
In Eduardo Alonso, editor, Adaptive Agents: LNAI 2636. Springer Verlag, 2003.

Learning in Multiagent Systems: An
Introduction from a Game-Theoretic Perspective

José M. Vidal

University of South Carolina, Computer Science and Engineering,
Columbia, SC 29208

vidal@sc.edu

Abstract. We introduce the topic of learning in multiagent systems. We
first provide a quick introduction to the field of game theory, focusing
on the equilibrium concepts of iterated dominance, and Nash equilib-
rium. We show some of the most relevant findings in the theory of learn-
ing in games, including theorems on fictitious play, replicator dynamics,
and evolutionary stable strategies. The CLRI theory and n-level learning
agents are introduced as attempts to apply some of these findings to the
problem of engineering multiagent systems with learning agents. Finally,
we summarize some of the remaining challenges in the field of learning
in multiagent systems.

1 Introduction

The engineering of multiagent systems composed of learning agents brings to-
gether techniques from machine learning, game theory, utility theory, and com-
plex systems. A designer must choose carefully which machine-learning algorithm
to use since otherwise the system’s behavior will be unpredictable and often un-
desirable. Fortunately, we can use the tools from these areas in an effort to
predict the expected system behaviors. In this article we introduce these tech-
niques and explain how they are used in the engineering of learning multiagent
systems.

The goal of machine learning research is the development of algorithms that
increase the ability of an agent to match a set of inputs to their corresponding
outputs [7]. That is, we assume the existence of a large, sometimes infinite, set
of examples E. Each example e ∈ E is a pair e = {a, b} where a ∈ A represents
the input the agent receives and b ∈ B is the output the agent should produce
when receiving this input. The agent must find a function f which maps A → B
for as many examples of A as possible. In a controlled test the set E is usually
first divided into a training set which is used for training the agent, and a testing
set which is used for testing the performance of the agent. In some scenarios it
is impossible to first train the agent and then test it. In these cases the training
and testing examples are interleaved. The agent’s performance is assessed on an
ongoing manner.

When a learning agent is placed in a multiagent scenario these fundamental
assumptions of machine learning are violated. The agent is no longer learning

c© Springer Verlag, 2003.

to extrapolate from the examples it has seen of fixed set E, instead it’s target
concept keeps changing, leading to a moving target function problem [10]. In
general, however, the target concept does not change randomly; it changes based
on the learning dynamics of the other agents in the system. Since these agents
also learn using machine learning algorithms we are left with some hope that
we might someday be able to understand the complex dynamics of these type of
systems.

Learning agents are most often selfish utility maximizers. These agents often
face each other in encounters where the simultaneous actions of a set of agents
leads to different utility payoffs for all the participants. For example, in a market-
based setting a set of agents might submit their bids to a first-price sealed-bid
auction. The outcome of this auction will result in a utility gain or loss for all
the agents. In a robotic setting two agents headed in a collision course towards
each other have to decide whether to stay the course or to swerve. The results
of their combined actions have direct results in the utilities the agents receive
from their actions. We are solely concerned with learning agents that maximize
their own utility. We believe that systems where agents share partial results or
otherwise help each other can be considered extension on traditional machine
learning research.

2 Game Theory

Game theory provides us with the mathematical tools to understand the possible
strategies that utility-maximizing agents might use when making a choice. It
is mostly concerned with modeling the decision process of rational humans, a
fact that should be kept in mind as we consider its applicability to multiagent
systems.

The simplest type of game considered in game theory is the single-shot
simultaneous-move game. In this game all agents must take one action. All ac-
tions are effectively simultaneous. Each agent receives a utility that is a function
of the combined set of actions. In an extended-form game the players take turns
and receive a payoff at the end of a series of actions. A single-shot game is a
good model for the types of situations often faced by agents in a multiagent
system where the encounters mostly require coordination. The extended-form
games are best suited to modeling more complex scenarios where each succes-
sive move places the agents in a different state. Many scenarios that first appear
like they would need an extended-form game can actually be described by a se-
ries of single-shot games. In fact, that is the approach taken by many multiagent
systems researchers.

In the one-shot simultaneous-move game we say that each agent i chooses a
strategy si ∈ Si, where Si is the set of all strategies for agent i. These strategies
represent the actions the agent can take. When we say that i chooses strategy
si we mean that it chooses to take action si. The set of all strategies chosen by
all the agents is the strategy profile for that game and it is denoted by s ∈ S ≡
×I

i=iSi. Once all the agents make their choices and form the strategy profile s

A B
A 1,2 3,4
B 3,2 2,1

Fig. 1. Sample two-player game matrix. Agent 1 chooses from the rows and
agent 2 chooses from the columns.

then each agent i receives a utility which is given by the function ui(s). Notice
that a player’s utility depends on the choices made by all the agents.

Two player games involve only two players, i and j. They are often repre-
sented using a game matrix such as the one shown in Figure 1. In that matrix
we see that if agent 1 (the one who chooses from the rows) chooses action A and
agent 2 chooses action B then agent 1 will receive a utility of 3 while agent 2
receives a utility of 4. Using our notation for strategies we would say that if the
strategy profile is (s1, s2) then the payoff vector is

(u1(s1, s2), u2(s1, s2))

It is possible that a player will choose randomly between its action choices,
using different prior probabilities for each choice. These types of strategies are
called mixed strategies and they are a probability distribution over an agent’s
actions. We say that a mixed strategy for agent i is σi ∈ Σi ≡ P (Si) where
P (Si) is the set of all probability distributions over the set of pure strategies
Si. Although a real agent can not take a “mixed action”, mixed strategies are
useful abstractions since they allow us to model agents who might use some
randomization subroutine to choose their action.

3 Solution Concepts

Much of the work in game theory has concentrated in the definition of plausible
solution concepts. A solution concept tries to define the set of actions that a
set of rational agents will choose when faced with a game. The most common
assumptions are that the agents are rational, have common knowledge1 of the
payoffs in the game matrix, and that they are intelligent enough to re-create
the thought process that the mathematician went through to come up with the
solution concept. As such, most solution concepts are geared towards an under-
standing of how smart, well-informed people would act. They are not necessarily
meant to explain the behavior of machine-learning agents. Still, the fact that
they provide the “best” solution makes them a useful tool.

3.1 Iterated Dominance

The iterated dominance approach is to successively eliminate from consideration
those actions that are worst than some other action, no matter what the other
1 Common knowledge about p means that everybody knows that everybody knows,

and so on to infinity, about p.

A B
A 8,2 9,4
B 1,2 3,1

Fig. 2. A game where agent 1’s action B is dominated by A.

player does. For example, in Figure 2 we see a game where agent 1’s action B
is dominate by A. That is, no matter what agent 2 does, agent 1 should choose
action A. Then, if agent 1 chooses action A then agent 2 should choose action
B. Therefore, the solution strategy profile for this game is (A,B).

Formally, we say that a strategy σi is strictly dominated for agent i if there
is some other strategy σ̃i ∈ Σi for which ui(σ̃i, σ−i) > ui(σi, σ−i) for all σ−i,
where σ−i is a set of strategies for all agents except i. Notice that the inequality
sign is a greater-than. If we change that sign to a greater-than-or-equal then we
have the definition for a weakly dominated strategy.

There is no reason for a rational agent to choose a strictly dominated strategy.
That is, there is no reason for an agent to choose σi when there exists a σ̃i which
will give it a better utility no matter what the other agents do. Similarly, there
is no reason for the agent to choose a weakly dominated strategy. Of course,
this reasoning relies on the assumption that the agent can indeed determine the
existence of a σ̃i. This assumption can be hard to justify in cases where the
better strategy is a mixed strategy where the agent has an infinite number of
possible strategies to verify, or in cases where the number of actions and agents
is too large to handle.

The iterated dominance algorithm consists of calculating all the strategies
that are dominated for all the players, eliminating those strategies from consid-
eration, and repeating the process until no more strategies are dominated. At
that point it might be the case that only one strategy profile is left available. In
this case that profile is the one all agents should play. However, in many cases
the algorithm still leaves us with a sizable game matrix with a large number of
possible strategy profiles. The algorithm then serves only to reduce the size of
the problem.

3.2 Nash Equilibrium

The Nash equilibrium solution concept is popular because it provides a solution
where other solution concepts fail. The Nash equilibrium strategy profile is de-
fined as σ̂ such that for all agents i it is true that there is no strategy better than
σ̂i given that all the other agents take the actions prescribed by σ̂−i. Formally,
we say that σ̂ is a Nash equilibrium strategy profile if for all i it is true that
σ̂i ∈ BRi(ˆσ−i), where BRi(s−i) is the best response for i to s−i. That is, given
that everyone else plays the strategy given by the Nash equilibrium the best
strategy for any agent is the one given by the Nash equilibrium. A strict Nash
equilibrium states that σ̂i is strictly (i.e., greater than) better than any other
alternative.

It has been shown that every game has at least one Nash equilibrium, as
long as mixed strategies are allowed. The Nash equilibrium has the advantage
of being stable under single agent desertions. That is, if the system is in a Nash
equilibrium then no agent, working by itself, will be tempted to take a different
action. However, it is possible for two or more agents to conspire together and find
a set of actions which are better for them. This means that the Nash equilibrium
is not stable if we allow the formation of coalitions.

Another problem we face when using the Nash equilibrium is the fact that
a game can have multiple Nash equilibria. In these cases we do not know which
one will be chosen, if any. The Nash equilibrium could also be a mixed strategy
for some agent while in the real world the agent has only discrete actions avail-
able. In both of these cases the Nash equilibrium is not sufficient to identify a
unique strategy profile that rational agents are expected to play. As such, fur-
ther studies of the dynamics of the system must be carried out in order to refine
the Nash equilibrium solution. The theory of learning in games—a branch of
game theory—has studied how simple learning mechanisms lead to equilibrium
strategies.

4 Learning in Games

The theory of learning in games studies the equilibrium concepts dictated by var-
ious simple learning mechanisms. That is, while the Nash equilibrium is based
on the assumption of perfectly rational players, in learning in games the as-
sumption is that the agents use some kind of algorithm. The theory determines
the equilibrium strategy that will be arrived at by the various learning mecha-
nisms and maps these equilibria to the standard solution concepts, if possible.
Many learning mechanisms have been studied. The most common of them are
explained in the next few sub-sections.

4.1 Fictitious Play

A widely studied model of learning in games is the process of fictitious play. In it
agents assume that their opponents are playing a fixed strategy. The agents use
their past experiences to build a model of the opponent’s strategy and use this
model to choose their own action. Mathematicians have studied these types of
games in order to determine when and whether the system converges to a stable
strategy.

Fictitious play uses a simple form of learning where an agent remembers
everything the other agents have done and uses this information to build a
probability distribution for the other agents’ expected strategy. Formally, for the
two agent (i and j) case we say that i maintains a weight function ki : Sj → R+.
The weight function changes over time as the agent learns. The weight function
at time t is represented by kt

i which keeps a count of how many times each
strategy has been played. When at time t − 1 opponent j plays strategy st−1

j

A B
A 0,0 1,1
B 1,1 0,0

Fig. 3. A game matrix with an infinite cycle.

then i updates its weight function with

kt
i(sj) = kt−1

i (sj) +
{

1 if st−1
j = sj ,

0 if st−1
j 6= sj .

(1)

Using this weight function, agent i can now assign a probability to j playing
any of its sj ∈ Sj strategies with

Prt
i[sj] =

kt
i(sj)∑

s̃j∈Sj
kt

i(s̃j)
. (2)

Player i then determines the strategy that will give it the highest expected
utility given that j will play each of its sj ∈ Sj with probability Prt

i[sj]. That
is, i determines its best response to a probability distribution over j’s possible
strategies. This amounts to i assuming that j’s strategy at each time is taken
from some fixed but unknown probability distribution.

Several interesting results have been derived by researches in this area. These
results assume that all players are using fictitious play. In [3] it was shown that
the following two propositions hold.

Proposition 1. If s is a strict Nash equilibrium and it is played at time t then
it will be played at all times greater than t.

Intuitively we can see that if the fictitious play algorithm leads to all players
to play the same Nash equilibrium then, afterward, they will increase the prob-
ability that all others are playing the equilibrium. Since, by definition, the best
response of a player when everyone else is playing a strict Nash equilibrium is to
play the same equilibrium, all players will play the same strategy and the next
time. The same holds true for every time after that.

Proposition 2. If fictitious play converges to a pure strategy then that strategy
must be a Nash equilibrium.

We can show this by contradiction. If fictitious play converges to a strategy
that is not a Nash equilibrium then this means that the best response for at
least one of the players is not the same as the convergent strategy. Therefore,
that player will take that action at the next time, taking the system away from
the strategy profile it was supposed to have converged to.

An obvious problem with the solutions provided by fictitious play can be seen
in the existence of infinite cycles of behaviors. An example is illustrated by the

game matrix in Figure 3. If the players start with initial weights of k0
1(A) = 1,

k0
1(B) = 1.5, k0

2(A) = 1, and k0
2(B) = 1.5 they will both believe that the other

will play B and will, therefore, play A. The weights will then be updated to
k1
1(A) = 2, k1

1(B) = 1.5, k1
2(A) = 2, and k1

2(B) = 1.5. Next time, both agents
will believe that the other will play A so both will play B. The agents will engage
in an endless cycle where they alternatively play (A,A) and (B,B). The agents
end up receiving the worst possible payoff.

This example illustrates the type of problems we encounter when adding
learning to multiagent systems. While we would hope that the machine learning
algorithm we use will be able to discern this simple pattern and exploit it, most
learning algorithms can easily fall into cycles that are not much complicated
than this one. One common strategy for avoiding this problem is the use of
randomness. Agents will sometimes take a random action in an effort to exit
possible loops and to explore the search space. It is interesting to note that, as
in the example from Figure 3, it is often the case that the loops the agents fall
in often reflect one of the mixed strategy Nash equilibria for the game. That
is, (.5, .5) is a Nash equilibrium for this game. Unfortunately, if the agents are
synchronized, as in this case, the implementation of a mixed strategy could lead
to a lower payoff.

Games with more than two players require that we decide whether the agent
should learn individual models of each of the other agents independently or a
joint probability distribution over their combined strategies. Individual mod-
els assume that each agent operates independently while the joint distributions
capture the possibility that the others agents’ strategies are correlated. Unfor-
tunately, for any interesting system the set of all possible strategy profiles is too
large to explore—it grows exponentially with the number of agents. Therefore,
most learning systems assume that all agents operate independently so they need
to maintain only one model per agent.

4.2 Replicator Dynamics

Another widely studied model is replicator dynamics. This model assumes that
the percentage of agents playing a particular strategy will grow in proportion to
how well that strategy performs in the population. A homogeneous population of
agents is assumed. The agents are randomly paired in order to play a symmetric
game, that is, a game where both agents have the same set of possible strategies
and receive the same payoffs for the same actions. The replicator dynamics model
is meant to capture situations where agents reproduce in proportion to how well
they are doing.

Formally, we let φt(s) be the number of agents using strategy s at time t.
We can then define

θt(s) =
φt(s)∑

s′∈S φt(s′)
(3)

to be the fraction of agents playing s at time t. The expected utility for an
agent playing strategy s at time t is defined as

ut(s) ≡
∑
s′∈S

θt(s′)u(s, s′), (4)

where u(s, s′) is the utility than an agent playing s receives against an agent
playing s′. Notice that this expected utility assumes that the agents face each
other in pairs and choose their opponents randomly. In the replicator dynamics
the reproduction rate for each agent is proportional to how well it did on the
previous step, that is,

φt+1(s) = φt(s)(1 + ut(s)). (5)

Notice that the number of agents playing a particular strategy will continue
to increase as long as the expected utility for that strategy is greater than zero.
Only strategies whose expected utility is negative will decrease in population. It
is also true that under these dynamics the size of a population will constantly
fluctuate. However, when studying replicator dynamics we ignore the absolute
size of the population and focus on the fraction of the population playing a par-
ticular strategy, i.e., θt(s), as time goes on. We are also interested in determining
if the system’s dynamics will converge to some strategy and, if so, which one.

In order to study these systems using the standard solution concepts we view
the fraction of agents playing each strategy as a mixed strategy for the game.
Since the game is symmetric we can use that strategy as the strategy for both
players, so it becomes a strategy profile. We say that the system is in a Nash
equilibrium if the fraction of players playing each strategy is the same as the
probability that the strategy will be played on a Nash equilibrium. In the case
of a pure strategy Nash equilibrium this means that all players are playing the
same strategy.

An examination of these systems quickly leads to the conclusion that every
Nash equilibrium is a steady state for the replicator dynamics. In the Nash
equilibrium all the strategies have the same average payoff since the fraction of
other players playing each strategy matches the Nash equilibrium. This fact can
be easily proven by contradiction. If an agent had a pure strategy that would
return a higher utility than any other strategy then this strategy would be a
best response to the Nash equilibrium. If this strategy was different from the
Nash equilibrium then we would have a best response to the equilibrium which
is not the equilibrium, so the system could not be at a Nash equilibrium.

It has also been shown [4] that a stable steady state of the replicator dynam-
ics is a Nash equilibrium. A stable steady state is one that, after suffering from
a small perturbation, is pushed back to the same steady state by the system’s
dynamics. These states are necessarily Nash equilibria because if they were not
then there would exist some particular small perturbation which would take the
system away from the steady state. This correspondence was further refined by
Bomze [1] who showed that an asymptotically stable steady state corresponds to

a Nash equilibrium that is trembling-hand perfect and isolated. That is, the sta-
ble steady states are a refinement on Nash equilibria—only a few Nash equilibria
can qualify. On the other hand, it is also possible that a replicator dynamics sys-
tem will never converge. In fact, there are many examples of simple games with
no asymptotically stable steady states.

While replicator dynamics reflect some of the most troublesome aspects of
learning in multiagent systems some differences are evident. These differences
are mainly due to the replication assumption. Agents are not usually expected
to replicate, instead they acquire the strategies of others. For example, in a
real multiagent system all the agents might choose to play the strategy that
performed best in the last round instead of choosing their next strategy in pro-
portion to how well it did last time. As such, we cannot directly apply the results
from replicator dynamics to multiagent systems. However, the convergence of the
systems’ dynamics to a Nash equilibrium does illustrate the importance of this
solution concept as an attractor of learning agent’s dynamics.

4.3 Evolutionary Stable Strategies

An Evolutionary Stable Strategy (ESS) is an equilibrium concept applied to
dynamic systems such as the replicator dynamics system of the previous section.
An ESS is an equilibrium strategy that can overcome the presence of a small
number of invaders. That is, if the equilibrium strategy profile is ω and small
number ε of invaders start playing ω′ then ESS states that the existing population
should get a higher payoff against the new mixture (εω′ + (1 − ε)ω) than the
invaders.

It has been shown [9] that an ESS is an asymptotically stable steady state
of the replicator dynamics. However, the converse need not be true—a stable
state in the replicator dynamics does not need to be an ESS. This means that
ESS is a further refinement of the solution concept provided by the replicator
dynamics. ESS can be used when we need a very stable equilibrium concept.

5 Learning Agents

The theory of learning in games provides the designer of multiagent systems with
many useful tools for determining the possible equilibrium points of a system.
Unfortunately, most multiagent systems with learning agents do not converge
to an equilibrium. Designers use learning agents because they do not know, at
design time, the specific circumstances that the agents will face at run time. If
a designer knew the best strategy, that is, the Nash equilibrium strategy, for his
agent then he would simply implement this strategy and avoid the complexities
of implementing a learning algorithm. Therefore, the only times we will see a
multiagent system with learning agents are when the designer cannot predict
that an equilibrium solution will emerge.

The two main reasons for this inability to predict the equilibrium solution
of a system are the existence of unpredictable environmental changes that affect

the agents’ payoffs and the fact that on many systems an agent only has access
to its own set of payoffs—it does not know the payoffs of other agents. These two
reasons make it impossible for a designer to predict which equilibria, if any, the
system would converge to. However, the agents in the system are still playing a
game for which an equilibrium exists, even if the designer cannot predict it at
design-time. But, since the actual payoffs keep changing it is often the case that
the agents are constantly changing their strategy in order to accommodate the
new payoffs.

Learning agents in a multiagent system are faced with a moving target func-
tion problem [10]. That is, as the agents change their behavior in an effort to max-
imize their utility their payoffs for those actions change, changing the expected
utility of their behavior. The system will likely have non-stationary dynamics—
always changing in order to match the new goal. While game theory tells us
where the equilibrium points are, given that the payoffs stay fixed, multiagent
systems often never get to those points. A system designer needs to know how
changes in the design of the system and learning algorithms will affect the time to
convergence. This type of information can be determined by using CLRI theory.

5.1 CLRI Theory

The CLRI theory [12] provides a formal method for analyzing a system composed
of learning agents and determining how an agent’s learning is expected to affect
the learning of other agents in the system. It assumes a system where each agent
has a decision function that governs its behavior as well as a target function that
describes the agent’s best possible behavior. The target function is unknown to
the agent. The goal of the agent’s learning is to have its decision function be
an exact duplicate of its target function. Of course, the target function keeps
changing as a result of other agents’ learning.

Formally, CLRI theory assumes that there are N agents in the system. The
world has a set of discrete states w ∈ W which are presented to the agent with
a probability dictated by the probability distribution D(W). Each agent i ∈ N
has a set of possible actions Ai where |Ai| ≥ 2. Time is discrete and indexed by
a variable t. At each time t all agents are presented with a new w ∈ D(W), take
a simultaneous action, and receive some payoff. The scenario is similar to the
one assumed by fictitious play except for the addition of w.

Each agent i’s behavior is defined by a decision function δt
i(w) : W → A.

When i learns at time t that it is in state w it will take action δt
i(w). At any

time there is an optimal function for i given by its target function ∆t
i(w). Agent

i’s learning algorithm will try to reduce the discrepancy between δi and ∆i by
using the payoffs it receives for each action as clues since it does not have direct
access to ∆i. The probability that an agent will take a wrong action is given
by its error e(δt

i) = Pr[δt
i(w) 6= ∆t

i(w) |w ∈ D(W)]. As other agents learn and
change their decision function, i’s target function will also change, leading to the
moving target function problem, as depicted in Figure 4.

An agent’s error is based on a fixed probability distribution over world states
and a boolean matching between the decision and target functions. These con-

δt+1
i

e(δt+1
i)

+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k

δt
i

Learn
88qqqqqqqqqqqqq

e(δt
i)

/o ∆t
i

Move
// ∆t+1

i

Fig. 4. The moving target function problem.

straints are often too restrictive to properly model many multiagent systems.
However, even if the system being modeled does not completely obey these two
constraints, the use of the CLRI theory in these cases still gives the designer
valuable insight into how changes in the design will affect the dynamics of the
system. This practice is akin to the use of Q-learning in non-Markovian games—
while Q-learning is only guaranteed to converge if the environment is Markovian,
it can still perform well on other domains.

The CLRI theory allows a designer to understand the expected dynamics
of the system, regardless of what learning algorithm is used, by modeling the
system using four parameters: Change rate, Learning rate, Retention rate, and
Impact (CLRI). A designer can determine values for these parameters and then
use the CLRI difference equation to determine the expected behavior of the
system.

The change rate (c) is the probability that an agent will change at least one
of its incorrect mappings in δt(w) for the new δt+1(w). It captures the rate at
which the agent’s learning algorithm tries to change its erroneous mappings. The
learning rate (l) is the probability that the agent changes an incorrect mapping
to the correct one. That is, the probability that δt+1(w) = ∆t(w), for all w. By
definition, the learning rate must be less than or equal to the change rate, i.e.
l ≤ c. The retention rate (r) represents the probability that the agent will retain
its correct mapping. That is, the probability that δt+1(w) = δt(w) given that
δt(w) = ∆t(w).

CLRI defines a volatility term (v) to be the probability that the target func-
tion ∆ changes from time t to t + 1. That is, the probability that ∆t(w) 6=
∆t+1(w). As one would expect, volatility captures the amount of change that
the agent must deal with. It can also be viewed as the speed of the target func-
tion in the moving target function problem, with the learning and retention rates
representing the speed of the decision function. Since the volatility is a dynamic
property of the system (usually it can only be calculated by running the sys-
tem) CLRI provides an impact (Iij) measure. Iij represents the impact that i’s
learning has on j’s target function. Specifically, it is the probability that ∆t

j(w)
will change given that δt+1

i (w) 6= δt
i(w).

Someone trying to build a multiagent system with learning agents would
determine the appropriate values for c, l, r, and either v or I and then use

E[e(δt+1
i)] = 1− ri + vi

(
|Ai|ri − 1
|Ai| − 1

)
+ e(δt

i)
(

ri − li + vi

(
|Ai|(li − ri) + li − ci

|Ai| − 1

))
(6)

in order to determine the successive expected errors for a typical agent i. This
equation relies on a definition of volatility in terms of impact given by

∀w∈W vt
i = Pr[∆t+1

i (w) 6= ∆t
i(w)]

= 1−
∏

j∈N−i

(1− IjiPr[δt+1
j (w) 6= δt

j(w)]), (7)

which makes the simplifying assumption that changes in agents’ decision func-
tions will not cancel each other out when calculating their impact on other
agents. The difference equation (6) cannot, under most circumstances, be col-
lapsed into a function of t so it must still be iterated over. On the other hand,
a careful study of the function and the reasoning behind the choice of the CLRI
parameter leads to an intuitive understanding of how changes in these parame-
ters will be reflected in the function and, therefore, the system. A knowledgeable
designer can simply use this added understanding to determine the expected be-
havior of his system under various assumptions. An example of this approach is
shown in [2].

For example, it is easy to see that an agent’s learning rate and the system’s
volatility together help to determine how fast, if ever, the agent will reach its
target function. A large learning rate means that an agent will change its decision
function to almost match the target function. Meanwhile, a low volatility means
that the target function will not move much, so it will be easy for the agent to
match it. Of course, this type of simple analysis ignores the common situation
where the agent’s high learning rate is coupled with a high impact on other
agents’ target function making their volatility much higher. These agents might
then have to increase their learning rate and thereby increase the original agent’s
volatility. Equation (6) is most helpful in these type of feedback situations.

5.2 N-Level Agents

Another issue that arises when building learning agents is the choice of a model-
ing level. A designer must decide whether his agent will learn to correlate actions
with rewards, or will try to learn to predict the expected actions of others and
use these predictions along with knowledge of the problem domain to determine
its actions, or will try to learn how other agents build models of other agents,
etc. These choices are usually referred to as n-level modeling agents—an idea
first presented in the recursive modeling method [5] [6].

A 0-level agent is one that does not recognize the existence of other agents
in the world. It learns which action to take in each possible state of the world
because it receives a reward after its actions. The state is usually defined as a
static snapshot of the observable aspects of the agent’s environment. A 1-level
agent recognizes that there are other agents in the world whose actions affect
its payoff. It also has some knowledge that tells it the utility it will receive
given any set of joint actions. This knowledge usually takes the form of a game
matrix that only has utility values for the agent. The 1-level agent observes the
other agents’ actions and builds probabilistic models of the other agents. It then
uses these models to predict their action probability distribution and uses these
distributions to determine its best possible action. A 2-level agent believes that
all other agents are 1-level agents. It, therefore, builds models of their models of
other agents based on the actions it thinks they have seen others take. In essence,
the 2-level agent applies the 1-level algorithm to all other agents in an effort
to predict their action probability distribution and uses these distributions to
determine its best possible actions. A 3-level agent believes that all other agents
are 2-level, an so on. Using these guidelines we can determine that fictitious play
(Section 4.1) uses 1-level agents while the replicator dynamics (Section 4.2) uses
0-level agents.

These categorizations help us to determine the relative computational costs
of each approach and the machine-learning algorithms that are best suited for
that learning problem. 0-level is usually the easiest to implement since it only
requires the learning of one function and no additional knowledge. 1-level learn-
ing requires us to build a model of every agent and can only be implemented
if the agent has the knowledge that tells it which action to take given the set
of actions that others have taken. This knowledge must be integrated into the
agents. However, recent studies in layered learning [8] have shown how some
knowledge could be learned in a “training” situation and then fixed into the
agent so that other knowledge that uses the first one can be learned, either at
runtime or in another training situation. In general, a change in the level that an
agent operates on implies a change on the learning problem and the knowledge
built into the agent.

Studies with n-level agents have shown [11] that an n-level agent will always
perform better in a society full of (n-1)-level agents, and that the computational
costs of increasing a level grow exponentially. Meanwhile, the utility gains to
the agent grow smaller as the agents in the system increase their level, within
an economic scenario. The reason is that an n-level agent is able to exploit the
non-equilibrium dynamics of a system composed of (n-1)-level agents. However,
as the agents increase their level the system reaches equilibrium faster so the
advantages of strategic thinking are reduced—it is best to play the equilibrium
strategy and not worry about what others might do. On the other hand, if all
agents stopped learning then it would be very easy for a new learning agent to
take advantage of them. As such, the research concludes that some of the agents
should do some learning some of the time in order to preserve the robustness of
the system, even if this learning does not have any direct results.

6 Conclusion

We have seen how game theory and the theory of learning in games provide us
with various equilibrium solution concepts and often tell us when some of them
will be reached by simple learning models. On the other hand, we have argued
that the reason learning is used in a multiagent system is often because there
is no known equilibrium or the equilibrium point keeps changing due to outside
forces. We have also shown how the CLRI theory and n-level agents are attempts
to characterize and predict, to a limited degree, the dynamics of a system given
some basic learning parameters.

We conclude that the problems faced by a designer of a learning multiagent
systems cannot be solved solely with the tools of game theory. Game theory
tells us about possible equilibrium points. However, learning agents are rarely
at equilibrium, either because they are not sophisticated enough, because they
lack information, or by design. There is a need to explore non-equilibirium sys-
tems and to develop more predictive theories which, like CLRI, can tell us how
changing either the parameters on the agents’ learning algorithms or the rules
of the game will affect the expected emergent behavior.

References

1. Bomze, I.: Noncoopertive two-person games in biology: A classification. Interna-
tional Journal of Game Theory 15 (1986) 31–37

2. Brooks, C.H., Durfee, E.H.: Congregation formation in multiagent systems. Journal
of Autonomous Agents and Multi-agent Systems (2002) to appear.

3. Fudenberg, D., Kreps, D.: Lectures on learning and equilibrium in strategic-form
games. Technical report, CORE Lecture Series (1990)

4. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press (1998)
5. Gmytrasiewicz, P.J., Durfee., E.H.: A rigorous, operational formalization of re-

cursive modeling. In: Proceedings of the First International Conference on Multi-
Agent Systems. (1995) 125–132

6. Gmytrasiewicz, P.J., Durfee., E.H.: Rational communication in multi-agent sys-
tems. Autonomous Agents and Multi-Agent Systems Journal 4 (2001) 233–272

7. Mitchell, T.M.: Machine Learning. McGraw Hill (1997)
8. Stone, P.: Layered Learning in Multiagent Systems. MIT Press (2000)
9. Taylor, P., Jonker, L.: Evolutionary stable strategies and game dynamics. Mathe-

matical Biosciences 16 (1978) 76–83
10. Vidal, J.M., Durfee, E.H.: The moving target function problem in multi-agent

learning. In: Proceedings of the Third International Conference on Multi-Agent
Systems. (1998)

11. Vidal, J.M., Durfee, E.H.: Learning nested models in an information economy.
Journal of Experimental and Theoretical Artificial Intelligence 10 (1998) 291–308

12. Vidal, J.M., Durfee, E.H.: Predicting the expected behavior of agents that learn
about agents: the CLRI framework. Autonomous Agents and Multi-Agent Systems
(2002)

	Learning in Multiagent Systems: An Introduction from a Game-Theoretic Perspective
	José M. Vidal (University of South Carolina)

