000

U
til

ity
 G

ai
n

Time

gain

Fig. 7. Total utility gain for every agent over time, using c = .9 and 1000
documents.

-25000

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 0 5000 10000 15000 20000 25000

T
ot

al
 U

til
ity

Time

c
0.6
0.7
0.8
0.9
1.0

Fig. 8. Total utility over time with agent-explore set to .05.

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000 25000

U
til

ity
 G

ai
n

Time

gain

Fig. 9. Gain of each agent for c = 1 with agent-explore set to .05.

-150

-100

-50

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000

U
til

ity
 G

ai
n

Time

gain

Fig. 10. Gain for each agent for c = .9 with agent-explore set to .05.

In order to determine what would happen to a system composed of these
greedy agents, we repeated the same tests as before but using an agent-explore
value of .05. The total utility accrued over time for a series of runs can be seen
in Figure 8. We can see that the agents still manage to accrue a positive utility
over time. In fact, comparing it with Figure 4, we can see that the population of
greedy agents accrues more utility for the case where c = .9. However, we also
note that the utility is almost the same for the case where c = 1 and is much
lower for all the other cases where c ≤ .8. These results show that a greedy
population could have a greater social welfare than our standard population but
only when almost all the agents have similar interests.

We also notice how the utility for the case where c = .9 is actually larger than
the case where c = 1, a surprising result. We can gain some insight into this result
by looking at Figure 9 which shows the gain from exchange for all the agents for
the case were c = 1, and Figure 10 which shows the gain for all the agents for
the case when c = .9. We notice that for c = 1 nearly all agents had something
to gain from exchanging recommendations but, on average, these gains were not
as high as those of some of the agents for the c = .9 case. That is, for c = .9
the agents that similar interests to others actually did better, in absolute terms,
than in the c = 1. Specifically, we can deduce that in heterogeneous populations
the individual gain from exchanges is higher because these communications are
needed to determine which other agents have interests that are to those of the
agent. In a more homogeneous populations simply choosing an agent at random
will often have the same expected effect that one achieves with longer periods
of modeling.

This result provides further motivation for an agent to engage in recommen-
dation exchanges, especially in those cases where the agent fears that it is not
similar to all others. Notice that this result goes against the intuition that one
has nothing to gain from exchanging recommendations when the agent’s prefer-
ences are not highly correlated to those of others. In fact, we have just shown
that it is exactly in those situations where the exchange of recommendations,
and the modeling of other agents that goes along with it, delivers a higher utility
gain to the agent because it is in those situations that the agent needs to be able
to differentiate between the agents that have interests similar to it and those
that do not.

4.3 Results Summary

In general, our results from all our tests have shown that distributed incentive-
compatible recommendations as dictated by our model are viable in that they
increase both the average individual agent’s utility as well as the social wel-
fare. However, the benefits are not distributed evenly among the agents. Those
agents that have interests that are similar to many other agents’ interests usu-
ally perform better. While this result is probably to be expected, it does present
a problem for the widespread adoption of our protocol. That is, an agent who
believes that its interests are unique might decide not to join the community and
simply read documents at random. Our results raise the question of whether we

can find a (distributed) method whereby an agent can quickly determine how
many other agents with similar interests exist. Such a method would enable
agents to decide whether or not to join a particular population of recommending
agents.

We also found it interesting how “communities” of agents worked together
to quickly find all the interesting documents in their area. The moment one of
the agents found a new interesting document it would tell others who would tell
others and so on, until they had all read the document. Initially, we had planned
to estimate the expected utility from reading a random document to include the
expected gains from sharing this document, if the agent liked it, with all the
other agents it knows have given it good recommendations in the past. However,
the dynamics of our model showed that this value decreases very fast once the
agent tells just one other agent.

5 Related Work

There is an established body of literature concerned with the construction of rec-
ommender systems [1], which includes systems such as PHOAKS [5], the Referral
Web [6], and many others. However, almost all them are centralized, with a few
exceptions. Yenta [7] implements a decentralized protocols where agents form
clusters of like-mindedness. However, they assume cooperative agents so their
protocol is not incentive compatible. Economists have also studied the possi-
bility of a market for evaluations [8] and concluded its viability. The proposed
market, however, relies on a centralized auctioneer and their model assumes that
all agents have very similar preferences.

Our work also finds much affinity with research being done in peer-to-peer
systems such as JXTA [9], Gnutella [10, Chapter 8], Freenet [10, Chapter 9],
and others. In fact, by analyzing and clarifying the individual incentives to the
agents our work hopes to enable the realization of peer-to-peer networks that are
immune to the freeloader problem experienced by current peer-to-peer systems
[11], although we have not yet achieved this goal. It is our belief that for these
type of networks to succeed the proper incentives have to be given and, further-
more, these incentives will not be in the form of monetary currency which brings
with it the problems of accountability and liability, but instead the incentives
will be either in the form of information itself or in the form of relationships
with other agents. That is, multiagent systems will be needed in order to realize
the promise of peer-to-peer information exchange on an Internet scale.

In [12,13,14] the authors develop reputation management protocols which are
also based on the agents’ past experiences. Their approach uses the Dempster-
Shafer theory of evidence [15] for determining how to aggregate evidence from
various sources each with possibly different trustworthiness. Their model also
differs from ours in that they are concerned with determining the trustworthiness
or reputation of agents while we are concerned with finding other agents that
can provide good recommendations. In [16] they develop a pricing mechanism
where agents get paid to provide good recommendations.

An interesting approach is presented in [17] where the authors describe a
system where the users of the recommendations provide rewards to the recom-
menders with the best recommendations, thereby providing them an incentive
to continue to give good recommendations. While their design is distributed, it
does not tell us how the recommenders choose their recommendations. As such,
the system is orthogonal to our proposed protocol. We are currently examining
the possibility of merging the two approaches.

6 Conclusion

We have presented a domain model that captures the most important aspects of
the distributed recommendations scenario. We analyzed this model and showed
that engaging in an exchange is the rational choice as long as the agent believes
that the other agent has interests that have proven to be sufficiently similar.
We then gave an algorithm that agents can use for deciding when to exchange
recommendations and with whom. Finally, we tested our algorithm on a various
simulated scenarios. The results confirmed our prediction that trading would
ensue and would increase the social welfare of the system. Our tests also pro-
vided more details into the system’s dynamics. We showed that while the total
utility does increase, individual agents who do not have common interests with
other agents do not participate in this gain. We also showed how populations of
greedy agents (i.e., agents that usually prefer to trade with a well-known partner
instead of reading a random document) can outperform our standard agents in
populations where most of the agents have largely similar interests.

We believe that the issues of trust and recommendations are tightly related.
That is, our agents can be said to gain trust in other agents’ recommendations
via experience. As such, we view our protocol as a specific instance of the trust
acquisition problem.

Our ongoing research continues to expand on these results in order to support
the recommendation of agents themselves. That is, we aim to find the value of
having one agent recommend another agent to some third agent. The long-term
goal of this work is the development of a framework that selfish agents can use
do determine exactly how much each one of their opinions/recommendations is
worth and how to realize this worth. Such a framework would enable the creation
of an Internet-wide distributed recommender system.

Finally, we note that we have ignored possible privacy issues. For example, it
is conceivable an agent might not want to reveal it’s preferences to other agents
or an agent might not want to be seen as belonging to a particular community of
interest. Clearly, an agent that does not want to reveal anything will not be able
to participate in our protocol. However, it is possible that agents could mask
their true preferences by adding noise to their recommendations. We need to
study how such noise can be added so that it maintains some privacy for the
agents but still allows the protocol to work.

References

1. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM
40 (1997) 56–58

2. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
The MIT Press, Cambridge, MA (1995)

3. Axelrod, R.M.: The Evolution of Cooperation. Basic Books (1984)
4. Wilensky, U.: NetLogo: Center for connected learning and computer-based mod-

eling, Northwestern University. Evanston, IL (1999) http://ccl.northwestern.

edu/netlogo/.
5. Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: Phoaks: a system for

sharing recommendations. Communications of the ACM 40 (1997) 59–62
6. Kautz, H., Selman, B., Shah, M.: Referral web: combining social networks and

collaborative filtering. Communications of the ACM 40 (1997) 63–65
7. Foner, L.N.: Yenta: A multi-agent, referral based matchmaking system. In: Pro-

ceedings of The First International Conference on Autonomous Agents. (1997)
8. Avery, C., Resnick, P., Zeckhauser, R.: The market for evaluations. The American

Economic Review 89 (1999) 564–484
9. Gong, L.: JXTA: A network programming environment. IEEE Internet Computing

5 (2001) 88–95
10. Oram, A., ed.: Peer-to-Peer. O’Reilly (2001)
11. Adar, E., Huberman, B.A.: Free riding on gnutella. First Monday (2000)
12. Yu, B., Singh, M.P.: An evidential model of distributed reputation management.

In: Proceedings of the 1st International Joint Conference on Autonomous Agents
and MultiAgent Systems. (2002) 294–301

13. Yu, B., Singh, M.P.: Distributed reputation management for electronic commerce.
Computational Intelligence 18 (2002) 535–549

14. Yu, B., Singh, M.P., Sycara, K.: Developing trust in large-scale peer-to-peer sys-
tems. In: Proceedings of First IEEE Symposium on Multi-Agent Security and
Survivability. (2004) 1–10

15. Henry E. Kyburg, J.: Bayesian and non-bayesian evidential updating. Artificial
Intelligence 31 (1987) 271–293

16. Yu, B., Li, C., Singh, M.P., Sycara, K.: A dynamic pricing mechanism for p2p
referral systems. In: Proceedings of Third International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems. (2004) 1426–1427

17. Wei, Y.Z., Moreau, L., Jennings, N.R.: Recommender systems: a market-based
design. In: Proceedings of the second international joint conference on Autonomous
agents and multiagent systems, ACM Press, New York, NY. (2003) 600–607

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

	A Protocol for a Distributed Recommender System
	José M. Vidal

