
Teaching Multiagent Systems using RoboCup and Biter

José M. Vidal
Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

vidal@sc.edu

Paul Buhler
Computer Science

College of Charleston
66 George Street

Charleston, SC 29424
pbuhler@cs.cofc.edu

Abstract

We describe our experiences using the RoboCup soc-
cerserver simulator and Biter, our own agent platform,
for the teaching of a graduate multiagent systems’ class.
The RoboCup simulator and Biter are both described.
We argue that the combination of RoboCup and Biter
forms an effective platform for the teaching of multia-
gent systems and the distributed mindset. Results from
three semesters using these tools are presented. These
results confirm our claims. Finally, we characterize this
work within the framework provided by the STEEL-
MAN Draft of the Computing Curricula 2001 initiative.

1 Introduction

The RoboCup [2] simulation league tournament has
proven to be successful at bringing together researchers
from various areas of computer science and engineering
such as artificial intelligence, multiagent systems, dis-
tributed programming, software engineering, and real-
time systems engineering. The competition matches
teams of simulated soccer players in a ten minute match.
While the environment is simplified, it nonetheless in-
corporates many of the complexities one would expect
in a robotic application such as friction, wind, real-time
performance, limited and noisy inputs, noisy effectors,
etc. The contest has proven to be extremely popular.
The last competition was held in Fukuoka, Japan in co-
operation with Busan, Korea in June, 2002, scheduled
coincide with the “2002 World Cup Korea/Japan.” The
simulation league had 46 teams with 165 participants
from 15 countries. The whole tournament boasted 1022
participants from 30 countries.

Interactive Multimedia Electronic Journal of Computer-
Enhanced Learning, 4(2), 2002.

This paper presents our experiences using RoboCup and
Biter—our agent framework—to teach three consecu-
tive graduate-level classes in multiagent systems. We
argue that the combination of RoboCup and Biter forms
an effective platform for the teaching of multiagent sys-
tems and the distributed mindset. Having students
build RoboCup teams exposes them to the non-intuitive
emergent consequences of simple local actions. The ex-
ercise also exposes the students to the often frustrating
complexities of debugging distributed applications and
teaches them strategies for overcoming these difficulties.

2 The Distributed Mindset

In [11], Resnick shows how humans have a tendency
to erroneously assume that there is centralized control
in many situations. For example, when children were
asked to describe how ants achieve their foraging be-
haviors most of them attributed it to some form of cen-
tralized control stemming from the queen. Many adults
also erroneously attribute too much centralized control
to phenomena such as the economy (“It is Greenspan’s
fault.”), corporations (“It is the CEO’s fault.”), and the
Internet (“The web is down.”).

Resnick argues that these misconceptions should be ad-
dressed as early as possible in a child’s education. Our
experience indicates that distributed, as opposed to hi-
erarchical, control is a concept that is initially diffi-
cult for most computer science and engineering stu-
dents to grasp. We believe that a combination of in-
struction and hands-on experimentation is required to
help students develop an understanding of distributed
systems. These experiences allow students to develop
the appropriate intuitions which will let them design
and debug distributed applications which exhibit com-
plex emergent behaviors. This need is even more pro-
nounced in today’s highly networked world where web-
based and peer-to-peer applications are quickly becom-
ing the norm [10].

vidal@sc.edu
pbuhler@cs.cofc.edu


Figure 1: The soccerserver display.

3 A RoboCup Overview

The RoboCup tournament started in 1997 and has been
held every year since. It consists of several robotic
leagues as well as one simulated league. Our research fo-
cuses solely on the simulated league. For the simulated
league the organizers provide a soccerserver application
which simulates the physics of the playing field. The
field is two-dimensional; the players and ball are perfect
circles. Each player must be controlled by a completely
independent process; that is, players on the same team
cannot share global variables or use any form of inter-
process communications. The players have a view-cone
of limited radius. The server adds some noise to all the
players’ sensory inputs and actions. The noise is meant
to simulate the type of restrictions one would expect if
the players were robots.

The soccerserver updates its world model every 100ms.
Each player can send at most one action to the server
every 100ms. All communications are over UDP and
use the soccerserver’s communication protocol. The ac-
tions available to the players are dash, turn, kick, and
say. Every 150ms each player receives a message from
the server telling it what it sees, i.e., what is in its view-
cone, as well as what it hears. This information is given
in polar coordinates with the player as the origin, and
the zero angle points in the direction that the agent
is facing. For example, the server might tell a player
that is ’sees’ the ball at a distance of 1.3 meters and an
angle of 10 degrees from where it is currently looking.
Since the information from the server is all relative to
the player’s current location, the only way a player can
determine its location is by triangulating it from some
fixed objects whose location is known. These fixed ob-
jects are a series of flags placed around the field, bound-
ary lines, and the goal posts.

The player’s dash and kick actions can be given a force
parameter to indicate the force that should be applied.
In the case of the dash command the server updates
the player’s position by taking into account its current
momentum and force. The turn command turns the
player in the appropriate direction. For the kick com-
mand, the server takes into account the player’s and the
ball’s momentum as well as the relative angle of the ball
to the player—it is easier to kick a ball that is directly
in front of the player. In both cases the server adds
noise that is proportional to the difficulty of the action.
In other words, neither player nor ball consistently end
up where expected, thus complicating the task of imple-
menting reliable players. The say command is used to
shout any arbitrary string which will be heard by some
of the nearby players.

4 Using RoboCup for Teaching

The RoboCup simulator has many qualities which make
it an excellent platform for the teaching of the dis-
tributed mindset and multiagent systems’ design.

1. It presents a complex distributed environment which
requires the coordination of many autonomous agents
in order to win the game. Since the players have little
direct communications with each other, a distributed
solution is necessary.

2. It raises many soft real-time issues. The agents can-
not spend too much time thinking.

3. It is a noisy domain. The agents that operate in it
must be able to compensate for errors in their input.

4. It is a well-known problem. There is no need to spend
time explaining and understanding a new problem do-
main.

5. The competitive aspect is a great motivator. We have
found that many students are highly motivated by
the prospect of defeating their classmates in a game
of simulated soccer.

6. The international RoboCup initiative has generated
a wealth of research materials that are easily located
and consumed by students.

While all these characteristics make RoboCup a great
platform, there are several aspects which make it hard
to use for instructional purposes.

1. There is a large amount of low-level work that needs
to be done before starting to develop coordination
strategies. Specifically:



(a) Any good player will need to parse the sensor input
and create its own world map which uses absolute
coordinates. That is, the input the agents receive
has the objects’ coordinates as relative polar coor-
dinates from the player’s current position. While
realistic, these are hard to use in the definition of
behaviors. Therefore, a sophisticated player will
need to turn them into globally absolute coordi-
nates.

(b) The players need to implement several sophisti-
cated geometric functions that answer some basic
questions like: “Who should I be able to see now?”

(c) The players also need to implement functions that
determine the argument values for their commands.
For example: “How hard should I kick this ball so
that it will be at coordinates x, y next time?”

2. It is hard to keep synchronized with the soccerserver’s
update loop. Specifically, the players have to make
sure they send one and only one action for each clock
“tick.” Since the soccerserver is running on a dif-
ferent machine, the player has to make sure it keeps
synchronized and does not miss action opportunities,
even when messages are lost.

3. Students new to agent design need some guidance in
establishing a basic agent architecture. They lack ex-
perience using techniques for balancing goal-driven
and reactive behaviors.

These drawbacks forced students to spend most of their
time writing code to handle the UDP message parsing
and the construction of a world model, as we detail in
Section 6. Therefore, we designed a basic RoboCup
client, called Biter, that implements all the features the
students will need in order to quickly get started testing
new behaviors and coordination protocols.

5 The Biter Platform

Biter provides its users with an absolute-coordinate
world model, a set of low-level ball handling skills, a set
of higher-level skill based behaviors, and our Generic
Agent Architecture (GAA) [14] which forms the frame-
work for agent development. Additionally, many func-
tional utility methods are provided which allow users to
focus more directly on planning activities. Biter is writ-
ten in Java 2. A complete description of Biter, its source
code, Javadoc API, and UML diagrams are available [1].

5.1 Biter’s World Model

In the RoboCup domain it has become clear that agents
need to build a world model [12]. The Biter world
model contains slots for both static and dynamic ob-
jects. Static objects have a field placement that does

not change during the course of a game. These include
flags, lines, and the goals. In contrast, dynamic objects
move about the field during the game. These include
the players and the ball. A player receives sensory in-
put, relative to his current position, consisting of vectors
that point to the static and dynamic objects in his field
of view. Since static objects have fixed locations, they
are important in calculating a player’s absolute posi-
tion on the field of play. If a player knows his absolute
location, the relative positions of the dynamic objects
in the sensory input can be transformed into absolute
locations.

As sensory information about dynamic objects is placed
into Biter’s world model it is time stamped and the
world model is updated. We first calculate the player’s
absolute position using some of the closest static ob-
jects as guide. We then use the player’s position to
calculate the absolute position of all dynamic objects.
All information is discarded after its age exceeds the
user-defined limit. Users can experiment with this limit.
A small value leads to a purely reactive agent, a large
value leads to the agent seeing “ghosts” of players that
are not there anymore.

Access to world model data should be simple; however,
approaching this extraction problem too simplistically
leads to undesirable cluttering of code. This code obfus-
cation occurs with access strategies that litter loop and
test logic within every routine that accesses the world
model. Biter utilizes a decorator pattern [5] which is
used to augment the capabilities of Java’s ArrayList it-
erator. The underlying technique used is that of a fil-
tering iterator. This filtering iterator traverses another
iterator, only returning objects that satisfy a given cri-
teria. Biter utilizes regular expressions for the selection
criteria. For example, depending on proximity, the soc-
cer ball’s identity is sometimes reported as “ball” and
other times as “Ball”. If our processing algorithm calls
for the retrieval of the soccer ball from the world model,
we would initialize the filtering iterator with the crite-
ria [bB]all to reliably locate the object. Since the fil-
tering criterion is regular expression based, we are able
to construct powerful extraction routines without in-
curring the complexity of coding error-prone compound
conditionals.

Although access to the world model has been stream-
lined, creating more concise and algorithm-revealing
code, it remains difficult to fully understand the be-
havior of the players. At times it seems the only way
to understand moments of unexplainable behavior is to
have access to the player’s world model. Dumping the
contents of the world model to a file for later interpreta-
tion is unnecessarily complex and unwieldy. To attack
this problem, Biter provides a run-time visual display
of a player’s internal view of his environment. When



a Biter agent is started, a command-line parameter is
used to enable the graphical display of the world model.
The display is served by an independent thread and uti-
lizes double buffering for smooth animation. The over-
head view of the field shows all static objects and the
dynamic objects currently found in the player’s world
model. Whenever stale elements are encountered, an
algorithm is run which merges its display color with the
background color of the field. Visually, this has the ef-
fect of having stale elements fade away as they age. The
graphical display of a player’s world model can be com-
pared to the soccer monitor’s display for purposes of
independent verification and validation of the player’s
world model contents. This powerful debugging feature
has saved users countless hours of fruitless troubleshoot-
ing and helps them focus on other multiagent system
implementation issues.

5.2 The Generic Agent Architecture

Practitioners new to agent-oriented software engineer-
ing [7] often stumble when building an agent that needs
both reactive and long-term behaviors, usually settling
for a completely reactive system and ignoring multi-step
behaviors. For example, in RoboCup an agent can take
an action at every clock tick. This action can simply be
a reaction to the current state of the world, or it can be
dictated by a long-term plan. Simple agent implemen-
tations choose an action at each time step by executing
a long series of if-then statements where the conditional
only checks the value of recent inputs. Unfortunately,
such implementations make it very hard to add multi-
step behaviors. The usual strategy is to add a “mode”
to the agent which is then used in the conditional part
of the if-then statements to determine which action to
take. This strategy, while functional, is not very elegant
(it is not an object-oriented solution) and does not scale
well with the number of multi-step behaviors.

Biter implements a GAA which provides the structure
needed to guide users in the development of a solid
object-oriented agent architecture. The GAA is de-
signed for agents that receive input from the environ-
ment at discrete intervals and take discrete actions.
That is, we envision an agent that receives readings from
its sensors and takes actions using its effectors. This is
a common method for modeling autonomous agents [15,
Chapter 1] and captures many agent applications.

The GAA provides a mechanism for scheduling activi-
ties each time the agent receives some form of input. An
activity is defined as a set of actions to be performed
over time. The action chosen at any particular time
might depend on the state of the world and the agent’s
internal state. The two types of activities we have de-
fined are conversations and behaviors. Conversations
are series of messages exchanged between agents. Be-

haviors are actions taken over a series of time steps. The
ActivityManager determines which activity should be
called to handle any new input. A general overview of
the system can be seen in Figure 2.

An agent is propelled to act only after receiving some
form of input. That is, after the activity manager re-
ceives a new object of the Input class. This class has
three sub-classes: SensorInput, Message, and Event.
A SensorInput is a set of inputs that come directly
from the agent’s sensors. Biter provides a parsing func-
tion that transforms the input from its original format—
a list—into an object of this class. In most implemen-
tations a class hierarchy should be created under this
class in order to differentiate between the various types
of sensor inputs. Biter defines ObjectInfo and Object-
InfoContainer as extensions of this class. The Message
class represents a message from another agent. Robocup
players can use a a broadcast mechanism (“say”) to send
messages to all nearby players. Finally, the Event class
is a special form of input that represents an event the
agent itself created. Events function as alarms set to
go off at a certain time. They are important because
they provide a way to implement timeouts. Timeouts
are used when waiting for a reply to a message, when
waiting for some input to arrive, or when repeatedly
taking an action in the hope of generating some effect.

Biter implements a special instance of Event which we
call the act event. This event fires when the time win-
dow for sending an action to the soccer server opens.
That is, it tries to fire every 100ms, in accordance with
the soccerserver’s main loop. Since the messages be-
tween Biter and the soccerserver can be delayed, and
their clocks can get skewed over time, the actual firing
time of the act event needs to be constantly monitored.
Biter uses an algorithm similar to the one used in [12] for
keeping these events synchronized with the soccerserver.

The Activity class represents our basic building block.
Biter agents are defined by creating a number of activ-
ities and letting the activity manager schedule them as
needed. The Activity class has three main member
functions: canHandle, handle, and inhibits.

The canHandle member function receives an input ob-
ject as an argument and returns true if the activity can
handle the input, that is, if it can execute as a conse-
quence of receiving that input. This function could not
only consider the contents of the input, but it could also
consider the agent’s current internal state, the agent’s
world model, etc. Since this is a generic framework, we
do not constrain the canHandle function to only access
a certain subset of the available data. That decision
is left to the software engineer who wants to refine the
architecture. The only requirement we make is for the
function to be speedy since it will need to be called after



Conversation

canHandle(i : Input) : boole...
handle(i : Input) : boolean

(from biter)
Behavior

Behavior(am : ActivityManager, wm : WorldMod...
canHandle(i : Input) : boolean
handle(i : Input) : boolean
busy() : boolean

(from biter)

RobocupBehavior

catchBall()
dashToPoint()
dribbleBallToPoin...
kickBallToPoint()
playersInCone()

(from biter)

DribbleToGoal
(from biter)

DribbleAroundPlayer
(from biter)

DashToBall
(from biter)

IncorporateObservation
(from biter)

Player
(from biter)

Goalie
(from biter)

Activity

busy() : boolean
canHandle(i : Input) : boolean
handle(i : Input) : boolean
inhibits(a : Activity) : boolean
Activity(am : ActivityManager, wm : WorldModel)

(from biter)
ActivityManager

pq : PriorityQueue
currentCycle : long
activities : Vector

ActivityManager(agent : PlayerFoundation)
addActivity(a : Activity) : void
removeActivity(a : Activity) : void
handle(input : Input) : boolean
run() : void
addEvent(name : String, time : long) : void

(from biter)

WorldModel
(from biter)

PlayerFoundation
(from biter)

#manager
-agent

+player

#wm

Figure 2: Biter’s UML class diagram. We omit many of the operations and attributes for brevity. Italic class names
denote abstract classes.

each new input has arrived.

The handle member function is called when the activ-
ity is chosen to handle that input. It is called when
the activity manager wants the activity to execute with
the given input. This function usually generates one or
more atomic actions, sets some member variables, and
returns. A call to the handle function executes the next
step in the activity, the step that corresponds to the re-
ceived input. The function can set member variables
as a way to maintain a state between successive invoca-
tions. This state allows the activity to implement multi-
step plans and other complex long-term behaviors. The
handle function will return true when the activity is
done, at which point it will be deleted. We expect that
in most agents there will be a set of persistent activities
that are never done and always return false.

Finally, the inhibits member function receives an
Activity object as a parameter and returns true if
that activity is inhibited by the current one. This func-
tion implements the control knowledge which the ac-
tivity manager will use to determine which activity to
execute. The use of this function mirrors the use of
subsuming behaviors in the subsumption architecture

[4]. However, the function can also consult state vari-
ables in order to calculate its value, thereby extending
the functionality. Since the activities are organized in
a hierarchy, this function is able to easily inhibit whole
subtrees of that hierarchy. This allows users to add new
activities without having to modify all existing ones.

A significant advantage of representing each activity by
its own class, and with the required member functions,
is that we enforce a clear separation between the behav-
ior knowledge and the control knowledge. That is, the
handle function implements the knowledge about how
to accomplish certain tasks or goals. The canHandle
function tells us under which conditions this activity
represents a suitable solution. Meanwhile the inhibits
function incorporates some control knowledge that tells
us when this activity should be executed. This separa-
tion is a necessary requirement of a modular and easily
expandable agent architecture.

The Behavior class is an abstract class that groups
all long-term behaviors of the agent. We define these
behaviors as series of atomic actions. For example, a
robotic behavior might be to “avoid obstacles”, while a
software agent might have a “gather data from sources”



behavior. Behaviors can, like all activities, create new
activities and add them to the set of activities.

Biter defines its own behavior hierarchy by extending
the Behavior class, starting with the abstract class
RobocupBehavior which implements many useful func-
tions. The hierarchy continues with standard behaviors
such as DashToBall, IncorporateObservation, and
DribbleToGoal. For example, a basic Biter agent can
be created by simply adding these three behaviors to a
player’s activity manager. The resulting player would
always run to the ball and then dribble it towards the
goal.

The Conversation class is an abstract class that serves
as the base class for all the agent’s conversations. In
general, we define a conversation as a set of messages
sent between one agent and other agents for the pur-
pose of achieving some goal, e.g, the purchase of an
item, the delegation of a task, etc. A GAA implemen-
tation defines its own set of conversations as classes that
inherit from the general Conversation class. For exam-
ple, if an agent wanted to use the contract-net protocol,
it would implement a contract-net class that inherits
from Conversation.

Conversations implement protocols. Most protocols
can be represented with a finite state machine where
the states represent the current status of the conversa-
tion and the edges represent the messages sent between
agents (see [9] for specific proposal that extends UML
to cover agent conversations). In some protocols each
agent will play one of the available “roles.” For exam-
ple, in the contract-net protocol agents can play the
role of contractor or contractee. The conversations will,
therefore, implement a finite state machine.

Multiple conversations can be handled by having the ex-
isting conversation add a new one to the set of activities.
For example, if a message that starts a new conversa-
tion (e.g., a request-for-bids) is received by an agent
the canHandle function of the appropriate conversation
will return true even if the conversation is already busy,
that is, even if it is not in its starting state. When the
handle function is called with the new message the con-
versation will recognize that its busy and create a new
conversation, add it to the action manager, call the new
conversation’s handle method with the new input, and
return. In this way, a new conversation object is created
to handle the new message. Behaviors can use the same
method to initialize a conversation.

For example, a “move to point” behavior might real-
ize that another agent is blocking the path and start a
conversation with that agent in an effort to convince it
to move out of the way. If only one instance of a con-
versation is desired the user can implement a conversa-
tion factory [5, Factory Method] in order to dynamically

input = the new input
activities = set of all activities
matches = new Vector()
for all i in activities do

if i.canHandle(input) then
matches.addElement(i)

end if
end for
uninhibited = new Vector()
for all i in matches do

inhibited = false
for all j 6= i in matches do

if j.inhibits(a) then
inhibited = true

end if
if not inhibited then

uninhibited.addElement(i)
end if

end for
end for
chosen = uninhibited.choseRandom()
if chosen.handle() then

removeActivity(chosen)
end if

Figure 3: ActivityManager.handle(Input i)

limit the number and type of conversations.

We are also planning to add error handling and verifi-
cation functions to the top-level Conversation. Specif-
ically, many conversations will want to implement some
timeout mechanism for expected replies, as well as a
method for determining what the next action should be
(e.g., resend the message, send another message, fail).
Given the commonality of this functionality, it makes
sense for us to implement it on the base class.

The ActivityManager picks one of the activities to ex-
ecute for each input the agent receives. It implements
the agent’s control loop. The manager runs in its own
thread, where it receives input from the sensors and
dispatches it to the appropriate activity. The dispatch-
ing is done by the handle function, shown in Figure 3,
which determines which of the activities will actually
handle the input. The algorithm it implements echoes
the type of control mechanism implemented by sub-
sumption and Belief, Desire, Intention [6] architectures.
The function first finds all activities that can handle
the input; from this group it chooses one which is not
inhibited by any other one in the group and asks it to
handle the input. Since the inhibition function can be
arbitrarily defined by its activity, the ordering becomes
very flexible. That is, the user of the GAA has op-
tions ranging from no organization (no activity inhibits



any other activity), to a static organization (activities
inhibit a fixed type of activities), to a dynamic organi-
zation (activities inhibit based on many other factors).
As an agent matures, the user can choose to increase
the organizational complexity without re-implementing
the architecture.

All agent implementations that extend Biter must fol-
low a series of steps. First the agent must instantiate
an activity manager object. The agent then adds the
desired activities to this object. These are the activi-
ties that define its overall behavior. It then calls the
run method on the activity manager in order to start it
running. At this point the manager takes complete con-
trol and enter its infinite loop, choosing which behavior
to execute every time. In general, the user should not
need to modify the manager. All the control knowl-
edge is stored in the canHandle and inhibits methods
which are defined by the user.

6 Experiences with Biter

The University of South Carolina has taught a graduate-
level course in multiagent systems for several years.
The RoboCup soccer simulation problem domain was
first adopted for instructional, project-based use for the
Spring 2000 semester. Students are divided into groups
of two or three, and each group designs and imple-
ments a RoboCup team. All groups must write a re-
port on their work and during the final week of classes
participate in a class tournament. We made it clear
that a group’s performance does not directly affect their
grade. However, we curiously note that the groups of-
ten seemed more motivated by their desire to win the
tournament than to achieve a better grade in the class.

In the Spring 2000 semester we gave students a very ba-
sic Java client whose only functionality was the ability
to parse and exchange messages with the soccerserver.
We also made available to them the source code for the
CMUnited team [12], authored at Carnegie Mellon and
written in ’C’. The CMUnited team had won the pre-
vious two international RoboCup competitions. Due to
the complexity of the CMU code, the students unani-
mously chose to use the simple Java client as their basic
framework and to peruse the CMUnited code for ideas.

The final results for the first semester were encouraging.
All groups were able to build working teams and partici-
pate in the final tournament. Their strategies, however,
did not reflect the coordination protocols or behavior se-
lection and planning algorithms we had studied in class.
Several groups resorted to a simple “everyone go to the
ball and try to kick it towards the goal” strategy. In
fact, it was this strategy which won the tournament. A
couple of groups implemented very rudimentary “zone”
strategies, but these were incomplete. For example, a

player dribbling the ball towards the goal would sud-
denly stop when it reached the end of its zone. More-
over, the code written by many of the groups lacked any
structured design and resorted to the use of one large
nested if-then-else statement. That is, the students did
not do a thorough job at implementing any of the agent
architectures described in class.

We believe that part of the reason for this last omission
was the lack of well-documented object-oriented designs
for agent architectures. Our textbook [15] describes the
architectures using very high-level box diagrams. Three
quarters into the semester we attempted to remedy this
problem by providing the students with a set of UML
agent architectures1 but by then it was too late. The
groups were already too committed to their own designs
to pay attention to a better alternative.

As a result of these experiences, we developed Biter with
the expectation that it would allow the student groups
to concentrate more on using the coordination strate-
gies studied in class and help them develop good agent
designs.

During the Fall 2000 semester the students were given
the version of Biter described in Section 5, with a default
behavior of going to the ball and dribbling it towards
the goal. The last problem set before the final competi-
tion asked the students to implement a team that could
beat a team of Biter agents with the default behavior.
All groups were able to achieve this goal, with varying
degrees of success.

The results of the second tournament were impressive.
All of the teams implemented complex strategies. Many
of the teams utilized flexible zones, stigmergy [8], and
broadcast communications. For example, some groups
were able to have the players switch between a set of
modes that determined the overall strategy being used
(e.g., aggressive versus protective). The players would
achieve this without any explicit communication, using
only cues from the environment, thereby implementing
a form of stigmergy. An example of communication em-
ployed by several teams was having a player announce
its pass. That is, a player would shout “I am passing to
P3” just before making the pass. All the other players,
especially P3, that heard the announcement could then
behave accordingly.

The quality of the resulting architectures also improved.
The player code was no longer a long and hard to un-
derstand if-then statement with global mode variables.
Instead, the groups encapsulated behavior functionality
in the various behavior classes. The behavior to use was
chosen based on some pre-determined method such as
the priority of the behavior or based on certain features

1Available at http://www.multiagent.com/arch/

http://www.multiagent.com/arch/


of the current world state. This new modularity also
allowed the groups to quickly test new behavior com-
binations and reject behaviors that actually resulted in
worse team performance. We believe that this flexibility
contributed to the quality of the final teams.

In the Fall of 2001 class we again used the same Biter
code, this time with a few new low-level behaviors and
bug-fixes. Once again we noticed improvements in the
team performance, albeit not as drastic as the previ-
ous year. All the teams exhibited true team behavior.
They engaged in a lot of passing and, on occasion, had
pass sequences that involved three players—from first,
to second, to third, to the goal. Overall the students’
experiences continued to be positive.

There were still, however, some areas left for improve-
ment. The teams showed a poor ability to resolve dead-
locks. For example, sometimes several players from the
same team would all try to take control of the ball at
the same time, annulling each other’s actions in the pro-
cess. In general, the strategies were brittle in that they
would stop working even after small changes were made
to the soccerserver parameters. Finally, the real-time
performance of the teams was still not up to par with
that of competition teams—they were missing action
and coordination opportunities.

7 Conclusions

Our experiences using RoboCup and Biter have proven
to us that these are effective tools for teaching students
how to build multiagent systems—encouraging them to
develop a distributed mindset. The students often com-
mented how the building of teams was much harder
than they initially anticipated—reaffirming our belief
that they had not considered the complexities involved
in building a multiagent system in a noisy environment.
Their final successes, on the other hand, confirmed to us
that they had learned how to successfully tackle many of
the problems. Our analysis of their code also confirmed
that Biter had encouraged most groups to use proper
software engineering techniques. After three years of us-
ing Robocup to teach multiagent systems we feels that
we have learned a few valuable lessons.

• Robocup is an excellent motivator. The quality of
the students’ final projects was better than on other
similar projects where the only reward was a good
grade.

• The best performing teams on the tournament always
have better designs and are built by the better pro-
grammers. That is, we have never seen a badly de-
signed team win or do well on the tournament.

• Students invariably underestimate the difficulty of
achieving coordinated team behavior. We surmise

that this ignorance contributes to their early eager-
ness to start building a team.

• Even the best teams are brittle—small changes in the
game parameters (e.g., wind speed, noise, etc.) break
them. This is to be expected since engineering ro-
bustness remains an open research problem.

• There is an obsession with response time, even when
it is already good enough. Many groups would spend
time optimizing the speed of the Biter code even if
this did not actually change the performance of their
team in any way.2 We believe that this behavior arises
because the students know how to make programs
faster, so they focus on applying those techniques in-
stead of focusing on achieving coordination, which is
the only way to improve their team performance.

Although our experiences with RoboCup and Biter have
been at the graduate level, we fully expect that they
will be useful tools for undergraduate education. The
STEELMAN draft of the Computing Curricula 2001
(CC2001) recognizes that distributed systems topics
need to be introduced with more rigor in an under-
graduate CSE education. Topics related to distributed
systems are present in each of the following CS body of
knowledge core areas, as defined in CC2001: Algorithms
and Complexity, Architecture and Organization, Op-
erating Systems, Intelligent Systems, and Net-Centric
Computing [3]. Each of these core areas is further sub-
divided into topics and units. The STEELMAN draft
of CC2001 presents sample curricular components that
demonstrate possible strategies for integrating topic and
unit coverage into an undergraduate CSE educational
experience. Our work couples topically with the pro-
posed intermediate course CS240 - Intelligent Systems.
The RoboCup simulation league, with the aid of the
Biter framework, could easily serve as a project-based
component for this Intelligent Systems course.

Biter continues to evolve. New features and behaviors
are being added and we expect the pace to quicken as
more users start to employ it for pedagogical and re-
search purposes. We are currently working on the ad-
dition of a GUI for the visual development of agents
using Java Beans, as well as more low-level behaviors.
We envision a system which will allow users to draw
graphs with the basic behaviors as the vertices and “in-
hibits” links as the directed edges. These edges could
be annotated with some code. Our system would then
generate the Java code that implements the agent. That
is, the behaviors we have defined can be seen as compo-
nents [13] which the programmer can wire together to
form aggregate behaviors. This system will allow inex-
perienced users to experiment with multiagent systems’

2Since the time slice is 100ms, sending responses sooner
than that does not achieve anything.



design, both at the agent and the multi-agent levels.
We also believe the system will prove to be useful to
experienced multiagent researchers because it will allow
them to quickly prototype and test new coordination
algorithms.

References

[1] Biter: A robocup client. http://jmvidal.cse.
sc.edu/biter/.

[2] Robocup initiative. http://www.robocup.org.

[3] Computing curricula 2001, steelman draft, August
2001. http://www.computer.org/education/
cc2001/steelman/cc2001.

[4] Brooks, R. A. Intelligence without representation.
Artificial Intelligence 47 (1991), 139–159.

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. Design Patterns : Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[6] Georgeff, M., Pell, B., Pollack, M., Tambe, M., and
Wooldridge, M. The Belief-Desire-Intention model
of agency. In Proceedings of Agents, Theories, Ar-
chitectures, and Languages (1999).

[7] Jennings, N. R. On agent-based software engineer-
ing. Artificial Intelligence 117 (2000), 277–296.

[8] Kube, C. R., and Bonabeau, E. Cooperative trans-
port by ants and robots. Santa Fe 99-01-008.

[9] Odell, J., Parunak, H. V. D., and Bauer, B. Rep-
resenting agent interaction protocols in UML. In
Proceedings of the Fourth International Conference
on Autonomous Agents (2000).

[10] Oram, A., Ed. Peer-to-Peer. O’Reilly, 2001.

[11] Resnick, M. Turtles, Termites and Traffic Jams.
The MIT Press, 1994.

[12] Stone, P. Layered Learning in Multiagent Systems.
MIT Press, 2000.

[13] Szypersky, C. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley,
1999.

[14] Vidal, J. M., Buhler, P. A., and Huhns, M. N. In-
side an agent. IEEE Internet Computing 5, 1 (Ja-
nuary-February 2001).

[15] Weiss, G., Ed. Multiagent Systems: A Modern Ap-
proach to Distributed Artificial Intelligence. MIT
Press, 1999.

http://jmvidal.cse.sc.edu/biter/
http://jmvidal.cse.sc.edu/biter/
http://www.robocup.org
http://www.computer.org/education/cc2001/steelman/cc2001
http://www.computer.org/education/cc2001/steelman/cc2001
http://www.ai.mit.edu/people/brooks/papers/representation.pdf
http://www.isi.edu/teamcore/tambe/papers/99/bdi-panel.ps
http://www.isi.edu/teamcore/tambe/papers/99/bdi-panel.ps
http://jmvidal.cse.sc.edu/library/abse.pdf
http://jmvidal.cse.sc.edu/library/abse.pdf
http://www.santafe.edu/sfi/publications/Abstracts/99-01-008abs.html
http://www.santafe.edu/sfi/publications/Abstracts/99-01-008abs.html
http://www.jamesodell.com/Rep_Agent_Protocols.pdf
http://www.jamesodell.com/Rep_Agent_Protocols.pdf
http://www.oreilly.com/catalog/peertopeer/
http://www.amazon.com/exec/obidos/ASIN/0262680939/multiagentcom/
http://www.amazon.com/exec/obidos/ASIN/0262194384/multiagentcom/
http://jmvidal.cse.sc.edu/library/w1082.pdf
http://jmvidal.cse.sc.edu/library/w1082.pdf
http://jmvidal.cse.sc.edu/library/WeissBook/
http://jmvidal.cse.sc.edu/library/WeissBook/

	1 Introduction
	2 The Distributed Mindset
	3 A RoboCup Overview
	4 Using RoboCup for Teaching
	5 The Biter Platform
	5.1 Biter's World Model
	5.2 The Generic Agent Architecture

	6 Experiences with Biter
	7 Conclusions

