
Using RoboCup to Teach Multiagent Systems and the
Distributed Mindset

José M. Vidal
Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

vidal@sc.edu

Paul Buhler
Computer Science

College of Charleston
66 George Street

Charleston, SC 29424
pbuhler@cs.cofc.edu

Abstract

We present our experiences using the RoboCup soc-
cerserver simulator and Biter, our own agent platform,
for the teaching of a graduate multiagent systems’ class.
The RoboCup simulator and Biter are both described.
We argue that the combination of RoboCup and Biter
forms an effective platform for the teaching of multia-
gent systems and the distributed mindset. Results from
two semesters using these tools are presented. These re-
sults confirm our claims. Finally, we characterize this
work within the framework provided by the STEEL-
MAN Draft of the Computing Curricula 2001 initiative.

1 Introduction

The RoboCup [2] simulation league tournament has
proven to be successful at bringing together researchers
from various areas of computer science and engineering
such as artificial intelligence, multiagent systems, dis-
tributed programming, software engineering, and real-
time systems engineering. The competition matches
teams of simulated soccer players in a ten minute match.
While the environment is simplified, it nonetheless in-
corporates many of the complexities one would expect
in a robotic application such as friction, wind, real-time
performance, limited and noisy inputs, noisy effectors,
etc. The contest has proven to be extremely popular.
The last competition, held jointly with IJCAI ’01, drew
over 40 teams in the simulation league.

This paper presents our experiences using RoboCup and
Biter—our agent framework—to teach two consecutive
graduate-level classes in multiagent systems. We argue

Proceedings of the 33rd ACM Technical Symposium on
Computer Science Education, 2002.

that the combination of RoboCup and Biter forms an
effective platform for the teaching of multiagent sys-
tems and the distributed mindset. Asking students to
build RoboCup teams exposes them to the non-intuitive
emergent consequences of simple local actions. The ex-
ercise also exposes the students to the often frustrating
complexities of debugging distributed applications and
teaches them strategies for overcoming these difficulties.

2 The Distributed Mindset

In [7] Resnick shows how humans have a tendency to
erroneously attribute centralized control to many situ-
ations. For example, when children were asked to de-
scribe how ants achieve their foraging behaviors most of
them attributed it to some form of centralized control
stemming from the queen. Many adults also erroneously
attribute too much centralized control to phenomena
such as the economy (“It is Greenspan’s fault.”), cor-
porations (“It is the CEO’s fault.”), and the Internet
(“The web is down.”).

Resnick argues that these misconceptions should be ad-
dressed as early as possible in a child’s education. Our
experience indicates that distributed, as opposed to hi-
erarchical, control is a concept that is initially difficult
for most CSE students to grasp. We believe that a com-
bination of instruction and hands-on experimentation is
required to help students develop an understanding of
distributed systems. These experiences allow students
to develop the appropriate intuitions which will let them
design and debug distributed applications which exhibit
complex emergent behaviors. This need is even more
pronounced in today’s highly networked world where
web-based and peer-to-peer applications are quickly be-
coming the norm [6].

3 A RoboCup Overview

The RoboCup tournament started in 1997 and has been
held every year since. It consists of several robotic
leagues as well as one simulated league. Our research fo-
cuses solely on the simulated league. For the simulated

vidal@sc.edu
pbuhler@cs.cofc.edu


league the organizers provide a soccerserver application
which simulates the physics of the playing field. The
field is two-dimensional; the players and ball are perfect
circles. Each player must be controlled by a completely
independent process, that is, players on the same team
cannot share global variables or use any form of inter-
process communications. The players have a view-cone
of limited radius. The server adds some noise to all the
players’ sensory inputs and actions. The noise is meant
to simulate the type of restrictions one would expect if
the players were robots.

The soccerserver updates its world model every 100ms.
Each player can send at most one action to the server
every 100ms. All communications are over UDP and use
the soccerserver’s communication protocol. The actions
available to the players are dash, turn, kick, and say.
Every 150ms each player receives a message from the
server telling it what it sees, i.e., what is in it’s view-
cone, as well as what it hears. This information is given
in polar coordinates with the player as the origin, and
the zero angle points to where the agent is facing. For
example, the server might tell a player that is ’sees’
the ball at a distance of 1.3 meters and an angle of -
10 degrees from where it is currently looking. Since the
information from the server is all relative to the player’s
current location the only way a player can determine its
location is by triangulating it from some fixed objects
whose location is known. These fixed objects are a series
of flags placed around the field, boundary lines, and the
goal posts.

The player’s dash and kick actions can be given a force
parameter to indicate the force that should be given. In
the case of the dash command the server updates the
player’s position by taking into account its current mo-
mentum and force. For the kick command, the server
takes into account the player’s and the ball’s momentum
as well as the relative angle of the ball to the player—
it is easier to kick a ball that is directly in front of
the player. In both cases the server adds some noise
that is proportional to the difficulty of the action. In
other words, neither player nor ball consistently end up
where expected, thus complicating the task of imple-
menting reliable players. The say command is used to
yell any arbitrary string which will be heard by some of
the nearby players. The turn command turns the player
in the appropriate direction.

4 On Using RoboCup

The RoboCup simulator has many qualities which make
it an excellent platform for the teaching of the dis-
tributed mindset and multiagent systems’ design.

1. It presents a complex distributed environment which
requires the coordination of many autonomous agents

in order to win the game. Since the players have little
direct communications with each other, a distributed
solution is necessary.

2. It raises many soft real-time issues. The agents can-
not spend too much time thinking.

3. It is a noisy domain. The agents that operate in it
must be able to compensate for errors in their input.

4. It is a well-known problem. There is no need to spend
time explaining and understanding a new problem do-
main.

5. The competitive aspect is a great motivator. We have
found that many students are highly motivated by
the prospect of defeating their classmates in a game
of simulated soccer.

6. The international RoboCup initiative has generated
a wealth of research materials that are easily located
and consumed by students.

While all these characteristics make RoboCup a great
platform, there are several aspects which make it hard
to use for instructional purposes.

1. There is a large amount of low-level work that needs
to be done before starting to develop coordination
strategies. Specifically:

(a) Any good player will need to parse the sensor input
and create its own world map which uses absolute
coordinates. That is, the input the agents receive
has the objects coordinates as relative polar coor-
dinates from the player’s current position. While
realistic, these are hard to use in the definition of
behaviors. Therefore, a sophisticated player will
need to turn them into globally absolute coordi-
nates.

(b) The players need to implement several sophisti-
cated geometric functions that answer some basic
questions like: “Who should I be able to see now?”.

(c) The players also need to implement functions that
determine the argument values for their commands.
For example: “How hard should I kick this ball so
that it will be at coordinates x, y next time?”.

2. It is hard to keep synchronized with the soccerserver’s
update loop. Specifically, the players have to make
sure they send one and only one action for each clock
“tick”. Since the soccerserver is running on a dif-
ferent machine, the player has to make sure it keeps
synchronized and does not miss action opportunities,
even when messages are lost.

3. Students new to agent design need some guidance in
establishing a basic agent architecture. They lack ex-
perience using techniques for balancing goal-driven
and reactive behaviors.



These drawbacks forced students to spend most of their
time writing code to handle the UDP message parsing
and the construction of a world model, as we detail in
Section 6. Therefore, we designed a basic RoboCup
client, called Biter, that implements all the features the
students will need in order to quickly get started testing
new behaviors and coordination protocols.

5 The Biter Platform

Biter provides its users with an absolute-coordinate
world model, a set of low-level ball handling skills, a set
of higher-level skill based behaviors, and our Generic
Agent Architecture (GAA) [9] which forms the frame-
work for agent development. Additionally, many func-
tional utility methods are provided which allow users to
focus more directly on planning activities. Biter is writ-
ten in Java 2. A complete description of Biter, its source
code, Javadoc API, and UML diagrams are available [1].

5.1 Biter’s World Model

In the RoboCup domain it has become clear that agents
need to build a world model [8]. The Biter world
model contains slots for both static and dynamic ob-
jects. Static objects have a field placement that does
not change during the course of a game. These include
flags, lines, and the goals. In contrast, dynamic objects
move about the field during the game. These include
the players and the ball. Static objects are held within
a HashMap data structure, while dynamic objects are
stored in an ArrayList. Both HashMap and ArrayList
are provided as part of the Java 2 collection classes.

5.2 The Generic Agent Architecture

Practitioner’s new to agent-oriented software engineer-
ing [4] often stumble when building an agent that needs
both reactive and long-term behaviors, usually settling
for a completely reactive system and ignoring multi-step
behaviors. For example, in RoboCup an agent can take
an action at every clock tick. This action can simply be
a reaction to the current state of the world, or it can be
dictated by a long-term plan. Simple agent implemen-
tations choose an action at each time step by executing
a long series of if-then statements where the conditional
only checks the value of recent inputs. Unfortunately,
such implementations make it very hard to add multi-
step behaviors. The usual strategy is to add a “mode”
to the agent which is then used in the conditional part
of the if-then statements to determine which action to
take. This strategy, while functional, is not very elegant
(it is not an object-oriented solution) and does not scale
well with the number of multi-step behaviors.

Biter implements a GAA which provides the structure
needed to guide users in the development of a solid

object-oriented agent architecture. The GAA is de-
signed for agents that receive input from the environ-
ment at discrete intervals and take discrete actions.
That is, we envision an agent that receives readings from
its sensors and takes actions using its effectors. This is
a common method for modeling autonomous agents [10,
Chapter 1] and captures many agent applications.

The GAA provides a mechanism for scheduling activi-
ties each time the agent receives some form of input. An
activity is defined as a set of actions to be performed
over time. The action chosen at any particular time
might depend on the state of the world and the agent’s
internal state. The two types of activities we have de-
fined are conversations and behaviors. Conversations
are series of messages exchanged between agents. Be-
haviors are actions taken over a series of time steps.
The ActivityManager determines which activity should
be called to handle any new input. A general overview
of the system can be seen in Figure 1.

5.3 Behaviors

Biter also provides users with the most basic, and use-
ful agent behaviors. These include DribbleToGoal,
DashToBall, IncorporateObservation, and others.
They are long-term behaviors which should be called on
many successive steps. The behaviors themselves tell
the user when they are applicable. This ever-growing
set of basic behaviors forms the basic building blocks
from which students can build their complex agents.
The students are free to organize these behaviors, along
with any new behaviors they create, in any way they
wish.

6 Experiences with Biter

The University of South Carolina has taught a graduate-
level course in multiagent systems for several years.
The RoboCup soccer simulation problem domain was
first adopted for instructional, project-based use for the
Fall 1999 semester. Students are divided into groups of
two or three, and each group designs and implements a
RoboCup team. All groups must write a report on their
work and during the final week of classes participate in
a class tournament. We made it clear that a group’s
performance does not directly affect their grade. How-
ever, we curiously note that the groups often seemed
more motivated by their desire to win the tournament
than to achieve a better grade in the class.

In the Fall 1999 semester we gave students a very ba-
sic Java client whose only functionality was the ability
to parse and exchange messages with the soccerserver.
We also made available to them the source code for the
CMUnited team [8], authored at Carnegie Mellon and
written in ’C’. The CMUnited team had won the pre-



Conversation

canHandle(i : Input) : boole...�

handle(i : Input) : boolean

(from biter)
Behavior

Behavior(am : ActivityManager, wm : WorldMod...
canHandle(i : Input) : boolean�

handle(i : Input) : boolean
busy() : boolean

�

(from biter)

RobocupBehavior

catchBall()�

dashToPoint()
�

dribbleBallToPoin...
�

kickBallToPoint()
playersInCone()�

(from biter)

DribbleToGoal
(from biter)

DribbleAroundPlayer
(from biter)

DashToBall
(from biter)

IncorporateObservation
(from biter)

Player
(from biter)

Goalie
�

(from biter)

Activity

busy() : boolean
�

canHandle(i : Input) : boolean�

handle(i : Input) : boolean
inhibits(a : Activity) : boolean
Activity(am : ActivityManager, wm : WorldModel)

(from biter)
ActivityManager

pq : PriorityQueue�

currentCycle : long	

activities : Vector


ActivityManager(agent : PlayerFoundation)
addActivity(a : Activity) : void�

removeActivity(a : Activity) : void
handle(input : Input) : boolean
run() : void
addEvent(name : String, time : long) : void�

(from biter)

WorldModel
(from biter)

PlayerFoundation
(from biter)

#manager



-agent

+player�

#wm
�

Figure 1: Biter’s UML class diagram. We omit many of the operations and attributes for brevity. Italic class names
denote abstract classes.

vious two international RoboCup competitions. Due to
the complexity of the CMU code, the students unani-
mously chose to use the simple Java client as their basic
framework and to peruse the CMUnited code for ideas.

The final results for the first semester were encouraging.
All groups were able to build working teams and partici-
pate in the final tournament. Their strategies, however,
did not reflect the coordination protocols or behavior se-
lection and planning algorithms we had studied in class.
Several groups resorted to a simple “everyone go to the
ball and try to kick it towards the goal” strategy. In
fact, it was this strategy which won the tournament. A
couple of groups implemented very rudimentary “zone”
strategies, but these were incomplete. For example, a
player dribbling the ball towards the goal would sud-
denly stop when it reached the end of its zone. More-
over, the code written by many of the groups lacked any
structured design and resorted to the use of one large
nested if-then-else statement. That is, the students did
not do a thorough job at implementing any of the agent
architectures described in class.

We believe that part of the reason for this last omission
was the lack of well-documented object-oriented designs

for agent architectures. Our textbook [10] describes the
architectures using very high-level box diagrams. Three
quarters into the semester we attempted to remedy this
problem by providing the students with a set of UML
agent architectures1 but by then it was too late. The
groups were already too committed to their own designs
to pay attention to a better alternative.

As a result of these experiences, we developed Biter with
the expectation that it would allow the student groups
to concentrate more on using the coordination strate-
gies studied in class and help them develop good agent
designs.

During the Fall 2000 semester the students were given
the version of Biter described in Section 5, with a default
behavior of going to the ball and dribbling it towards
the goal. The last problem set before the final competi-
tion asked the students to implement a team that could
beat a team of Biter agents with the default behavior.
All groups were able to achieve this goal, with varying
degrees of success.

The results of the second tournament were impressive.

1Available at http://www.multiagent.com/arch/

http://www.multiagent.com/arch/


All of the teams implemented complex strategies. Many
of the teams utilized flexible zones, stigmergy [5], and
broadcast communications. For example, some groups
were able to have the players switch between a set of
modes that determined the overall strategy being used
(e.g., aggressive versus protective). The players would
achieve this without any explicit communication, using
only cues from the environment, thereby implementing
a form of stigmergy. An example of communication em-
ployed by several teams was having a player announce
its pass. That is, a player would shout “I am passing to
P3” just before making the pass. All the other players,
especially P3, that heard the announcement could then
behave accordingly.

The quality of the resulting architectures also improved.
The player code was no longer a long and hard to un-
derstand if-then statement with global mode variables.
Instead, the groups encapsulated behavior functionality
in the various behavior classes. The behavior to use was
chosen based on some pre-determined method such as
the priority of the behavior or based on certain features
of the current world state. This new modularity also
allowed the groups to quickly test new behavior com-
binations and reject behaviors that actually resulted in
worse team performance. We believe that this flexibility
contributed to the quality of the final teams.

There were still, however, some areas left for improve-
ment. The teams showed a poor ability to resolve dead-
locks. For example, sometimes several players from the
same team would all try to take control of the ball at the
same time, annulling each other’s actions in the process.
The teams also never made long passes even when this
was clearly the best policy on many occasions. Finally,
the real-time performance of the teams was still not up
to par with that of competition teams—they were miss-
ing action opportunities.

7 Conclusions

Our experiences using RoboCup and Biter have proven
to us that these are effective tools for teaching students
how to build multiagent systems—encouraging them to
develop a distributed mindset. The students often com-
mented how the building of teams was much harder
than they initially anticipated—reaffirming our belief
that they had not considered the complexities involved
in building a multiagent system in a noisy environment.
Their final successes, on the other hand, confirmed to us
that they had learned how to successfully tackle many
of the problems. Our analysis of their code also con-
firmed that Biter had encouraged most groups to use
proper software engineering techniques.

Although our experiences with RoboCup and Biter have
been at the graduate level, we fully expect that they

will be useful tools for undergraduate education. The
STEELMAN draft of the Computing Curricula 2001
(CC2001) recognizes that distributed systems topics
need to be introduced with more rigor in an under-
graduate CSE education. Topics related to distributed
systems are present in each of the following CS body of
knowledge core areas, as defined in CC2001: Algorithms
and Complexity, Architecture and Organization, Op-
erating Systems, Intelligent Systems, and Net-Centric
Computing [3]. Each of these core areas is further sub-
divided into topics and units. The STEELMAN draft
of CC2001 presents sample curricular components that
demonstrate possible strategies for integrating topic and
unit coverage into an undergraduate CSE educational
experience. Our work couples topically with the pro-
posed intermediate course CS240 - Intelligent Systems.
The RoboCup simulation league, with the aid of the
Biter framework, could easily serve as a project-based
component for this Intelligent Systems course.

Biter continues to evolve. New features and behaviors
are being added and we expect the pace to quicken as
more users start to employ it for pedagogical and re-
search purposes.

References

[1] Biter: A robocup client. http://source.cse.sc.
edu/biter/.

[2] Robocup initiative. http://www.robocup.org.

[3] Computing curricula 2001, steelman draft, August
2001. http://www.computer.org/education/
cc2001/steelman/cc2001.

[4] Jennings, N. R. On agent-based software engineer-
ing. Artificial Intelligence 117 (2000), 277–296.

[5] Kube, C. R., and Bonabeau, E. Cooperative trans-
port by ants and robots. Santa Fe 99-01-008.

[6] Oram, A., Ed. Peer-to-Peer. O’Reilly, 2001.

[7] Resnick, M. Turtles, Termites and Traffic Jams.
The MIT Press, 1994.

[8] Stone, P. Layered Learning in Multiagent Systems:
A Winning Approach to Robotic Soccer. The MIT
Press, 2000.

[9] Vidal, J. M., Buhler, P. A., and Huhns, M. N. In-
side an agent. IEEE Internet Computing 5, 1 (Ja-
nuary-February 2001).

[10] Weiss, G., Ed. Multiagent Systems: A Modern Ap-
proach to Distributed Artificial Intelligence. MIT
Press, 1999.

http://source.cse.sc.edu/biter/
http://source.cse.sc.edu/biter/
http://www.robocup.org
http://www.computer.org/education/cc2001/steelman/cc2001
http://www.computer.org/education/cc2001/steelman/cc2001
http://jmvidal.cse.sc.edu/library/abse.pdf
http://jmvidal.cse.sc.edu/library/abse.pdf
http://www.santafe.edu/sfi/publications/Abstracts/99-01-008abs.html
http://www.santafe.edu/sfi/publications/Abstracts/99-01-008abs.html
http://www.oreilly.com/catalog/peertopeer/
http://www.amazon.com/exec/obidos/ASIN/0262680939/multiagentcom/
http://www.amazon.com/exec/obidos/ASIN/0262194384/multiagentcom/
http://www.amazon.com/exec/obidos/ASIN/0262194384/multiagentcom/
http://jmvidal.cse.sc.edu/library/w1082.pdf
http://jmvidal.cse.sc.edu/library/w1082.pdf
http://jmvidal.cse.sc.edu/library/WeissBook/
http://jmvidal.cse.sc.edu/library/WeissBook/

	1 Introduction
	2 The Distributed Mindset
	3 A RoboCup Overview
	4 On Using RoboCup
	5 The Biter Platform
	5.1 Biter's World Model
	5.2 The Generic Agent Architecture
	5.3 Behaviors

	6 Experiences with Biter
	7 Conclusions

