
A Prototype MultiAgent Network Security System

Taraka Pedireddy
University of South Carolina

295 Barnes Blvd.
Rockledge, FL, 32955

taraka reddy@hotmail.com

José M. Vidal
University of South Carolina

Computer Science and Engineering
Columbia, SC, 29208

vidal@sc.edu

ABSTRACT
Distributed Internet-based attacks on computer systems are
becoming more prevalent. These attacks usually employ
some form of automation and involve the compromise of
many systems across the Internet; systems which are not
necessarily owned by the same company or individual. The
information needed to detect and neutralize these attacks
is spread across many machines. A system administrator
who wishes to detect and handle these distributed attacks
must constantly monitor his systems and communicate with
other administrators around the world-a challenging task. In
this paper we present our design and implementation of a
multi-agent system, built using FIPA-OS, in which agents
responsible for different network realms communicate with
each other in order to determine if certain suspicious events
are actually part of a distributed attack, and to warn each
other about possible threats.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
multiagent systems

General Terms
Design, Experimentation, Languages

Keywords
Distributed security, multiagent systems, FIPA

1. INTRODUCTION
Security and privacy are growing concerns in the open

distributed software systems community because of the In-
ternet’s rapid growth and the desire for secure transactions
over it. This desire has led to the advent of many security
architectures and protocols which deal with authentication,
cryptography, and authorization. One of the biggest risks to
Internet survivability is the growing number of distributed
and automated attacks by malicious intruders. The secu-
rity industry has so far concentrated solely on the develop-
ment of automated security programs that analyze the at-
tacks within a single isolated system. These programs never
use the Internet as a communication medium except when

Copyright is held by the author/owner.
AAMAS’03,July 14–18, 2003, Melbourne, Australia.
ACM 1-58113-683-8/03/0007.

downloading updates from the central server. Security con-
sortiums, on the other hand, concentrate on the publication
of security alerts aimed at system administrators. None of
these approaches manages to leverage the distributed auto-
mated nature of the Internet to serve as a vehicle for its own
survival. Meanwhile more and more security incidents con-
sist of a large series of widely distributed exploits, involving
numerous systems, networks, operating systems, and appli-
cations. Intruders often compromise multiple systems when
they attack a target site. At each compromised system,
there may be signs of intrusive activities that agents of the
respective systems discover. By gathering information from
those systems (from agents of those systems), we can deter-
mine the nature of attacks against our networked systems.
It is also possible that a system may have been compro-
mised and is serving as unwitting participant in large-scale
attacks against several sites. External contacts assist us in
security monitoring, greatly extending our ability to detect
intrusions. Therefore, the need arises for systems to cooper-
ate with each other in order to manage such diverse attacks
across networks and time.

Our design and implementation aims at developing a frame-
work where an intelligent and co-operative agent communi-
cates with the agents in other domains to share informa-
tion about an intrusion. As such, our system automates
the task of distributed intrusion detection while minimizing
the amount of agent communication and human interven-
tion needed. The implemented system demonstrates that
this type of approach is viable.

2. ARCHITECTURE
Our system implements the capability to collect intru-

sion specific information from co-hosts through agents. Dis-
tributed attacks often leave trace information in log files,
audit files, and processes left behind by an intruder. This
trace information is used to search for suspicious events or
connections that require further investigation. There are
software packages which inspect the logging information and
detect signs of intrusion. Once alerted by the intrusion de-
tection software that an intrusion has been detected, we
need to analyze that intrusion by investigating to what ex-
tent our systems or data have been compromised. We then
respond to that intrusion based on the results of the analy-
sis. This analysis is carried out by the host agents and tries
to answer the following questions: Which attacks are used
to gain access? Which systems and data did the intruder
access? What did the intruder do after obtaining access?

We have designed and implemented an event-based se-

Alerts /
New Events Suspicious

Events

FIPA ACL
Query / Reply

FIPA ACL
Query / Reply

Agent

Agent

Log
Files

Log
Files

LA

LA

LA

Suspicious
Events

Alerts /
New Events

Alerts /
New Events

Suspicious
Events

FIPA ACL
Query / Reply

Agent

Log
Files

Figure 1: Architecture of the current prototype system. Log files are analyzed by Log Analyzer(LA) program.
Any suspicious events become goals for the agent to act on. The responses received out of conversations with
other agents are stored back as alerts or new events in the database.

curity framework that provides a service of retrieving the
information from a distributed network. This information
is then used to detect intrusions on hosts. The architecture
of the system is shown in Figure 1. In our framework each
domain is represented by an agent. All computers in a do-
main submit their log files to a central database. We assume
that these log files are inspected by a log analyzer program
which reports any suspicious events to the agent in its do-
main. Upon receiving suspicious events, an agent starts its
analysis by actively communicating with agents of other do-
mains. The results of the conversations with other agents
are stored back as alerts or new events in the database.

In the context of our application an agent is defined as an
encapsulated software entity with its own state, behavior,
thread of control, and ability to interact and communicate
with other entities-including people, other agents, and sys-
tems. An agent is autonomous in its action and commu-
nicates with other agents using FIPA-ACL. Our agents are
implemented using FIPA-OS.

Each suspicious event is handled by a reusable Task class
which is developed independent of the agents using that
task and type of intrusion the agents are meant to deal
with. Agents are provided with a variety of tasks. Agents
gather information from other agents by invoking appropri-
ate tasks. They read an event documented in the database
and pass it to all the registered tasks. The tasks which can
handle this event get executed dynamically. A Task handles
the event by initiating a number of conversations with other
agents and updates the event using the responses of those
agents. In the process, it may receive new alerts or events.
Each Task is meant to follow an interaction protocol to deal
with a specific type of event. Based on the results returned
by the tasks, an agent may choose to invoke another Task or
may conclude that no further investigation is required. Con-
versations are instantiations of interaction protocols, built
using FIPA communicative acts. The content of the conver-

sation is expressed in XML.
We have implemented a set of interaction protocols. For

example, the alert protocol sends an alert message to a set
of machines. The denial of service protocol handles DoS at-
tacks (such as the Mitnick Attack which uses SYN flooding)
by allowing the agent that is under SYN flooding to alert
other agents to the fact that there is a possibility that an
attacker could be pretending to be the one of the agent’s ma-
chines. In this way, the protocol helps prevent IP spoofing.
The suspicious login protocol alerts other agents about sus-
picious or unusual logins from their machines. This protocol
was designed to counteract the DoorKnob attack where an
attacker gains illegitimate access to one of the systems and
then tries to parlay that into access to other systems.

3. TEST RESULTS
We conducted several preliminary tests on our current

framework and successfully derived experimental results. The
log files were stored in an ORACLE database. The test
cases include tests of all the suspicious events identified so
far, scalability, timeouts, and error handling. In general our
tests have shown that the number of messages sent grows
roughly linearly with the number of agents. Specifically we
ran tests with 5, 50 and 150 agents which resulted at most
in 5, 50 and 150 messages respectively. This confirms that
the agent communication is linear. The execution of each
complete protocol was fairly instantaneous.

Our system is a first step towards the development of
open security interaction protocols using an agent communi-
cation language among distributed intrusion detection sys-
tems. The long-term goal of this project is the development
of standardized languages and interaction protocols for an
Internet-wide distributed security system.

	1 Introduction
	2 Architecture
	3 Test Results

