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José M. Vidal
Computer Science and Engineering

University of South Carolina
Columbia, SC 29208, USA

803-777-0929
vidal@sc.edu

http://jmvidal.cse.sc.edu

April 6, 2004

Abstract

We study the benefits of teaming and selflessness when using mul-
tiagent search to solve task-oriented problems. We start by presenting
a formal framework for multiagent search which, we show, forms a su-
perset of the task-oriented domain, coalition formation, distributed
constraint satisfaction, and NK landscape search problems. We fo-
cus on task-oriented domain problems and show how the benefits of
teaming and selflessness arise in this domain. These experimental re-
sults are compared to similar results in the NK domain—from which
we import a predictive technique. Namely, we show that better al-
locations are found when the dynamics of the multiagent system lie
between order and chaos. Several other specific findings are presented
such as the fact that neither absolute selfishness nor absolute selfless-
ness result in better allocations, and the fact that the formation of
small teams usually leads to better allocations.
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1 Introduction

Multiagent systems are especially suited to solve problems in which individ-
ual decision-makers with localized information are able to affect their local
state in the hopes that the system will eventually reach a global state of
either optimal or at least satisfactory utility. Classic example scenarios in-
clude distributed sensor monitoring (Conway et al., 1983), distributed task
allocation (Rosenschein and Zlotkin, 1994), and coalition formation (Sand-
holm et al., 1998). In these problems, each agent perceives some part of
the global state and takes actions that modify some part of this state. The
agents act to maximize some local utility function. The function’s details,
e.g., how “selfish” it is, as well as the interaction protocols among the agents
are left to the system designer. The designer must engineer these so that
locally optimal decisions give rise to the best possible global state. We refer
to these types of problems as instances of a more general multiagent search
problem.

In this paper we first introduce a formal framework for multiagent search
that, we show, forms a superset of task-oriented domain, coalition formation,
distributed constraint satisfaction, and Kauffman’s NK landscapes (Kauff-
man, 1993). The grouping of all these different problems into one framework
allows us to leverage results from one domain and use them in another. As
an example this power in Section 3 we present our results on the effectiveness
of cooperation via team formation and selflessness in task-oriented domains.
This approach was inspired by the successful use of “patches” in the search
of NK landscapes in a two-dimensional grid instantiation (Kauffman et al.,
1994).

From our experiments we were able to derive several interesting results.
We show how agents that form teams and engage in limited forms of selfless
behavior find solutions that are of a higher global utility. We show that the
best solutions are found in systems that exhibit dynamics that are at the
phase transition between order and chaos. These results lead us to suggest
that further study should be devoted to the study of coordination protocols
that do not converge to a stable solution but instead continue to change. We
believe that such protocols shall result in better (from a global perspective)
emergent behaviors in multiagent systems. We also present several specific
findings such as the fact that neither absolute selfishness nor absolute self-
lessness result in better allocations, and the fact that the formation of small
teams usually leads to better allocations.

2



2 Multiagent Search Framework

In this section we present a formal framework for describing multiagent search
problems. These problems are characterized by a global state composed of
the aggregation of the value of many local variables. Each agent perceives
the values some of the variables, modifies the value of some of the variables,
and receives a utility that depends on the value of some of the variables. By
limiting which variables the agents perceive, modify, or derive utility from,
we can instantiate various well-known multiagent problem domains.

The global state is denoted by S. It is formed by the union of a fixed set
of local variables {s1, s2, . . . , s|S|}, each one with a finite domain. The set
of agents is A ≡ {1, 2, . . . , n}, where n is the number of agents. Each agent
i ∈ A has an utility function ui : di → R that provides a mapping between a
subset of state variables di ⊆ S and a real number. An agent’s relationship
with its environment is captured by the set of local variables on which its
utility depends, the set of local variables whose value it modifies, and the set
of local variables whose value it views. Specifically, for agent i we define di

to be the set of variables upon which its utility depends, mi is the set of
variables which it can modify, and vi is the set of variables it can view. The
agents modify the state of the variables in their respective mi sets but only
if these modifications satisfy the constraints imposed by P : S × S → {0, 1}.
For example, agent i can only change S into S ′ if p(S, S ′) = 1, where p ∈ P ,
and the state variables it modifies are in mi. If a constraint function evaluates
to 0 it means that the particular state change is not allowed.

We now define a multiagent search problem as the tuple {A, S, U, D, M, V, P}
where A ≡ {1, 2, . . . , n} is the set of agents, G ≡ {S1, S2, . . . , S|G|} is the set
of all possible global states such that S ∈ G, U is the set of all agent utility
functions where ui ∈ U and ui : di → R, di ∈ D, mi ∈ M , vi ∈ V , and P is
the set of constraints, as defined above.

This formalization of multiagent search states the problem but does not
provide a solution. The goal of an agent-based software engineer is to imple-
ment agent behaviors that will enable the quick discovery of the globally opti-
mal solution. That is, the system should converge to s∗ = argS∈G max

∑
i∈A ui(S).

A common approach is the use of individual hill-climbing. In it, each agent
modifies its local variables mi to maximize its utility ui. It is expected that
doing so will also increase the sum of everyone’s utility. Unfortunately, this
approach usually leads to sub-optimal states. In Section 3 we extend this
idea by allowing the formation of teams and the use of partially selfless agents
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and show the benefits of that approach.

2.1 Task-Oriented Domain

The Task-Oriented Domain (TOD) formalization studied by Rosenschein and
Zlotkin (Rosenschein and Zlotkin, 1994) is an instance of a multiagent search
problem. They define a TOD problem as a set of tasks T , a cost function
c : τ → R, where τ ⊆ T , and a set of agents A. The tasks are assigned
to the agents. Each agent tries to exchange some of its assigned tasks with
other willing agents. The authors restrict the agents to act rationally. They
define a rational agent as one which only accepts a deal (i.e., a set of task
assignments) if its costs are equal or less in the new deal than in the current
deal. One example instance of a TOD problem is the Delivery Problem where
a set of letters must be delivered by a set of mail-carriers. Each mail-carrier
is initially responsible for the delivery of a subset of letters. Each mail-carrier
then trades letters with others in order to decrease the length of the route
needed to make all his deliveries.

A multiagent search problem can be reduced to a TOD problem by choos-
ing the appropriate mapping. Each task becomes a state variable whose value
is the agent that is assigned to carry out that task. The global state then
becomes S = {s1, s2, . . . , s|T |} where st corresponds to task t. Since all tasks
can be handled by all agents, we have that mi = di = S for all agents. The
value of vi will depend on the particular solution algorithm used. That is,
the TOD formulation does not specify how much the agents know about the
current task assignments. If the agents know who is responsible for every
task then vi = S, otherwise it might be that vi changes dynamically. Finally,
the agents’ limitations in the changes each one can make to the global state
are captured by p(S, S ′) which is 1 when ∀i∈Aci(S

′) ≥ ci(S) where ci(S) is the
cost that agent i incurs in global state S (by handling all the tasks assigned
to it in that state). The S and S ′ are also limited to differ by the value of
only one variable because only one task can be transferred between agents
at each step.

Different instances of TOD problems may have different cost functions, as
well as different restrictions on the types of interactions the agents can engage
in. These restrictions are represented by different p functions. The designer of
a multiagent system for a TOD problem must design the interaction protocols
such that the best possible global state is reached in the shortest amount of
time. Although we do not believe that there exists a general approach which
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will solve all TOD problems optimally, we show in Section 3 how teaming
can improve the quality of the solution found in TOD multiagent search
problems.

2.2 NK Landscapes

Kauffman’s NK landscapes (Kauffman, 1993), originally intended for the
study of evolution’s search over gene instances, may also be considered a
special case of our multiagent search formalization. An NK landscape con-
sists of N binary “genes”. The fitness of each gene depends on its state (zero
or one) and the state of K other genes. An instantiation of an NK landscape
sets N and K to integer values, where K < N , and randomly assigns to each
gene a fitness function that depends on the state of the gene and the state of
K other genes. An NK model can be reduced to multiagent search by setting
mi = {si}, di = si ∪ {K other state variables}, vi = di, and p(S, S ′) = 1.

This reduction is especially interesting because it allows us to leverage
research on the characterization of NK landscapes and the effectiveness of
genetic searches over this space. That is, even though multiagent problems
are different from NK landscapes, we can try to map some of the theorems
and results in that domain to the more complex multiagent search domains.

2.3 Distributed Constraint Satisfaction

A distributed constraint satisfaction problem, as presented in (Yokoo et al.,
1998), is defined as a set of n variables x1, . . . , xn, where the value of xi

is taken from some domain Di, and a set of constraints pk(xk1 , . . . , xkj
) that

operate over these variables. The constraints are boolean functions that must
evaluate to true for the problem to be solved. Under a typical distributed
algorithm, each agent in the system is assigned one variable. The agent is
then responsible for setting its variable to a value that does not violate any
constraints.

A straight-forward mapping of this problem to our multiagent search
framework is possible. We simply map each variable xi to one of our local
variables si. Each agent i is assigned one of the variables so that mi = si.
Each agent i’s utility depends on the set of all variables that share a constraint
with i’s variable. That is, di is the set of all variables for which there exists
a constraint between that variable and si. Similarly, agent i can either view
the state of all variables (vi = S) or be limited to those variables that share

5



a constraint with its variable (vi = si). Finally, we define ui to be one when
all the constraints that involve si are satisfied and zero otherwise.

By translating a distributed constraint satisfaction problem into a multi-
agent search problem we are implicitly assuming that solutions which violate
fewer constraints are better. However, in a strict interpretation of distributed
constraint satisfaction all solutions that violate any number of constraints are
equally undesirable.

Finally, we point out that the use of cooperation for solving constraint
satisfaction problems has been found to be successful (Clearwater et al.,
1991), although under a different model than the one used here. Those
results are in accordance to the results we present for the TOD in Section 3.
However, more research is needed in order to bring the two results together
under the multiagent search umbrella.

2.4 Coalition Formation

Coalition formation search can also be considered an instance of multiagent
search. This should not be a surprise since it has already been shown (She-
hory and Kraus, 1998) that coalition formation and task allocation are related
problem domains. The reduction is achieved by assigning an agent to each
state variable. The domain of the state variables is a number between 1 and
n, the number of agents. It represents the coalition that this agent belongs
to. We then define mi = si, di = A, vi = A, and p(S, S ′) = 1 for all agents i
and states S and S ′.

3 Teaming and Multiagent Search in a TOD

Common techniques to speed up multiagent search in task-oriented domains
include communication, delegation (e.g., using contract-net (Smith, 1981)),
and the use of auctions (Wellman, 1996). These and other grouping methods
align an agent’s desires with those of a larger team. However, we do not
have any a priori evidence to make us believe that teaming will lead to
better solutions for the system as a whole. Namely, we do not know whether
the best solution, from a global perspective, will be found by selfish agents,
by selfless agents, or by agents somewhere in between.

In this section we instantiate our multiagent search formalism in a task-
oriented domain an perform a series of experiments that demonstrate the
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inherent benefits of teaming and that determine the situations in which self-
less behavior is better from a global perspective.

3.1 TOD Problem Specification

We set out to study the benefits of cooperation in a TOD problem, as de-
scribed in Section 2.1, by randomly grouping agents into teams. The teams
are non-overlapping and of a fixed and equal size. The team sizes vary from
individual teams where each agent is a team to the grand team where all
agents belong to the same team. Agents in a team take actions that maxi-
mize the team’s utility. We define team(i) to be the set of agents in i’s team,
including i. We then define the utility that agent i receives in global state S
as

teamUtil(i, S) =
1

|team(i)|
∑

j∈team(i)

uj(S). (1)

Finally, we also vary the number of tasks that each agent can do. In the
standard TOD problem specification all agents are able to do all the tasks.
A common variation is to allow agents the ability to perform only a subset
of the tasks. This variation simulates problem domains with heterogeneous
agents where some tasks can only be done by some agents. We limit the
set of tasks an agent can do by modifying mi. At one extreme every task
can be done by only one agent, in which case the task allocation problem is
trivial. At the other extreme all the agents are able to do all the tasks thereby
expanding the size of the search space. As such, it is very time-consuming
to find an optimal solution for this case.

3.2 Search Algorithm

In order to determine the effectiveness of team formation in TOD we
developed a simulator that searches the space of possible states S. Figure 1
shows the main loop of our search algorithm. For each run we randomly
generate a new cost function and new starting state. Each step in a run
consists of first randomly selecting one agent. This agent then determines
which is the best action it can take. The available actions to the agent are to
either give one of its tasks to another agent or to take one task from another
agent. The agent will consider all possibilities and choose the one with the
highest team utility for the agent’s team. Also, an agent can only give a task
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S ← Randomly chosen state
for step = 1 to 500 do

maxUtility ← −∞
maxState ← S
i← chooseRandom(A)
for t ∈ T do

if st = i then // i is doing t
for j ∈ A− {i} do

S ′ ← S
s′t ← i
if t ∈ mj ∧ willingToDo(j, S, S ′) then

tmp ← teamUtil(i, S ′) - teamUtil(i, S)
if tmp > maxUtility then

maxUtility ← tmp
maxState ← S ′

end if
end if

end for
else // i not doing t

if st = i then // i could do t
j ← argj∈A sj = t // j is doing t
S ′ ← S
s′i ← t}
if willingToDo(j, S, S ′) then

tmp ← teamUtil(i, S ′) - teamUtil(i, S)
if tmp > maxUtility then

maxUtility ← tmp
maxState ← S ′

end if
end if

end if
end if

end for
S ← maxState // Move to best state.

end for

Figure 1: The main loop in our TOD search simulations.
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to or take a task from another agent if that agent’s utility loss is no greater
than the maximum loss L, a parameter which we vary from zero, for purely
selfish agents, to one, for agents that are willing to take whatever deal is
offered to them. That is, if the system is on state S then agent i will only
accept a new state S ′ if willingToDo(i, S, S ′) is true, which we define as

willingToDo(i, S, S ′) = teamUtil(i, S)− teamUtil(i, S ′) ≥ L. (2)

Agents with a maximum loss of zero (L = 0) are not willing to accept
any deal where their new team utility is less than their current team utility.
These are the rational agents from (Rosenschein and Zlotkin, 1994). On the
other hand, agents with a maximum loss of one (L = 1) are willing to take
whatever deal the other agent offers since the maximum utility loss can never
be more than one. These agents could be said to be completely selfless.

3.3 Random Landscape Shared Cost Function Results

For the first set of tests we defined one cost function to be shared by all
the agents. The cost for doing every task subset is set to be a random
value between zero and one. This means that the costs functions are neither
additive nor subadditve. The lack of correlation among the costs of similar
task subsets makes it harder to search this space than if they were correlated.
Section 3.4 shows the results when each agent has its own cost function.

Our first experiments involve 16 agents and 32 tasks. For each experi-
ment we changed the number of tasks that each agent can do. Within each
experiment we varied the maximum loss parameter (L), as well as the num-
ber of teams allowed. These varied from one grand team—everyone on the
same team—to 32 individual teams—every agent is in a team by itself. For
each combination we executed 1000 runs, each of 500 steps, and plotted the
average total cost of the last five states searched. We used numbers of teams
that are powers of two so that all teams would be of the same size. We
noticed that after 500 steps the cost of the states being visited had usually
stabilized so we chose 500 as a suitable number of steps to carry out before
stopping the algorithm. The way we have defined our search algorithm it
can often keep searching forever, never getting stuck at a local optimum. As
such, we had to stop it at some arbitrary point and check the utility of the
solution it had found.

The results of our first tests can be seen in Figure 2. It shows the average
final total cost for various tests. For each test we ran various populations
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each with a different maximum loss which is represented with the letter “L”
in the figures. The total cost is simply the sum of the costs for all agents.
An agent’s cost for a particular state is equal the negative of its utility for
that state. Figure 3 displays the standard deviation for one of these results,
showing that our results are statistically significant. The error bars do not
overlap for many of the cases.

Notice how all the curves in the various graphs on Figure 2 have the same
value for the case where there is only one team, regardless of the value of L.
This is to be expected. Upon examination of our algorithm we notice that an
agent that is chosen to act will only pick an S ′ which has a higher teamUtil
than the current state S. As such, it does not matter if the other agent is
willing to allow a new state with lower utility since, as both agents are on the
same team, the lower utility state will not be chosen by the first agent. The
agent will rather stay at S than move to an S ′ with lower teamUtil. In other
words, when all the agents are on the same team the algorithm degenerates
into hill-climbing on the global search space. That is, the total cost of S ′ is
always greater than or equal to the total cost of S regardless of L.

The first interesting feature of Figure 2 is the fact that the minimum
cost, no matter how many teams are used or how many tasks the agents
can do, is always attained by using a maximum loss value of between .4 and
.6. That is, if the agents are either completely selfish (L = 0) either as an
individual or as a group, or completely selfless (L = 1), the group as a whole
does not do as well as if the agents are somewhere in between, regardless of
the number of teams or abilities of the agents. The most interesting result
comes from the fact that the selfish agents (L = 0) do the worst of all
regardless of the number of teams in almost all cases. This is highly counter-
intuitive. One excepts that since selfishness prevents the agent’s team utility
from ever going down and the global utility is nothing more than the sum
of these team utilities, that the team search would be guaranteed to proceed
monotonically down in the cost and, therefore, more likely to reach a lower
cost for all. However, it seems that allowing the team search to sometimes
go up in cost also allows the discovery of even better solutions. On the other
hand, if we allow these moves to be too severe, as happens when L = 1,
then the gains from the extra exploration are lost. Once explained in this
way, one immediately recognizes that this is similar to simulated annealing,
except that the moves there are completely random. We therefore conclude
that partial team-selflessness in multiagent search provides it with some of
the benefits of “temperature” in a simulated annealing algorithm, thereby
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lowering the cost of the final solution.
The second interesting feature of Figure 2 is that it seems like there is no

easy way to predict which combination of teams and L values will achieve
the minimum total cost. In general it seems like the minimum cost is usually
found when using somewhere between two and eight teams. However, this is
a large range and we would like a more specific prediction. Fortunately, in
(Kauffman et al., 1994), Kauffman et. al. have studied a similar problem in
NK landscapes and found a possible predictor for that domain. Since, as we
have shown in Section 2.2, NK landscapes can also be considered an instance
of multiagent search we have reason to believe that their results might bear
some relevance to ours.

Their experiments consist of agents in a 2-dimensional NK landscape,
each agent connected to its four nearest neighbors. The area is divided
into square patches. Each agent decides whether to flip its state based on the
utility that its patch will receive. After carrying out a series of experiments in
this domain Kauffman et. al. found that the optimal solution is found when
the patch size is such that the system’s dynamics are between the ordered and
the chaotic regimes. That is, large patches make the system quickly converge
to a solution state; small patches lead the system into chaotic dynamics where
the state is constantly changing. These two diametrically opposite dynamics
are also present in our system as we vary the number of teams from 1 to
32. We, therefore, started to suspect that the same phenomena should be
present in some way in our domain. Neither we nor (Kauffman et al., 1994)
can offer a good explanation as to why better solutions are found on systems
whose dynamics are at the edge of chaos.

We can show that the best solution is found when the system dynamics
are at the edge of chaos by looking at the percentage of runs that converged
to a local optimum as a function of the final cost for that run. Figure 4 shows
such data for one of the graphs in our first experiment. We notice that, as
the number of teams varies from 1 to 16, the systems’ dynamics vary from
static to chaotic, except for the case where L = 0. These dynamics arise
because when only one team exists the system is simply doing a hill-climbing
search on the global cost landscape. On the other hand, when each agent is
its own team it is much more likely that any one global state will not be a
local optimum for one of the agents. This agent, if chosen to act, will move
that global state away from the otherwise local optimum. As such, it is hard
for the system to ever converge to a local optimum.

This result is extremely important because it suggests that the best mul-
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tiagent search algorithms, from a global utility perspective, are those whose
dynamics are at the edge of chaos. Current research in multiagent systems’
protocols centers around the idea of reaching an equilibrium where each agent
knows what to do and does not have any incentive to change its allocation.
This bias comes from the strong influence of game theory and economics on
multiagent systems design. However, there are cases where an equilibrium
solution will not find the best solution. In fact, as we have shown, in this
task-oriented domain the equilibrium solution is guaranteed to be inferior.

It is also interesting to note that our results diverge from (Kauffman et al.,
1994) in the case where the maximum loss is 0, which would seem to be the
case that most closely matches their simulation since their patches never
cooperate with each other. That is, their patches act like teams with L = 0.
An agent in a patch never surrenders some of its utility for the benefit of
an agent in another patch. However, their patches overlap so that one agent
can be part of two patches. We believe that it is this overlap that changes
their dynamics to act more like our L > 0 cases. That is, overlapping team
memberships seems to have similar effects as selflessness.

A third interesting and encouraging feature of Figure 2 is the fact that
small teams of size one and two can do well, if the maximum loss is ade-
quately chosen. Specifically, the maximum loss needs to be about .4 for this
scenario. This result is encouraging because it is these smaller team sizes
which more faithfully replicate the physical constraints of most multiagent
systems. In many multiagent systems there is little to no communication
among agents. In the domain we are simulating, an agent needs to know the
state of all the other agents in its team in order to calculate the utility of the
team. Therefore, the larger the team the more communication that will be
necessary. We conclude that, in general, we should be able to construct effec-
tive multiagent systems with small teams and low communications overhead
if we allow these teams to act somewhat selflessly.

Similarly, another encouraging feature from Figure 2 may be discerned by
drawing on each graph a horizontal line that crosses the point that all curves
intersect when the number of teams is zero. Any points that fall below this
line are cases where breaking the system into smaller teams actually results in
a lowering of the final cost. That is, these are all the cases where subdividing
the problem helps the system find a better solution (even without taking into
account the added benefits that might accrue from the reduced inter-agent
communication). Subdividing the problem clearly helps in the majority of
cases. The graphs also show that as agents are able to do more and more
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tasks the number of points below this line decreases. That is, as the agents
become more homogeneous in their abilities to carry out certain tasks the
benefits of teaming are reduced. This result has direct implications to the
design of multiagent systems.

A fourth feature of Figure 2, one that is related to the previous one, is
the fact that the curves with L = 1 show better values for the cases where
the agents are able to do fewer tasks. That is, acting selflessly (L = 1) helps
the system reach a better solution when the agents are heterogeneous. It is
not clear to us why this happens. One can hypothesize that when the agents
can only achieve a limited number of tasks then there are fewer agents that
can do each task. That is, if an agent that can do a task is willing to do it
even if it means its team will get lower utility then the system as a whole
will be able to move to another new state. Otherwise, if the agents are not
willing to take a task then the system is much more likely to get stuck early
in the search. Similarly, when the agents can do many tasks then we have
many agents that can do any one of the tasks. As such, even if one agent is
unwilling to take on some particular task there is a good chance that another
agent will be willing to do so. The search would then move to another state.

A fifth feature of note is the fact that very often the L = 0 and L = 1
curves are the worst performing. This indicates that neither extreme is ever
the best choice for a system. That is, agents should never be completely self-
ish or completely selfless. Some degree of local responsibility and cooperation
are needed in order to arrive at a good system-wide solution.

Finally, in order to make sure that these results remain the same as we
increase the number of agents we carried out the same experiments but using
32 agents and 64 tasks. Figure 5 shows how similar those results are to the
one we just found. Of course, the time needed to carry out these experiments
was much longer so we were able to do only a few cases. These and other
experiments we have performed make it clear that the insights we have gained
from our initial experiments are not an artifact of that particular setting but
are indeed a general phenomena which we expect to see for a wide variety of
agent and task instantiations.
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3.4 Random Landscape Individual Cost Functions Re-
sults

We repeated the tests from the previous sections but this time giving each
agent its own cost function. This change has the effect of drastically increas-
ing the size of the search space the agents must search. Whereas before the
only aspect of a state that figured in the calculation of the total utility was
the division of tasks into subsets, now we must also consider the assignment
of these subsets to particular agents. The results from these experiments are
shown in Figure 6.

One difference that we notice from the previous experiments is that the
overall minimum is lower. This is a striking result since the search space for
this case is much bigger. However, we believe that even thought the search
space is bigger, the search is helped by the fact that each agent has its own
cost function means that the effective branching factor is larger. By this
we mean that while the number of states that can be reached from any one
state remains the same (i.e., the branching factor) the number of different
global utilities that those states represent is much larger (i.e., the effective
branching factor). This means that the search algorithm has more options
with different cost from each state that it is in. We believe that with more
options available the algorithm is more likely to find a lower cost state.

On the other hand, most of the features from the experiments with a
shared cost function remain unchanged. In both cases the best solution
seems to be found when the systems’ dynamics are at the edge of chaos; the
benefits from teaming are apparent in most of the cases; and the L = 0 and
L = 1 graphs are often the worst performing. As such, we must conclude
that giving each agent its own randomly-generated cost function does not
have a significant impact on the features we discussed and, therefore, the
lessons we learned still apply for this case.

4 Conclusion

We have studied the benefits of teaming and selflessness for agents engaged
in multiagent search in task allocation problem spaces with randomly gen-
erated cost functions. The experimental results showed several interesting
results. We found that the best solution is usually attained with a maximum
loss of between .4 and .6, that is, when the agents act somewhat selflessly.
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These parameter values allow the search to make more exploratory moves.
These values seem to have similar effects to the temperature parameter in
simulated annealing. We found that an even better predictor of the effec-
tiveness of the multiagent search is the dynamics of the agents’ behavior.
Specifically, we found that the best global solution is always found when the
systems’ dynamics lie between the ordered and chaotic regimes. That is, as
we vary the value of the parameters that represent the maximum loss, the
number of teams, and the number of tasks that agents can do, the systems
dynamics vary from ordered, where most of the runs quickly converge to
some state, to chaotic, where none of the runs seems to ever converge. The
best solutions were found for those cases where only a small percentage of
the runs converge. We also found that small teams generally lead to better
solutions and that teaming, in general, improves the quality of the result.
Finally, we showed that neither complete selfishness nor selflessness are the
best solution in almost all cases.

These results are important for the design of multiagent systems. Specif-
ically, our results on the dynamics of multiagent systems seem to suggest
that further research into multiagent coordination protocols should not con-
centrate on protocols that lead to a “clean” fixed solution but should instead
study open protocols whose interactions might never end. Open-ended in-
teraction protocols seem more likely to enable the system arrive at a bet-
ter global solution. Of course, the computational and communications cost
might make this a sub-optimal solutions. The final tradeoff would seem to
be domain dependent.

Finally, we also hope that this article will establish a foundation for
the careful mathematical study of multiagent search problems. As we have
shown, these problems often appear under different names such as task al-
location, constraint satisfaction, and coalition formation. Our framework
provides a rigorous platform for the comparison of multiagent coordination
techniques in all these domains. We believe there is much to be gained by
leveraging results from these disparate areas, as we have done in this paper.
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Figure 2: Results for 16 agents and 32 tasks when all agents share the same
cost function.
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Figure 5: Results for 32 agents and 64 tasks.
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Figure 6: Results for 16 agents and 32 tasks when each agent uses its own
cost function.
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