
An Incentive-Compatible Distributed Recommendation
Model

José M. Vidal
Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

vidal@sc.edu

ABSTRACT
Our research is concerned with the study and development of
incentive-compatible exchange mechanisms for recommen-
dations in a multiagent system. These mechanism will al-
low and motivate agents to create an economy of ideas,
where agents trade recommendations between themselves.
In this paper we present a domain model and an incentive-
compatible protocol for information exchange. Our model
captures a subset of the realities of recommendation ex-
changes in the Internet. We provide an algorithm that selfish
agents can use for deciding whether to exchange recommen-
dations and with whom, that is, they can decide who they
can trust to provide adequate recommendations. We an-
alyze this algorithm and show that, under certain common
circumstances, the agents’ rational choice is to exchange rec-
ommendations. Finally, we have implemented our model
and algorithm and tested the performance of various popu-
lations. Our results show that both the social welfare and
the individual utility of the agents is increased by partici-
pating in the exchange of recommendations.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence, Multiagent Systems

General Terms
Learning in Multiagent Systems, Recommender Systems,
Trust

1. INTRODUCTION
In the last few years we have seen the proliferation of recom-
mender systems [9]. Almost every web retailer seems to have
software that can recommend an item for purchase. These
recommendations are made based on the users’ purchasing
and browsing history, that is, what everyone bought and
what everyone looked at. The popularity of recommender
systems confirms their effectiveness in recommending items

Proceeding of to the Sixth International Workshop on Trust, Privacy, De-
ception, and Fraud in Agent Societies, 2003.

that the users find appealing. However, we find one major
drawback with these systems—they are all centralized im-
plementations. This design choice leads to several problems.

• The central server becomes a central point of failure
and a central target for attack by those seeking to
gather information about all users.

• It assumes that users are willing to give the informa-
tion to the central server. Users do not receive any-
thing in return for this information.

Our goal is to find ways to enable the emergence of a truly
distributed recommender system in an Internet populated
by selfish agents. To achieve this goal our system must pro-
vide the agents with an incentive to trade recommendations
with each other and a protocol for enabling this trade. We
also eschew the idea of a system where agents buy and sell
recommendations for several reasons.

• The processing of payments adds a large cost to the
transaction and requires the use of a trusted third
party, which leads us back to a semi-centralized so-
lution.

• Users have historically been reticent to allow auto-
mated agents to spend real money unless the agents
are given very specific rules of behavior.

Instead, we plan to use information itself as a currency.
Since agents are already presumed to have access to the
user’s preferences they can trade these preferences with other
agents for more recommendations that might be useful to
the user. The problem then becomes that of ascertaining
the value of a recommendation. That is, we need to de-
termine the utility an agent can expect to derive from giv-
ing one of its recommendations to another agent. Or, more
specifically, under which circumstances should an agent give
a recommendation to another.

To better understand this problem and identify situations
under which this economy of information might arise we
have developed a formal model which we describe in Sec-
tion 2. We use this model to derive some analytical results.
The model simulation and test results are shown in Sec-
tion 4. Section 5 shows some work related to our research.
Finally, we present our conclusion in Section 6.

Table 1: Summary of notation.

D set of documents, d ∈ D.
A set of agents, i ∈ A.

Li(d) a proposition that is true if i likes d.
Ri(d) a proposition that is true if i has read d.

Pr the payoff for reading a liked document.
Cr the cost of reading a document.
Cm the cost of sending a message.

2. THE MODEL
We envision a world populated with a finite set of agents A
and a much larger but still finite set of documents D, where
d ∈ D is some document. For each agent i ∈ A we define
Li(d) to be true if and only if agent i likes document d. An
agent does not have direct access to its L set—it can only
find out which documents it likes by actually reading them.
We use the notation from [4] for representing an agent’s
knowledge. Specifically, if i knows that it likes d, then we
say that KiLi(d) is true. Also, the set of documents that
i knows that it likes is given by Li

i ≡ {d ∈ D |KiLi(d)}.
Similarly, the set of documents that i knows that j ∈ A
likes is given by Lj

i ≡ {d ∈ D |KiLj(d)}. In our model
agents initially do not know which documents they like. An
agent has to read a document in order to determine whether
it likes it or not.

We also establish some costs and payoffs for our model. Pr is
the payoff an agent receives for reading a document it likes,
that is, i reads a document d for which Li(d) is true. Cr is
the cost of reading a document. We assume that it takes the
same amount of resources to read any document. We also
assume that Pr > Cr so the agent will alway derive a positive
utility from reading a document that it likes. Finally, Cm

is the cost of sending a message. These costs are all valued
in terms of the agent’s utility. As such, we can say that the
utility i receives for reading d is given by

Ui(d) =

{
Pr − Cr if Li(d)
−Cr otherwise.

(1)

The agents’ interactions are kept as simple as possible so
that we may study the system’s dynamics. Specifically, the
agents meet in pairs and have a chance to concurrently send
each other a recommendation. That is, if i and j meet then
i can choose to tell j about some d that i knows is in Li,
similarly j can choose to tell i about some other d′ that j
knows is in Lj . Of course, each one could also choose to say
nothing.

When two agents meet each must decide whether to tell the
other about a document it likes. Since each one of them has
two choices we can represent this decision with the game
matrix shown in Figure 1. The matrix shows that if the
agents decide to do nothing they will receive no utility. If
one agent decides to send a message but receives no message
from the other one then his payoff is simply −Cm because
this is the cost of sending a message. We ignore all long-
term implications of an agent’s actions since these will be
considered when exploring the dynamics of the system; at
this time we are only interested in the immediate payoffs to
the agents.

i

j
Nothing Send

N 0, 0 xi(j),−Cm

S −Cm, xj(i) xi(j)− Cm, xj(i)− Cm

Figure 1: Payoff matrix that two agents face when
they meet.

The utility value represented by xi(j) captures the utility
that agent i accrues when it receives a recommendation from
agent j, similarly for xj(i). While we cannot calculate an
exact value for xi(j), we can calculate its expected value
using some probability calculations. Specifically, we can de-
termine that if i receives a message from j stating that it
likes d then the payoff i can expect to receive by reading d
is given by

xi(j) = ri(j)(Pr[Li(d) |Lj(d)] · (Pr − Cr)

+ (1−Pr[Li(d) |Lj(d)]) · (−Cr)),
(2)

where ri(j) is defined as the probability that i will receive a
document from j that i has not read. This equation states
that the payoff is equal to the probability that j will send a
document d which i has not read times the expected payoff.
This expected payoff is given by the probability that i likes
d given that j likes d times the payoff for reading a liked
document plus the probability that i does not like d given
that j likes d times the cost of reading a disliked document.
Notice that we can consider xi(j) to be the expected value
of Ui(d) given that d is a document sent from j to i. The
value of xj(i) is calculated in a similar manner to xi(j). We
also note that

Pr[Li(d) |Lj(d)] =
Pr[Li(d), Lj(d)]

Pr[Lj(d)]
, (3)

by using Bayes Theorem. As such, xi(j) will be equal to
xj(i) if Pr[Li(d)] = Pr[Lj(d)], that is, if the prior proba-
bility for the agents’ liking a document is the same. This
means that, if we can assume that all agents are equally
discriminating in their taste then we can also assume that
xi(j) = xj(i). If these facts are common knowledge in the
system then the fact that xi(j) = xj(i) should also be com-
mon knowledge.

While the value of (3) can only be determined with knowl-
edge of Li and Lj , i can try to approximate it given its
knowledge. That is, i can assume that its sampling of the
document space is even and that j’s recommendations are
also even and, therefore, the likelihood that a new recom-
mendation from j will also be liked by i will reflect the past
behavior. Specifically, i can assume that

Pr[Li(d), Lj(d)]

Pr[Lj(d)]
≈ |L

i
i ∩ Lj

i |
|Lj

i |
. (4)

Using this approximation and assuming that ri(j) = 1, a
safe assumption if there are a lot of documents or if we can
assume that j knows the documents that i has read, we can
determine that

xi(j) ≈
|Li

i ∩ Lj
i |

|Lj
i |
·(Pr−Cr)+

(
1− |L

i
i ∩ Lj

i |
|Lj

i |

)
·(−Cr). (5)

All the values in this equation can be calculated by i. An

agent can, therefore, use this equation to determine its ex-
pected payoff at runtime, as long as |Lj

i | > 0. If |Lj
i | = 0

then i has no information about j’s likes so the best it can
do is assume that a recommendation by j will have the same
expected utility as reading a randomly chosen document1.

If xi(j) > 0 and xj(i) > 0 then the payoff matrix of Figure 1
becomes a Prisoner’s Dilemma matrix. As such, we would
expect Tit-for-Tat to be the evolutionary stable strategy [3].
In a population of Tit-for-Tat players this means that all
players will choose to send. We can also determine that
xi(j) > 0 as long as

|Li
i ∩ Lj

i |
|Lj

i |
≥ Cr

Pr
. (6)

Once an agent decides that it is going to tell the other one
about a document that it likes, it must choose a document.
That is, which d from among the KiLi(d) should i send to j?
There are three possible ways for i to choose a document. It
could choose randomly from either one of the following sets:

1. {d ∈ D |KiLi(d)},

2. {d ∈ D |KiLi(d) ∧ ¬KiLj(d)},

3. {d ∈ D |KiLi(d) ∧ ¬Rj(r)}.

The first choice is the simplest to implement since it only re-
quires choosing randomly from a set of documents. The sec-
ond choice can be implemented if i keeps track of all the rec-
ommendations it has received in each encounter. The third
choice can only be implemented if i knows all the documents
that j has read. This knowledge could be acquired either
via direct communication or by having all agents “post” a
list of all the documents they have read, without specifying
whether they liked them or not, on a place that all others
can access, for example, in a web page. In the tests given
on the next section we assume that agents do post these
lists. It is also clear that each of these methods will perform
better than the next one since each one has a reduced prob-
ability of providing already-known information to the other
agent. That is, in the third choice agent i is guaranteed to
choose a document that the other agent has not read, in the
second choice there is a small probability that the chosen
document will have already been read by j (but i does not
know that j likes it), and in the first choice this probability
is even greater.

As an aside, we also note how (2) captures the need for
agents to have correlated preferences in order to enable some
cooperation. That is, if i and j have completely uncorrelated
preferences then

Pr[Li(d) |Lj(d)] =
Pr[Li(d)] ·Pr[Lj(d)]

Pr[Lj(d)]
= Pr[Li(d)] (7)

and

xi(j) = Pr[Li(d)] · (Pr −Cr) + (1−Pr[Li(d)]) · (−Cr). (8)

1Our ongoing research explores the possibility of having
agents recommend other agents, a technique which can pro-
vide the agent with a better estimate of the expected utility
from unknown agents.

Therefore, if i and j have uncorrelated preferences then i’s
payoff does not depend on j’s recommendation and sim-
ply reflects i’s discriminating taste in documents, that is,
Pr[Li(d)]. As such, j’s recommendation to i has the same
expected value for i as simply choosing a document at ran-
dom so i will choose not to ask j for a recommendation since
that incurs an extra Cr cost.

In summary, our analysis leads us to several conclusions.

• The agents need to explore their domain by reading
randomly chosen documents and exchanging recom-
mendations with randomly chosen agents, otherwise
they will fail to explore the whole space.

• It is probably safe for the agents to assume that xi =
xj since it is likely that all agents will be equally se-
lective.

• The value of xi can be approximated with (5) which
can be determined from the agent’s observations.

• If xi > 0 and we assume that xi = xj then the agents
are faced with Prisoner’s Dilemma payoffs so we can
expect the system to evolve towards a Tit-for-Tat strat-
egy.

• If the two agent’s preferences are not correlated the
agents will rather choose documents randomly than
engage in exchange.

2.1 An Agent’s Choice
An agent in our model is presented with a series of choices.
It must first decide whether it wants to randomly choose a
document that it has not read or ask another agent for a
recommendation. If it decides to read a randomly chosen
document d it can expect a utility of

Pr[Li(d)] · (Pr − Cr) =
|{d ∈ D |Li(d)}|

|D| · (Pr − Cr). (9)

The agent will not know the value of this probability since
it does not know Li. It could, however, try to estimate
it based on its past experience by using the ratio of Li

i to
the total number of documents i has read (Ri). That is,
use |Li

i|/|Ri| as an approximation of the |Li|/|D| ratio. If,
on the other hand, the agent chooses to communicate with
another agent then it must choose whether to pick an agent
at random or try to maximize its expected utility given what
it knows about the other agents. By choosing an agent at
random the agent’s expected utility will be once again given
by (9), except that the agent will also possibly add to its
Lj

i knowledge which might be useful on future interactions.
On the other hand, the agent could choose to pick the agent
which in the past has given him the best recommendations.
That is, choose the j that maximizes (5). The expected
payoff will be the value of xi(j) for that j. For the cases
where i does not know anything about the documents that
j likes, i assumes that the expected utility will be given by
(9).

Notice that both of the choices that the agent has to make—
whether to choose a document at random or ask some agent,
and whether to ask an agent at random or pick the one that
maximizes the expected utility—are instances of the classic

when acting:
if random 1.0 < document-explore then

read a randomly chosen document
else if random 1.0 < agent-explore then

exchange recommendations with a randomly chosen
agent

else
for all j ∈ A− {i} do

if |Lj
i | = 0 then

pi(j)← |Li
i|

|Ri|
· (Pr − Cr)

else
pi(j)← xi(j) // as defined in (5)

end if
end for
j ← argj max pi(j)
if xi(j) > Cm then

send random d from {d |KiLi(d) ∧ ¬KiRj(d)}
else

read a randomly chosen document
end if

end if

when j requests exchange:
if xi(j) > Cm then

send random d from {d |KiLi(d) ∧ ¬KiRj(d)}
else

send nothing
end if

Figure 2: Decision algorithm for agent i.

explore versus exploit problem in machine learning (also re-
ferred to as the n-armed bandit problem). The consensus
solution to this problem consists of having the agent explore
with a small probability. If the environment is fixed then this
probability can be slowly reduced over time. Our environ-
ment is not fixed since the other agents will also be changing
their behaviors and new documents are found all the time.
Therefore, agents in our environment will likely choose to
always explore with a small but non-zero probability.

When i receives a request from another agent j to exchange
documents, i must determine which document to send, if
any. This decision can also be made by comparing xi(j)
with Cm. If it will cost i more to send the message than it
expects to receive from the recommendation then it is better
off not sending the message.

All this reasoning is captured by the algorithm shown in
Figure 2. The algorithm’s use of Rj means that it assumes
that agents have access to the list of documents that other
agents have. We envision agents that post a list of the docu-
ments they have read, without including whether they liked
them or not. This list could also include documents about
which the agent has no interest in receiving any recommen-
dations. For example, using an indexing mechanism such as
the Dewey decimal system or the Digital Object Identifier
System (doi.org), and agent could state that it is not inter-
ested in some subset of documents. All other agents would
simply pretend that the agent had already read those docu-
ments and will not recommend any of them to the agent.

Figure 3: Graphical user interface for our dis-
tributed recommendation simulation. The triangles
represent the agent. The 2-dimensional field rep-
resents all possible preferences vectors so that an
agent’s position in the field corresponds to its pref-
erence vector. The documents are represented by
points whose position represents their location in
the preference space. The lines emanating from an
agent show the documents it has already read. The
picture also shows a couple of graphs which are up-
dated dynamically as the program runs and show
the total utility and individual gains from exchange.

3. MODELING USER PREFERENCES
We now present our experimental model. It is important
that this experimental model not be confused with basic
model we introduced in Section 2. The experimental model
is meant to be used as a way to simulate the possible be-
haviors of agents that represent real users. Since we cannot
perform the necessary experiments on hundreds of real users,
we have instead built an experimental model that hopes to
capture the type of preferences and preference relationships
between agents that we might see in the real world.

We represent each document with an n-dimensional binary
vector d. One can imagine that each of the elements in
the vector represents a feature of the document in question.
Each agent also has an n-dimensional binary preference vec-
tor pi. We say that Li(d) if and only if

d · pi

n
≤ r, (10)

where r is some arbitrary but constant number between 0
and 1. We can envision agent i’s preferences denoted by a
point pi in n-dimensional space. All the documents that i
likes are within a distance r of this point. If j’s pj is close
to pi then the agent will like many of the same documents.

4. IMPLEMENTATION AND TEST RESULTS
Our theoretical analysis lead us to the conclusion that our
simple exchange mechanism will be incentive-compatible for
the agents as long as the agent’s preferences are similar
enough. However, we still do not know how likely it is that
we will see situation where agents are similar enough, how
the agent’s exploration rate affects the system, or what char-

doi.org

-5000

 0

 5000

 10000

 15000

 0 5000 10000 15000 20000 25000

T
ot

al
 U

til
ity

Time

c
0.5
0.6
0.7
0.8
0.9
1.0

Figure 4: Total utility over time assuming a fixed
number of documents (1000). Each curve corre-
sponds to a difference value of c, the clustering prob-
ability.

acteristics do the dynamics of the system exhibit. In order
to answer these questions we implemented a simulation of
our distributed recommender system protocol using NetL-
ogo [11]. You can run our applet and examine the source
code for these experiments at http://jmvidal.cse.sc.edu/
netlogomas/. NetLogo facilitated the quick prototyping of
our model. The facilities it provides for GUI creation also al-
lowed us to explore many different parameter combinations.
We only report the most interesting results.

Unless otherwise noted, all the experiments consist of 50
agents with 2-dimensional preference vectors in a toroidal
space (i.e., a square space were the top and bottom edges
are connected as well as the left and right edges), 1000
documents, r = 1/6, Pr = 10, Cr = 2, Cm = 0.1, and
both agent-explore and document-explore (from Figure 2)
fixed at 0.1.

4.1 Standard Agents
Our first experiment was designed to explore the relation-
ship between the agents’ similarities and the expected utility
gain from exchanging recommendations. However, in order
to perform such a test we first has to determine how the
agents’ interests would be clustered. We developed a simple
algorithm for generating clustered preference vectors. In our
algorithm, the first vector is chosen randomly with a uniform
probability distribution. Each vector after this one is chosen
by a simple rule. With a probability of c, which we call the
clustering probability, the vector is chosen to lie in a ran-
domly chosen location that is somewhere within a small dis-
tance of an existing and randomly chosen vector, otherwise
it is placed on a random location. The algorithm generates
one large grouping of agent preferences when c = 1 and a
completely random placement of preferences when c = 0.

The results of our first experiment can be seen in Figure 4
which shows the total utility over time. The total utility
is the sum of all the agents’ accrued utilities. Each one of
the curves in the graph corresponds to a different value of c.
We notice that in all the curves there is an initial dip into

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5000 10000 15000 20000 25000

T
ot

al
 U

til
ity

Time

c
0.5
0.6
0.7
0.8
0.9
1.0

Figure 5: Total utility over time assuming we start
with 1000 documents and then add, on average, one
more every 10 time steps.

negative utility. This dip exists because the agents have
no initial knowledge about the other agents so they start by
randomly choosing agents and exchanging recommendations
with them. It is only after some time that agents learn
which other agents provide good recommendations. We see
how the learning turns around the total utility for the cases
where c ≥ .6. However, for cases where c ≤ 5 the total
utility for the system spends little time in positive territory,
if at all. We can deduce that in these type of scenarios the
agents, on average, would not have an incentive to trade
recommendations.

For comparison, we can calculate that the probability that
an agent will like a document is equal to π/36 since r =
1/6. Therefore, an agent that reads all 1000 documents, say
by choosing one randomly each time, will be expected to
accumulate a utility of 1000(π/36 · (Pr − Cr) + (1− π/36) ·
(−Cr)) which in our examples works to be 94, so the total
utility of 50 of these agents would be 4719. By contrast, the
total utility for c = .9 and c = .8 climbs to 5000, and 10000
for c = 1.

Another interesting feature of the curves in Figure 4 are the
upswings and downswings in the total utility. That is, we
notice that sometimes the utility seems to be monotonically
increasing for a long time and other times it is decreasing for
a long time. This emergent behavior is explained by the sys-
tem’s search for new documents. As time passes the agents
in a cluster become more and more likely to exchange rec-
ommendations with each other but these recommendations
end once they have recommended to each other all the docu-
ments that they know about. At this time the agents go back
to simply reading documents at random which, on average,
causes their utility to decrease. But, when one of the agents
discovers a new document that it likes this recommendation
starts to propagate throughout the cluster, increasing the
utility each time.

The fact that the total utility for all agents ends up decreas-
ing for all the curves in Figure 4 might seem to contradict
our claims that the agents have an incentive to engage in rec-

http://jmvidal.cse.sc.edu/netlogomas/
http://jmvidal.cse.sc.edu/netlogomas/

-50

 0

 50

 100

 150

 0 5000 10000 15000 20000 25000

U
til

ity
 G

ai
n

Time

gain

Figure 6: Total utility gain for every agent over
time, using c = 1. We continue to add a document
each time with probability 1/10

ommendation exchanges but the utility decline is simply an
artifact of the use of a fixed number (1000) of documents. In
Figure 5 we show the results for an identical experiment but,
in this case, at each time step we add a new randomly gen-
erated document to the system with a probability of 1/10.
That is, the system still starts with 1000 documents and a
new document are added, on average, every 10 time steps.
We can see that in this case the curves do not decline. In
fact, the total utility in these cases is expected to keep in-
creasing with a slope roughly proportional to the arrival rate
of new documents.

While the total utility measures are a useful way to mea-
sure the expected utility for an agent, they do not answer
the individual agent’s question of whether or not it should
bother to exchange recommendations. That is, will an agent
in fact receive more utility if it agrees to exchange recom-
mendations? We define the utility gain of an agent to be
the utility it received from obeying a recommendation it re-
ceived, which would be Pr − Cr if the agent liked it and
−Cr otherwise, minus the expected utility the agent would
get if it chose a document at random and read it. We show
the utility gain for every one of the 50 agents in Figure 6,
which uses c = 1. We can see that 49 of the agent accrued a
positive utility gain and only 1 agent had a negative utility
gain. Therefore, there is an overwhelming probability that
agents who exchange documents will gain extra utility by
doing so.

One expects that the probability of gaining utility by ex-
changing documents will decrease as the clustering probabil-
ity decreases. Figure 7 confirms this expectation. It shows
the utility gain for 50 agents using c = .9. We notice that
there are now 33 agents with positive utility gain and 17 with
negative gain. An analysis of this system showed that it was
those agents that lie within a cluster which overwhelmingly
received the utility gain. We can conclude that even in cases
where not all agents are in a cluster, those that are in the
cluster will benefit from the exchange of recommendations.

4.2 Greedy Agents

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000

U
til

ity
 G

ai
n

Time

gain

Figure 7: Total utility gain for every agent over
time, using c = .9 and 1000 documents.

-25000

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 0 5000 10000 15000 20000 25000

T
ot

al
 U

til
ity

Time

c
0.6
0.7
0.8
0.9
1.0

Figure 8: Total utility over time with agent-explore

set to .05.

Once agent designers have access to the results we presented
in the previous sections they should be convinced that, as
long as they expect their preferences to be close to those
of a sizable subset of agents, that the best strategy is to
provide and accept recommendations. However, a designer
might wish to further improve on this strategy by creating
a “greedy” agent which tries to exploit the knowledge of
others. An exceptionally greedy agent would not provide
any recommendations to any other agent—simply accept-
ing recommendations from them. This strategy will surely
and quickly backfire as the agent becomes ostracized by the
others who learn that it does not provide useful recommen-
dations. A more reasonable greedy strategy would be to
reduce the agent-explore rate to a very low number. Such
a low exploration rate would lead an agent to keep exchang-
ing recommendations with the best agents that it has found.
It would only search for new agents to exchange recommen-
dations with when it had used up all the recommendations
from the agents it knows provide good recommendations.

In order to determine what would happen to a system com-
posed of these greedy agents, we repeated the same tests as

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000 25000

U
til

ity
 G

ai
n

Time

gain

Figure 9: Gain of each agent for c = 1 with
agent-explore set to .05.

-150

-100

-50

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000

U
til

ity
 G

ai
n

Time

gain

Figure 10: Gain for each agent for c = .9 with
agent-explore set to .05.

before but using an agent-explore value of .05. The total
utility accrued over time for a series of runs can be seen in
Figure 8. We can see that the agents still manage to ac-
crue a positive utility over time. In fact, comparing it with
Figure 4, we can see that the population of greedy agents
accrues more utility for the case where c = .9. However,
we also note that the utility is almost the same for the case
where c = 1 and is much lower for all the other cases where
c ≤ .8. These results show that a greedy population could
have a greater social welfare than our standard population
but only when almost all the agents have similar interests.

We also notice how the utility for the case where c = .9 is
actually larger than the case where c = 1, a surprising re-
sult. We can gain some insight into this result by looking
at Figure 9 which shows the gain from exchange for all the
agents for the case were c = 1, and Figure 10 which shows
the gain for all the agents for the case when c = .9. We no-
tice that for c = 1 nearly all agents had something to gain
from exchanging recommendations but, on average, these
gains were not as high as those of some of the agents for the
c = .9 case. That is, for c = .9 the agents that similar inter-

ests to others actually did better, in absolute terms, than in
the c = 1. Specifically, we can deduce that in heterogeneous
populations the individual gain from exchanges is higher be-
cause these communications are needed to determine which
other agents have interests that are to those of the agent. In
a more homogeneous populations simply choosing an agent
at random will often have the same expected effect that one
achieves with longer periods of modeling.

This result provides further motivation for an agent to en-
gage in recommendation exchanges, especially in those cases
where the agent fears that it is not similar to all others. No-
tice that this result goes against the intuition that one has
nothing to gain from exchanging recommendations when the
agent’s preferences are not highly correlated to those of oth-
ers. In fact, we have just shown that it is exactly in those
situations where the exchange of recommendations, and the
modeling of other agents that goes along with it, delivers a
higher utility gain to the agent because it is in those situa-
tions that the agent needs to be able to differentiate between
the agents that have interests similar to it and those that
do not.

4.3 Results Summary
In general, our results from all our tests have shown that dis-
tributed incentive-compatible recommendations as dictated
by our model are viable in that they increase both the av-
erage individual agent’s utility as well as the social welfare.
However, the benefits are not distributed evenly among the
agents. Those agents that have interests that are similar to
many other agents’ interests usually perform better. While
this result is probably to be expected, it does present a prob-
lem for the widespread adoption of our protocol. That is,
an agent who believes that its interests are unique might de-
cide not to join the community and simply read documents
at random. Our results raise the question of whether we can
find a (distributed) method whereby an agent can quickly
determine how many other agents with similar interests ex-
ist. Such a method would enable agents to decide whether or
not to join a particular population of recommending agents.

We also found it interesting how “communities” of agents
worked together to quickly find all the interesting documents
in their area. The moment one of the agents found a new in-
teresting document it would tell others who would tell others
and so on, until they had all read the document. Initially, we
had planned to estimate the expected utility from reading a
random document to include the expected gains from shar-
ing this document, if the agent liked it, with all the other
agents it knows have given it good recommendations in the
past. However, the dynamics of our model showed that this
value decreases very fast once the agent tells just one other
agent.

5. RELATED WORK
There is an established body of literature concerned with
the construction of recommender systems [9], which includes
systems such as PHOAKS [10], the Referral Web [7], and
many others. However, almost all them are centralized, with
a few exceptions. Yenta [5] implements a decentralized pro-
tocols where agents form clusters of like-mindedness. How-
ever, they assume cooperative agents so their protocol is
not incentive compatible. Economists have also studied the

possibility of a market for evaluations [2] and concluded its
viability. The proposed market, however, relies on a cen-
tralized auctioneer and their model assumes that all agents
have very similar preferences.

Our work also finds much affinity with research being done in
peer-to-peer systems such as JXTA [6], Gnutella [8, Chapter
8], Freenet [8, Chapter 9], and others. In fact, by analyzing
and clarifying the individual incentives to the agents our
work hopes to enable the realization of peer-to-peer networks
that are immune to the freeloader problem experienced by
current peer-to-peer systems [1], although we have not yet
achieved this goal. It is our belief that for these type of
networks to succeed the proper incentives have to be given
and, furthermore, these incentives will not be in the form
of monetary currency which brings with it the problems of
accountability and liability, but instead the incentives will
be either in the form of information itself or in the form of
relationships with other agents. That is, multiagent systems
will be needed in order to realize the promise of peer-to-peer
information exchange on an Internet scale.

6. CONCLUSION
We have presented a domain model that captures the most
important aspects of the distributed recommendations sce-
nario. We analyzed this model and showed that engaging
in an exchange is the rational choice as long as the agent
believes that the other agent has interests that have proven
to be sufficiently similar. We then gave an algorithm that
agents can use for deciding when to exchange recommen-
dations and with whom. Finally, we tested our algorithm
on a various simulated scenarios. The results confirmed our
prediction that trading would ensue and would increase the
social welfare of the system. Our tests also provided more
details into the system’s dynamics. We showed that while
the total utility does increase, individual agents who do not
have common interests with other agents do not participate
in this gain. We also showed how populations of greedy
agents (i.e., agents that usually prefer to trade with a well-
known partner instead of reading a random document) can
outperform our standard agents in populations where most
of the agents have largely similar interests.

We believe that the issues of trust and recommendations
are tightly related. That is, our agents can be said to gain
trust in other agents’ recommendations via experience. As
such, we view our protocol as a specific instance of the trust
acquisition problem.

Our ongoing research continues to expand on these results in
order to support the recommendation of agents themselves.
That is, we aim to find the value of having one agent recom-
mend another agent to some third agent. The long-term goal
of this work is the development of a framework that selfish
agents can use do determine exactly how much each one of
their opinions/recommendations is worth and how to realize
this worth. Such a framework would enable the creation of
an Internet-wide distributed recommender system.

7. REFERENCES
[1] E. Adar and B. A. Huberman. Free riding on gnutella.

First Monday, October 2000.

[2] C. Avery, P. Resnick, and R. Zeckhauser. The market
for evaluations. The American Economic Review,
89(3):564–484, 1999.

[3] R. M. Axelrod. The Evolution of Cooperation. Basic
Books, 1984.

[4] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge. The MIT Press,
Cambridge, MA, 1995.

[5] L. N. Foner. Yenta: A multi-agent, referral based
matchmaking system. In Proceedings of The First
International Conference on Autonomous Agents,
1997.

[6] L. Gong. JXTA: A network programming
environment. IEEE Internet Computing, 5(3):88–95,
May-June 2001.

[7] H. Kautz, B. Selman, and M. Shah. Referral web:
combining social networks and collaborative filtering.
Communications of the ACM, 40(3):63–65, 1997.

[8] A. Oram, editor. Peer-to-Peer. O’Reilly, 2001.

[9] P. Resnick and H. R. Varian. Recommender systems.
Commun. ACM, 40(3):56–58, Mar. 1997.

[10] L. Terveen, W. Hill, B. Amento, D. McDonald, and
J. Creter. Phoaks: a system for sharing
recommendations. Commun. ACM, 40(3):59–62, Mar.
1997.

[11] U. Wilensky. NetLogo: Center for connected learning
and computer-based modeling, Northwestern
University. Evanston, IL, 1999.
http://ccl.northwestern.edu/netlogo/.

http://www.firstmonday.dk/issues/issue5_10/adar/index.html
http://jmvidal.cse.sc.edu/library/avery99a.pdf
http://jmvidal.cse.sc.edu/library/avery99a.pdf
http://www.amazon.com/exec/obidos/ASIN/0465021212/multiagentcom
http://www.amazon.com/exec/obidos/ASIN/0262061627/multiagentcom
http://jmvidal.cse.sc.edu/library/foner97a.pdf
http://jmvidal.cse.sc.edu/library/foner97a.pdf
http://jmvidal.cse.sc.edu/library/gong01a.pdf
http://jmvidal.cse.sc.edu/library/gong01a.pdf
http://jmvidal.cse.sc.edu/library/kautz97a.pdf
http://jmvidal.cse.sc.edu/library/kautz97a.pdf
http://www.oreilly.com/catalog/peertopeer/
http://jmvidal.cse.sc.edu/library/resnick97a.pdf
http://jmvidal.cse.sc.edu/library/terveen97a.pdf
http://jmvidal.cse.sc.edu/library/terveen97a.pdf
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

	1 Introduction
	2 The Model
	2.1 An Agent's Choice

	3 Modeling User Preferences
	4 Implementation and Test Results
	4.1 Standard Agents
	4.2 Greedy Agents
	4.3 Results Summary

	5 Related Work
	6 Conclusion
	7 REFERENCES

