
A Method for Solving Distributed Service Allocation
Problems ∗

José M. Vidal
Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

vidal@sc.edu
http://jmvidal.cse.sc.edu

ABSTRACT
We present a method for solving service allocation prob-
lems in which a set of services must be allocated to a set
of agents so as to maximize a global utility. The method
is completely distributed so it can scale to any number of
services without degradation. We first formalize the service
allocation problem and then present a simple hill-climbing,
a global hill-climbing, and a bidding-protocol algorithm for
solving it. We analyze the expected performance of these al-
gorithms as a function of various problem parameters such
as the branching factor and the number of agents. Finally,
we use the sensor allocation problem, an instance of a ser-
vice allocation problem, to show the bidding protocol at
work. The simulations also show that phase transition on
the expected quality of the solution exists as the amount of
communication between agents increases.

1. INTRODUCTION
The problem of dynamically allocating services to a chang-
ing set of consumers arises in many applications. For exam-
ple, in an e-commerce system, the service providers are al-
ways trying to determine which service to provide to whom,
and at what price [3]; in an automated manufacturing for
mass customization scenario, agents must decide which ser-
vices will be more popular/profitable [1]; and in a dynamic
sensor allocation problem, a set of sensors in a field must
decide which area to cover, if any, while preserving their
resources.

While these problems might not seem related, they are in-
stances of a more general service allocation problem in which
a finite set of resources must be allocated by a set of au-
tonomous agents so as to maximize some global measure of
utility. A general approach to solving these types of prob-

∗This work has been funded by Darpa under contract
F30602-99-2-0513.

USC CSCE TR-2002-012

lems has been used in many successful systems. The ap-
proach involves three general steps:

1. Assign each resource that needs to be preserved to an
agent responsible for managing the resource.

2. Assign each goal of the problem domain to an agent
responsible for achieving it. Achieving these goals re-
quires the consumption of resources.

3. Have each agent take actions so as to maximize its own
utility, but implement a coordination algorithm that
encourages agents to take actions that also maximize
the global utility.

In this paper we formalize this general approach by casting
the problem as a search in a global fitness landscape which
is defined as the sum of the agents’ utilities. We show how
the choice of a coordination/communication protocol dis-
seminates information, which in turn “smoothes” the global
utility landscape. This smooth global utility landscape al-
lows the agents to easily find the global optimum by simply
making selfish decisions to maximize their individual utility.

We also present experiments that pinpoint the location of a
phase transition in the time it takes for the agents to find
the optimal allocation. The transition can be seen when the
amount of communication allowed among agents is manip-
ulated. It exists because communication allows the agents
to align their individual landscapes with the global land-
scape. At some amount of communication, the alignment
between these landscapes is good enough to allow the agents
to find the global optimum, but less communication drives
the agents into a random behavior from which the system
cannot recuperate.

1.1 Task Allocation
The service allocation problem we discuss in this paper is a
superset of the well known task allocation problem [8, chap-
ter 5.7]. A task allocation problem is defined by a set of
tasks that must be allocated among a set of agents. Each
agent has a cost associated with each subset of tasks, which
represents the cost the agent would incur if it had to per-
form those tasks. Coordination protocols are designed to
allow agents to trade tasks so that the globally optimal

mailto:vidal@sc.edu
http://jmvidal.cse.sc.edu

allocation—the one that minimizes the sum of all the in-
dividual agent costs—is reached as soon as possible. It has
been shown that this globally optimal allocation can reached
if the agents use the contract-net protocol [7] with OCSM
contracts [6]. These OCSM contracts make it possible for
the system to transition from any allocation to any other al-
location in one step. As such, a simple hill-climbing search
is guaranteed to eventually reach the global optimum.

In this paper we consider the service allocation problem,
which is a superset of the task allocation because it allows
for more than one agent to service a “task”. The service
allocation problem we study also has the characteristic that
every allocation cannot be reached from every other alloca-
tion in one step.

1.2 Service Allocation
In a service allocation problem there are a set of services,
offered by service agents, and a set of consumers who use
those services. A server can provide any one of a number of
services and some consumers will benefit from that service
without depleting it. A server agent incurs a cost when pro-
viding a service and can choose not to provide any service.

For example, a server could be an agent that sets up a web-
site with information about cats. All the consumer agents
with interests in cats will benefit from this service, but those
with other interests will not benefit. Since each server can
provide, at most, one service, the problem is to find the allo-
cation of services that maximizes the sum of all the agents’
utilities, that is, an allocation that maximizes the global
utility.

1.2.1 Sensor Allocation
Another instance of the service allocation problem is the
sensor allocation problem, which we will use as an example
throughout this paper. In the sensor allocation problem
we have a number of sensors placed in fixed positions in a
two-dimensional space. Each sensor has a limited viewing
angle and distance but can point in any one of a number of
directions. For example, a sensor might have a viewing angle
of 120 degrees, viewing distance of 3 feet, and be able to
look in three directions, each one 120 degrees apart from the
others. That is, it can “look” in any one of three directions.
On each direction it can see everything that is in the 120
degree and 3 feet long view cone. Each time a sensor looks
in a particular direction is uses energy.

There are also targets that move around in the field. The
goal is for the sensors to detect and track all the targets in
the field. However, in order to determine the location of a
target, two or more sensors have to look at it at the same
time. We also wish to minimize the amount of energy spent
by the sensors.

We consider the sensor agents as being able to provide three
services, one for each sector, but only one at a time. We
consider the target agents as consuming the services of the
sensors.

2. A FORMAL MODEL FOR SERVICE AL-
LOCATION

We define a service allocation problem SA as a tuple SA =
{C, S} where C is the set of consumer agents C = {c1, c2, . . . , c|C|},
and ci has only one possible state, ci = 0. The set of ser-
vice agents is S = {s1, s2, . . . , s|S|} and the value of si is
the value of that service. For the sensor domain in which
a sensor can observe any one of three 120-degree sectors or
be turned off, we have si ∈ {0, 1, 2, off}. An allocation is
an assignment of states to the services (since the consumers
have only one possible state we can ignore them). A particu-
lar allocation is denoted by a = {s1, s2, . . . , s|S|}, where the
si have some value taken from the domain of service states,
and a ∈ A, where A is the set of all possible allocations.
That is, an allocation tells us the state of all agents (since
consumers have only one state they can be omitted).

Each agent also has a utility function. The utility that an
agent receives depends on the current allocation a, where
we let a(s) be the state of service agent s under a. The
agent’s utilities will depend on their state and the state of
other agents. For example, in the sensor problem we define
the utility of sensor s as Us(a), where

Us(a) =

{
0 if a(s) = off
−K1 otherwise.

(1)

That is, a sensor receives no utility when it is off and must
pay a penalty of −K1 when it is running.

The targets are the consumers, and each target’s utility is
defined as

Uc(a) =

 0 if fc(a) = 0
K2 if fc(a) = 1
K2 + n − 2 if fc(a) = n

(2)

where

fc(a) = number of sensors s that see c given their state a(c).
(3)

Finally, given the individual agent utilities, we define the
global utility GU(a) as the sum of the individual agents’
utilities:

GU(a) =
∑
c∈C

Uc(a) +
∑
s∈S

Us(a). (4)

The service allocation problem is to find the allocation a
that maximizes GU(a). In the sensor problem, there are 4|S|

possible allocations, which would make a simple generate-
and-test approach take exponential amounts of time. We
wish to find the global optimum much faster than that.

2.1 Search Algorithms
Our goal is to design an interaction protocol whereby an allo-
cation a that maximizes the global utility GU(a) is reached
in a small number of steps. In each step of our protocol
one of the agents will change its state or send a message to
another agent. The messages might contain the state or util-
ities of other agents. We assume that the agents do not have
direct access to the other agents’ states or utility values.

The simplest algorithm we can envision involves having each
consumer, at each time, changing the state of a randomly
chosen service agent so as to increase the consumer’s own

utility. That is, a consumer c will change the current allo-
cation a into a′ by changing the state of some sensor s such
that Uc(a

′) > Uc(a). If the sensor’s state cannot be changed
so as to increase the utility, then the consumer does noth-
ing. In the sensor domain this amounts to a target picking
a sensor and changing its state so that the sensor can see
the target. We refer to this algorithm as individual hill-
climbing.

The individual hill-climbing algorithm is simple to imple-
ment and the only communication needed is between the
consumer and the chose server. This simple algorithm makes
every consumer agent increase its individual utility at each
turn. However, the new allocation a′ might result in a lower
global utility, since a′ might reduce the utility of several
other agents. Therefore, it does not guarantee that an opti-
mal allocation will be eventually reached.

Another approach is for each agent to change state so as
to increase the global utility. We call this a global hill-
climbing algorithm. In order to implement this algorithm,
an agent would need to know how the proposed state change
affects the global utility as well as the states of all the other
agents. That is, it would need to be able to determine
GU(a′) which requires it to know the state of all the agents
in a′ as well as the utility functions of every other agent,
as per the definition of global utility (4). In order for an
agent to know the state of others, it would need to somehow
communicate with all other agents. If the system imple-
ments a global broadcasting method then we would need for
each agent to broadcast its state at each time. If the sys-
tem uses more specialized communications such as point-to-
point, limited broadcasting, etc., then more messages will
be needed.

Any protocol that implements the global hill-climbing algo-
rithm will reach a locally optimal allocation in the global
utility. This is because it is always true that, for a new al-
location a′ and old allocation a, GU(a′) ≥ GU(a). Whether
or not this local optimum is also a global optimum will de-
pend on the ruggedness of the global utility landscape. That
is, if it consists of one smooth peak then it is likely that any
local optimum is the global optimum. On the other hand, if
the landscape is very rugged then there are likely many local
peaks. Studies in NK landscapes [2] tell us that smoother
landscapes result when an agent’s utility depends on the
state of smaller number of other agents.

Global hill-climbing is better than individual hill-climbing
since it guarantees that we will find a local optima. However,
it requires agents to know each others’ utility function and
to constantly communicate their state. Such large amount of
communication is often undesirable in multiagent systems.
We need a better way to find the global optimum.

One way of correlating the individual landscapes to the
global utility landscape is with the use of a bidding pro-
tocol in which each consumer agent tells each service the
marginal utility the consumer would receive if the service
switched its state to so as to maximize the consumer’s util-
ity. The service agent can then choose to provide the service
with the highest aggregate demand. Since the service is pick-
ing the value that maximizes the utility of everyone involved

(all the consumers and the service) without decreasing the
utility of anyone else (the other services) this protocol is
guaranteed to never decrease the global utility. This bid-
ding protocol is a simplified version of the contract-net [7]
protocol in that it does not require contractors to send re-
quests for bids.

However, in order for a consumer to determine the marginal
utility it will receive from one sensor changing state, it still
needs to know the state of all the other sensors. This means
that a complete implementation of this protocol will still re-
quire a lot of communication (namely, the same amount as
in global hill-climbing). We can reduce this number of mes-
sages by allowing agents to communicate with only a subset
of the other agents and making their decisions based on only
this subset of information. That is, instead of all services
telling each consumer their state, a consumer could receive
state information from only a subset of the services and
make its decision based on this (assuming that the services
chosen are representative of the whole). This strategy shows
a lot of promise but its performance can only be evaluated
on an instance-by-instance basis. We explore this strategy
experimentally in Section 3 using the sensor domain.

2.1.1 Theoretical Time Bounds of Global Hill-Climbing
Since we now know that global hill-climbing will always
reach a local optimum, the next questions we must answer
are:

1. How many local optima are there?

2. What is the probability that a local optimum is the
global optimum?

3. How long does it take, on average, to reach a local
optimum?

Let a be the current allocation and a′ be a neighboring al-
location. We know that a is a local optimum if

∀a′∈N(a)GU(a) > GU(a′) (5)

where

N(a) = {x |x is a Neighbor of a}. (6)

We define a Neighbor allocation as an allocation where one,
and only one, agent has a different state.

The probability that some allocation a is a local optimum is
simply the probability that (5) is true. If the utility of all
pairs of neighbors is not correlated, then this probability is

Pr[∀a′∈N(a)GU(a) > GU(a′)] = Pr[GU(a) > GU(a′)]b,
(7)

where b is the branching factor. In the sensor problem
b = 3·|S| where S is the set of all sensors. That is, since each
sensor can be in any of four states it will have three neighbors
from each state. In some systems it is safe to assume that the
global utilities of a’s neighbors are independent. However,
most systems show some degree of correlation.

Now we need to calculate the Pr[GU(a) > GU(a′)], that is,
the probability that some allocation a has a greater global
utility that its neighbor a′, for all a and a′. This could

be calculated via an exhaustive enumeration of all possible
allocations. However, often we can find the expected value
of this probability.

For example, in the sensor problem each sensor has four
possible states. If a sensor changes its state from sector
x to sector y the utility of the target agents covered by x
will decrease while the utility of those in y will increase. If
we assume that, on average, the targets are evenly spaced
on the field, then the global utilities for both of these are
expected to be the same. That is, the expected probability
that the global utility of one allocation is bigger than the
other is 1/2.

If, on the other hand, a sensor changes state from “off”
to a sector, or from a sector to “off,” the global utility is
expected to decrease and increase, respectively. However,
there are an equal number of opportunities to go from “off”
to “on” and vice-versa. Therefore, we can also expect that
for these cases the probability that the global utility of one
allocation is bigger than the other is 1/2.

Based on these approximations, we can declare that for the
sensor problem

Pr[∀a′∈N(a)GU(a) > GU(a′)] =
1

2b
= λ. (8)

If we assume an even distribution of local optima, the total
number of local optima is simply the product of the total
number of allocations times the probability that each one is
a local optimum. That is,

Total number of local optima = λ|A| (9)

For the sensor problem, λ = 1/2b, b = 3 · |S| and |A| = b|S|,

so the expected number of local optima is b|S|/23|S|.

Pr[a local optimum is also global] =
1

λ|A| =
1

2b
. (10)

We can find the expected time the algorithm will take to
reach a local optimum by determining the maximum num-
ber of steps from every allocation to the nearest local opti-
mum. This gives us an upper bound on the number of steps
needed to reach the nearest local optimum using global hill-
climbing. Notice that, under either individual hill-climbing
or the bidding protocol it is possible that the local optimum
is not reached, or is reached after more steps, since these
algorithms can take steps that lower the global utility.

In order to find the expected number of steps to reach a local
optimum, we start at any one of the local optima and then
traverse all possible links at each depth d until all possible
allocations have been visited. This occurs when

λ · |A| · bd > |A|. (11)

Solving for d, and remembering that λ = 1/2b, we get

d > b logb 2. (12)

The expected worst-case distance from any point to the
nearest local optimum is, therefore, b logb 2 (this number
only makes sense for b ≥ 2 since smaller number of neigh-
bors do not form a searchable space). That is, the number of
steps to reach the nearest local optima in the sensor domain
is proportional to the branching factor b, which is equal to
3 · |S|. We can expect search time to increase linearly with
the number of sensors in the field.

3. SIMULATIONS
While the theoretical results above give us some bounds on
the number of iterations before the system is expected to
converge to a local optimum, the bounds are rather loose
and do not tell us much about the dynamics of the executing
system. Also, we cannot show mathematically how changes
in the amount of communication change the search. There-
fore, we have implemented a service allocation simulator to
answer these questions. It simulates the sensor allocation
domain described in the introduction.

The simulator is written in Java and the source code is avail-
able1. It gathers and analyzes data from any desired number
of runs. The program can analyze the behavior of any num-
ber of target and sensor agents on a two-dimensional space,
and the agents can be given any desired utility function.
The program is limited to static targets. That is, it only
considers the one-shot service allocation problem. Each new
allocation is completely independent of any previous one.

In the tests we performed, each run has eight sensors and
eight targets, all of which are randomly placed on a two-
dimensional grid. Each sensor can only point in one of three
directions or sectors. These three sectors are the same for all
sensors (specifically, the first sector is from 0 to 120 degrees,
the second one from 120 to 240, and the third one from
240 to 360). The sensor’s utility is given by (1), while the
targets use (2).

During a run, each of the targets periodically sends a bid
to a number of sensors asking them to turn to the sector
that faces the target. We set the bid amount to a fixed
number for these tests. Periodically, the sensors count the
number of bids they have received for each sector and turn
their detector (such as a radar) to face the sector with the
highest aggregate demand.

We vary the number of sensors to which the targets send
their bids. For example, if the all the targets send their bids
to all the sensors, then the sensors would always set their
sector to be the one with the most targets. This particular
service allocation should, usually, be the best. However, it
might not always be the optimal solution. For example, if
seven targets are clustered together and the eighth is on an-
other part of the field, it would be better if six sensor agents
pointed towards the cluster of targets while the remaining
two sensor agents pointed towards the stray target rather
than having all sensor agents point towards the cluster of
targets.

These simulations explore the ruggedness of the system’s
global utility landscape and the dynamics of the agents’ ex-

1http://blind.review

http://blind.review

ploration of this landscape. If the agents were to always
converge on a local (non-global) optimum then we would
deduce that this problem domain has a very rugged utility
landscape. On the other hand, if they usually manage to
reach the global optimum then we could deduce a smooth
utility landscape.

Results with 4 Neighbors

0 20 40 60 80 100time 0
0.2

0.4
0.6

0.8
1

α

0
10
20
30

Figure 2: The transitional case occurs when the tar-
get communicates with four sensors.

4. TEST RESULTS
In each of our tests we set the number of agents that each
target will send its bid to, that is, the number of neighbors,
to a fixed number. Given this fixed number of neighbors,
we then generated 100 random placements of agents on the
field and ran our bidding algorithm 10 times on each of those
placements. Finally, we plotted the average solution quality,
over the 10 runs, as a function of time for each of the 100
different placements. The solution quality is given by the
ratio

α =
Current Utility

Globally Optimal Utility
, (13)

so if α = 1, then it means that the run has reached the global
optimum. Since the number of agents is small, we were able
to calculate the global optimum using a brute-force method.

In our tests there were always seven target agents and seven
sensor agents. We varied the number of neighbors from 1
to 7. If the target can only communicate with one other
sensor, the sensors will likely have very little information for
making their decision, while if all targets communicate with
all seven sensors, then each sensor will generally be able to
point to the sector with the most targets. However, because
these decisions are made in an asynchronous manner, it is
possible that some sensor will sometimes not receive all the
bids before it has to make a decision.

The results from our experiments are shown in Figure 1
where we can see that there is a transition in the system’s
performance as the number of neighbors goes from three to
five. That is, if the targets only send their bids to three
sensors then it is almost certain that the system will stay in
a configuration that has a very low global utility. However, if
the targets send their bids to five sensors, then it is almost
guaranteed (98% of the time) that the system will reach
the globally optimal allocation. This is a huge difference in

terms of the performance. We also notice in Figure 2 that
for four neighbors there is a fairly even distribution in the
utility of the final allocation.

5. RELATED WORK
There is ongoing work in the field of complexity that at-
tempts to study they dynamics of complex adaptive sys-
tems [2]. Our approach is based on ideas borrowed from
the use of NK landscapes for the analysis of co-evolving sys-
tems. As such, we are using some of the results from that
field. However, complexity theory is more concerned with
explaining the dynamic behavior of existing systems, while
we are more concerned with the engineering of multiagent
systems for distributed service allocation.

The Collective Intelligence (COIN) framework [9] shares many
of the same goals of our research. They start with a global
utility function from which they derive the rewards functions
for each agent. The agents are assumed to use some form
of reinforcement learning. They show that the global utility
is maximized when using their prescribed reward functions.
They do not, however, consider how agent communication
might affect the individual agent’s utility landscape.

The task allocation problem has been studied in [5], but the
service allocation problem we present in this paper has re-
ceived very little attention. There is also work being done
on the analysis of the dynamics of multiagent systems for
other domains such as e-commerce [3] and automated man-
ufacturing [4]. It is possible that extensions to our approach
will shed some light into the dynamics of these domains.

6. CONCLUSIONS
We have formalized the service allocation problem and ex-
amined a general approach to solving problems of this type.
The approach involves the use of utility-maximizing agents
that represent the resources and the services. A simple form
of bidding is used for communication. An analysis of this ap-
proach reveals that it implements a form of distributed hill-
climbing, where each agent climbs its own utility landscape
and not the global utility landscape. However, we showed
that increasing the amount of communication among the
agents forces each individual agent’s landscape to become
increasingly correlated to the global landscape.

These theoretical results were then verified in our imple-
mentation of a sensor allocation problem—an instance of
a service allocation problem. Furthermore, the simulations
allowed us to determine the location of a phase transition
in the amount of communication needed for the system to
consistently arrive at the globally optimal service allocation.

More generally, we have shown how a service allocation
problem can be viewed as a distributed search by multi-
ple agent over multiple landscapes. We also showed how the
correlation between the global utility landscape and the in-
dividual agent’s utility landscape depends on the amount
and type of inter-agent communication. Specifically, we
have shown that increased communications leads to a higher
correlation between the global and individual utility land-
scapes, which increases the probability that the global op-
timum will be reached. Of course, the success of the search
still depends on the connectivity of the search space, which

Results with 1 Neighbor

0 20 40 60 80 100time 0
0.2

0.4
0.6

0.8
1

α

0
10
20
30

Results with 3 Neighbors

0 20 40 60 80 100time 0
0.2

0.4
0.6

0.8
1

α

0
10
20
30

Results with 5 Neighbors

0 20 40 60 80 100time 0
0.2

0.4
0.6

0.8
1

α

0
10
20
30

Results with 7 Neighbors

0 20 40 60 80 100time 0
0.2

0.4
0.6

0.8
1

α

0
10
20
30

Figure 1: The z-axis on each figure represents the number of runs, out of 100, which had the particular α
ratio at each particular time. α = 1 means the run is at the global optimum. The optimum is reached more
often in the cases with more communication.

will vary from domain to domain. We expect that our gen-
eral approach can be applied to the design of any multiagent
systems whose desired behavior is given by a global utility
function but whose agents must act selfishly.

Our future work includes the study of how the system will
behave under perturbations. For example, as the target
moves it perturbs the current allocation and the global op-
timum might change. We also hope to characterize the local
to global utility function correlation for different service al-
location problems and the expected time to find the global
optimum under various amounts of communication.

7. REFERENCES
[1] A. D. Baker, H. V. Parunak, and K. Erol. Agents and

the internet: Infrastructure for mass customization.
IEEE Internet Computing, 3(5):62–69,
September-October 1999.

[2] S. Kauffman. The Origins of Order: Self-Organization
and Selection in Evolution. Oxford University Pres,
1993.

[3] J. O. Kephart, J. E. Hanson, and A. R. Greenwald.
Dynamic pricing by software agents. Computer

Networks, 32(6):731–752, 2000.

[4] H. V. D. Parunak. “go to the ant”: Engineering
principles from natural agent systems. Annals of
Operation Research, 75:69–101, 1997.

[5] J. S. Rosenschein and G. Zlotkin. Rules of Encounter.
The MIT Press, Cambridge, MA, 1994.

[6] T. W. Sandholm. Necessary and sufficient contract
types for optimal task allocation. In Proceedings of the
Fourteenth International Joint Conference on Artificial
Intelligence, 1997.

[7] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Transactions on Computers,
C-29(12):1104–1113, 1981.

[8] G. Weiss, editor. Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. MIT
Press, 1999.

[9] D. H. Wolpert and K. Tumer. An introduction to
collective intelligence. Technical report, ACM
Computing Research Repository, 1999. cs.LG/9908014.

http://jmvidal.cse.sc.edu/library/baker99a.pdf
http://jmvidal.cse.sc.edu/library/baker99a.pdf
http://www.amazon.com/exec/obidos/ASIN/0195079515/multiagentcom
http://www.amazon.com/exec/obidos/ASIN/0195079515/multiagentcom
http://www.research.ibm.com/infoecon/paps/html/rudin/rudin.html
http://jmvidal.cse.sc.edu/library/parunak97b.pdf
http://jmvidal.cse.sc.edu/library/parunak97b.pdf
http://www.amazon.com/exec/obidos/ASIN/0262181592/multiagentcom
http://jmvidal.cse.sc.edu/library/WeissBook/
http://jmvidal.cse.sc.edu/library/WeissBook/
http://xxx.lanl.gov/abs/cs.LG/9908014
http://xxx.lanl.gov/abs/cs.LG/9908014

	1 Introduction
	1.1 Task Allocation
	1.2 Service Allocation
	1.2.1 Sensor Allocation

	2 A Formal Model for Service Allocation
	2.1 Search Algorithms
	2.1.1 Theoretical Time Bounds of Global Hill-Climbing

	3 Simulations
	4 Test Results
	5 Related Work
	6 Conclusions
	7 REFERENCES

