

1

Multiagent Network Security System using FIPA-OS
Taraka D. Peddireddy; University of South Carolina; Columbia; South Carolina
Jose M. Vidal, Assistant Professor, University of South Carolina, Columbia, South Carolina
Keywords: Multiagent Network Security, Distributed Systems Security, Distributed Intrusion Detection Systems

ABSTRACT

This paper describes a security framework in distributed
systems where an Intelligent Agent handles the security
monitoring at each host. The agents are made responsible for
alerting the system administrators about an attempted intrusion
or misuse for a particular system. Recently, there has been an
increase in the number of reports of the attacks, which are
wide spread across the network and affecting a chain of
systems before they attack the actual target system. To detect
such attacks, the amount of information associated within a
single isolated system is inadequate for an agent to confirm an
intrusion. Therefore, the need for a framework that allows the
agents to negotiate with their co-agents to share information
about an intrusion, thereby aiding in effective handling of
Intrusion Detection is emphasized. Our design aims at
developing such a framework in the FIPA-OS (Foundation for
Intelligent Physical Agents – Open Source) environment,
which provides most of the source code for building agents on
its platform. The concept of mutual co-operation among
agents has been developed as a means of queries. These
queries are carried out by tasks associated with each agent.
The protocols to support these interactions by means of
queries are explained. The issues and requirements involved in
standardizing formats, interaction protocols and architectures
to co-manage intrusion detection are discussed.

1. INTRODUCTION

Security and privacy are the growing concerns in the open
distributed software systems due to Internet’s rapid growth
and the desire to conduct business over it safely. This desire
has led to the advent of many security architectures and
protocols, which deals with authentication, cryptography, and
authorization to avoid a possible intrusion. There has been
significant work in the field of intrusion detection that comes
into picture after an attack. Most of the projects are largely
focused on the analysis of attacks within a single isolated
system. Incidents, however, often consist of a large series of
widely distributed exploits, involving numerous systems,
networks, operating systems and applications. Intruders often
compromise multiple systems when they attack a target site.
At each compromised system, there may be signs of intrusive
activities that agents of the respective systems discover. By
gathering information from those systems (from agents of
those systems), we can determine the widespread nature of
attacks against our networked systems. It is also possible that
our systems may have been compromised and are serving as
unwitting participants in large-scale attacks against several
sites. External contacts assist us in security monitoring, greatly
extending our ability to detect intrusions. Therefore, the need
arises for systems to co-operate with each other, to manage
such diverse attacks across networks and time. However, in
co-operative situations, trust is an important issue in most of

the decisions. It is not always possible that hosts on
distributed systems reveal the information about an intrusion,
out of fear of bad reputation or of leaking sensitive
information. Hence, the purpose of this research study is to
standardize the information formats and automate the
interaction protocols for effective communication among
untrustworthy and self-interested agents.

2. PROJECT DESCRIPTION

2.1 Related Work
A number of efforts have been made to come up with
distributed IDS. In Distributed Intrusion Detection System
(DIDS [19]) information is kept strictly centralized, and no
agent technology is used. Data from all remote sources come
to one place for processing. In JAM project [9], local fraud
detection agents provide Intrusion Detection within a single
system, JAM also supports Meta learning system that
combines the collective knowledge acquired by individual
local agents. In Common Intrusion Detection Framework
(CIDF [3]), the Common Intrusion Specification Language
(CISL) is designed to express information about intrusions.
The architecture defines relationships between event
generators, event analyzers, event databases and response
units but no mention is made of agent technology as such in
this framework. A recent article about Biological Network
Security on SecurityFocus.com [5] discusses the need for
open and common mechanism for communicating among
different security mechanisms. This project derived
motivation from the above projects and articles to extend the
current research on Distributed Intrusion Detection systems.

2.2 Theoretical Model
This application provides the capability to collect information
from co-hosts through agents, with varying trust levels. This
ability is demonstrated by building a simulation of a system
where an agent represents each host. Distributed attacks often
leave trace information in log files and audit files, files and
processes left behind by an intruder. This trace information is
used to search for suspicious events or connections that
require further investigation. There are software packages
(like TCP/IP daemon wrapper package [9]), which inspect the
logging information and detect signs of intrusion. Once
alerted by the intrusion detection software that an intrusion
has been detected, we need to analyze that intrusion by
investigating to what extent our systems or data have been
compromised. We then respond to that intrusion based on the
results of the analysis.
This analysis is carried out by the respective host agents for
finding the information like
¾ What attacks are used to gain access?
¾ What systems and data did an intruder access?
¾ What an intruder did after obtaining access?

#2002SECon-USEC241:page 1

2

To perform such analysis, agents create, use and maintain a
list comprising of a sequence of the agents to contact, and
other procedures for informing co-agents quickly based on the
type of intrusion. As each intrusion differs from each other in
many ways namely, how it has happened and from where it
came from, agents conduct different analysis mechanisms to
deal with different types of intrusions. During its analysis, it is
important to keep communication with other agents about an
intrusion. If they are experiencing unexpected behavior by an
intruder, we may gain some information that will help us to
protect our own systems. Agents may be notified by other
agents about the evidence of attacks against our systems
originating from their systems and vice versa. This implies
that our systems may have been compromised by the intruder
to hide his or her tracks and launch an attack against other
systems.
By receiving such notifications our agent will further
investigate it and alert us if it finds any confirmed intrusion.
During its investigation it may contact some other host agents
involved in that intrusion or need to be informed about the
intrusion. Consequently, the agent ends up in sharing
information among many agents for single intrusion detection.
While doing so, agent should take care of sharing information
only on a need-to-know basis, and based on trust levels among
agents, sanitize sensitive information, if required.

3. SYSTEM DESIGN

I have designed a simulation of security framework that
provides a service of retrieving the information from a
distrusted network. This information further helps to detect
intrusions on hosts. The information retrieval at a host is
achieved by the agent residing at that host. The architecture of
the project, which better illustrates this idea is shown in
Figure2. In the context of our application, an agent is defined
as an encapsulated software entity with its own state, behavior
and thread of control and ability to interact and communicate
with other entities – including people, other agents and
systems. An agent is autonomous in its action and
communicates with other agents using an agent
communication language like FIPA-ACL / KQML based on
speech acts. The work is being carried out in the FIPA-OS
environment.

3.1 FIPA-OS Description
FIPA Open Source [16] is an open agent platform, originating
from Nortel Networks.
The platform supports communication between multiple
agents using an agent communication language that confirms
to the FIPA (Foundation for Intelligent Physical Agents [14])
agent standards. The reason for choosing fipa-os platform is
because agents do certainly reside on multiple platforms and
exhibit different behaviors. FIPA-OS can interoperate with
other heterogeneous FIPA complaint platforms (e.g.: JADE
[2]). There is a large scope for future enhancements to this
project by making the agents follow the FIPA standards.

FIPA-OS has built-in support for:
¾ Different types of agent shells for producing agents,

which can then communicate with each other using
the fipa-os facilities.

¾ Multi-layered support for agent communication
¾ Message and Conversation Management

¾ Dynamic platform configuration
FIPA-OS is designed to operate in a heterogeneous open
source environment and supports multiple encodings for the
content. It also supports multiple transports such as IIOP
(using a variety of CORBA API’s), RMI and TCP.

3.2 Methodology
We assume that log files of every host are inspected by some
software mechanisms at some predetermined time interval and
any discovered unusual entries are documented. Some of the
unusual entries associated with respective log files are shown
in Figure 1.
The primary aim is to find out whether these unusual entries
lead to any confirmed intrusion for which additional
information about that unusual entry is needed. There are
many kinds of intrusions characterized, in the way the
intrusion is performed particularly the way they occur, and
how they affect the target host etc. Typically intrusions are
classified by the sequence of events that lead to that particular
intrusion.
One such classification of intrusions is considered, which
include some well-known attacks and a comprehensive set of
events associated with those intrusions. Section 3.3 is a listing
of suspicious events associated with each particular type of
intrusion.

 3.3 Classification of Intrusions
The project focuses on automating the detection of the
following subset of attacks.

Invalid Logins/ Suspicious Logins
¾ Logins not logged for an abnormal length of Time
¾ Logins at Unusual times
¾ Short Login times
¾ Logins from unexpected locations
¾ Failed login attempts

Illegal Connections/ Abnormal Connections (from / to)
¾ Connections from/to Unusual Locations
¾ Half open connections
¾ Sudden spike in network traffic
¾ Telnet connections without output from w or who

commands

 Unusual Processes / Suspicious Processes
¾ Processes that take a long time
¾ Processes with unusual start times
¾ Processes with high % of CPU time (a sniffer)
¾ Processes without a controlling terminal
¾ Processes with unusual names
¾ Large number of processes at a time

Suspicious files/ Unauthorized modification of files
¾ Unexpected changes to password files or access

control lists
¾ Unexpected size of file (may be a Trojan)
¾ Unfamiliar files
¾ System files that appear to have been modified

recently
¾ Short systems files indicating that this file has been

edited or deleted

#2002SECon-USEC241:page 2

3

Type of Log file Unusual Entries

User activity • Repeated failed logins
• Logins from unusual locations
• Unusual processes run by the user
• Unauthorized accesses to files
• Logins at unusual times

Network connections • Connections from unusual locations
• Connections to unusual locations

Web server activity • Repeated attempts to misuse the server
• Flooding activities that could cause a denial

of service problem
Network Traffic monitoring • Half open connections

Systems activity • Unexpected shutdowns
• Unexpected reboots

Figure 1 . Table of Unusual entries within log files

Denial of service
¾ Flooding / ICMP bombing
¾ Email Bombing
¾ Smurf / Syslog / SNMP bombs

Alteration of System Privileges
¾ Alteration to su, setuid, setgid files to change the

authentication status

Protocol violations
¾ Invalid bits in a TCP packet
¾ Unusual port combinations in TCP and UDP packets

(e.g.: Teardrop, Ping of Death)

3.4 Process of Implementation
Given the suspicious entry, we need to analyze the
abnormalities associated with that entry and check whether it
belongs to those sequences of events that result in an intrusion.
Agents read the unusual entries documented in the database by
some pre-selected software and start its investigation about the
abnormalities. The investigation may lead to gathering
information from a sequence of queries posed to respective
agents.
The agent formulates the following type of queries, with
respect to the suspicious entry in the log file:
Can it be explained by an authorized user?
Can it be explained by known System activity?
Can it be explained by authorized changes to programs?

Each query is handled by a reusable Task class, which is
developed independent of the agents using that task and type
of intrusion task it is dealing with. Agents are provided with a
variety of tasks, the choice of which will depend on the next
query to be handled in the sequence. The task tackles the
query by initiating a number of conversations with other
agents and getting their responses back to the agent. Based on
the responses, agent may choose to further call another task
for the next query or may end up determining that no further
investigation is required. Conversations are built using FIPA

performatives.

A typical example of a conversation between two agents A
and B can be:

Query-If (Sender: Agent-A

 Receiver: Agent-B
 Content: (Inform-If
 SourceIP Address: 252.23.24.20
 DestinationIP Address: 219.29.27.28

 Date/Time: 19 SEPT 2001
 Username: Paul
 Content: Is user authorized?)

 Reply-with: 0001
 Language: FIPA)

Inform-If (Sender: Agent-B
 Receiver: Agent-A
 Content:
 (SourceIP Address: 252.23.24.20
 DestinationIP Address: 219.29.27.28
 Date/Time: 19 SEPT 2001
 Username: Paul
 Content: Authorized/ Not authorized / Not
 Understood)
 In-reply to: 0001
 Language: FIPA)

The decision tree shown in Figure 3 illustrates an example
where Agent A has the goal of finding information about a
suspicious login event. Each node in the tree represents a task
specifying the information query being handled by the
respective agent. Agents have access to the information
gathering needs associated with different steps of the task.
Based on this knowledge, the agents decide how to decompose
the tasks, what information is needed at each decision point,
and when to initiate conversations with other agents to get that
information. Information gathering activities associated with a

#2002SECon-USEC241:page 3

4

particular event are automatically activated by models of the
task.
From the various responses obtained from the queries that are
handled by the predefined tasks, agent gathers sufficient
information for classifying the data to determine any
occurrence of suspicious activity. At last all confirmed
evidences of intrusion, attempted intrusion or misuse are
reported to an Internal Security Point of Contact. The user
interface provided with this application shows the operations
and status reported by the agents of the system. It provides a
mechanism for feeding input as a specific type of intrusion
making an agent work for that intrusion.

4. SUMMARY AND FUTURE WORK

Because this framework provides a temporal view of the
knowledge and activity of the monitored distributed system,
we believe this system could help system administrators to

identify new attacks, spot and defend known attacks, develop
better protection and countermeasures for their system.
This paper is an attempt in a step towards the development of
specifications for an agent communication language in
Distributed systems. The long term goal of this project is to
implement and extend the protocols which ultimately evolve
into a common language for Distributed Intrusion Detection
Systems. This would eventually leads to have a common and
open standard for security systems to inter-operate on an
Internet wide scale.

5. ACKNOWLEDGEMENTS

I would like to thank my major professor Dr. Jose M Vidal for
his constant guidance, support and assistance through out this
project.

ARCHITECTURE OF THE PROJECT

ID
S/W LOG FILES

Goals

AGENT 2 Results ID
S/W

LOG FILES
Queries

Goals Answers

Results
Answers Company 2 AGENT 1

Queries
Answers

Queries

ID S/W = Intrusion Detection Software
Goals = Intrusion Specifications - Carried out by Tasks within the Agent

Results = Information about the abnormalities associated with the intrusion

Figure 2. Representation of the Project

Company 1

Goals

ID
S/W

AGENT 3
Results

LOG FILES

Company 3

#2002SECon-USEC241:page 4

5

Agent A
Query-If: Agent B

“User is Authorized?”

Agent B
Refuse :Agent A

Agent B
Not Understood: Agent A

Agent B
Inform-If: Agent A

“User Unknown” “User Unauthorized” “User Authorized”

Agent A
Informs: “User Unauthorized” Agent A

Informs: ” IP spoofed”
Agent A

Agent A:
Informs: “User unauthorized”

Agent A:
Request: Agent B

“Commands executed by user?”

Check for file modifications and
unusual Processes in the system

Agent B
Refuse: Agent A

Agent B
Inform-Ref: Agent A
“List of Commands”

Agent B
“Initiates the same task

with Agent C”

Agent A
Writes: List of Commands

Agent A
Informs: ”Check whether these commands are

Relevant to any suspicious activity found at the system

Figure 3. Model of a Task that implements Suspicious Login Protocol

REFERENCES

1. S.Poslad, P. Buckle and R.Hadingham, “The FIPA-OS agent platform:
Open Source for Open Standards” , published at PAAM2000, Machestor, UK,
April 2000.
2. F. Bellifemine, G. Rimassa, and A. Poggi, “JADE - A FIPA-compliant
gent Framework”, In Proceedings of the 4th International Conference and
Exhibition on The Practical Application of Intelligent Agents and Multi-
Agents, London, UK, Dec. 1999, pp. 97-108.
3. S. Staniford-Chen, B. Tung, P. Porras, C. Kahn, D. Schnackenberg, R.
Feiertag and M. Stillma, “The Common Intrusion Detection Framework and
Data Formats” , March 1998.
4. M. Asaka, S. Okazawa, A. Taguchi and S. Goto, “A Method of Tracing
Intruders by Use of Mobile Agent”, .INET99, June 1999.
5. http://online.securityfocus.com/guest/10094, January 2002
6. K. Kindaley, A Database of computer attacks for the evaluation of
Intrusion Detection systems, MIIT, May 21 , 1999.
7. K. Sycara, K. Decker, A. Pannu, M. Williamson and D. Zeng “Distributed
Intelligent Agents” ,IEEE Expert, Dec 1996.

18. http://www.cerias.purdue.edu/homes/aafid/, CERIAS Autonomous Agents
For Intrusion Detection Group, December 2001

8. S. Kumar, “Classification and Detection of Computer Intrusions”, PhD
thesis, Purdue University, August 1995.
9. http://www.cs.columbia.edu/~sal/JAM/PROJECT/, June 2001.

10. R. Bejtlich, “Interpreting Network Traffic: A Network Intrusion
Detector's Look at Suspicious Events”, v 2.8 , May 2000.
11. J. P. Anderson, “Computer Security threat monitoring and surveillance”,
Technical Report, James P. Anderson Co., Fort Washington, PA, April 1980.
12. G. G. Helmer., J. S. K. Wong, V. Honavar, and L. Miller, "Intelligent
Agents for Intrusion Detection", Proc. IEEE Information Technology
Congerence, Syracuse, NT, Sept. 1998, pp. 121-124.
13. T. Oates, M.V. Nagendra Prasad and V.R. Lesser, “Cooperative
Information Gathering: A Distributed Problem Solving Approach ”, UMASS
Technical Report 94-66, University of Massachusetts, Amherst, MA, Sept.
1994.
14. http://www.fipa.org, June 2001.
15. http://www.cert.org/, December 2001.
16. http://fipa-os.sourceforge.net/, June 2001
17. M. Slagell, “The Design and Implementation of MAIDS (Mobile Agents
for Intrusion Detection System)”, Masters Creative Component paper, Iowa
State University, May 2001.

19. S. Snapp, J. Brentano, G. Dias, T. Goan, L. Heberlein, C. Ho, K. Levitt
and B. Mukherjee , “A System for Distributed Intrusion Detection”,
COMPCON Spring ’91 Digest of Papers, San Francisco, CA, March 1991, pp.
170-176.

#2002SECon-USEC241:page 5

http://online.securityfocus.com/guest/10094
http://www.cs.columbia.edu/~sal/JAM/PROJECT/
http://www.fipa.org/
http://www.cert.org/
http://fipa-os.sourceforge.net/
http://www.cerias.purdue.edu/homes/aafid/

	Invalid Logins/ Suspicious Logins
	Unusual Processes / Suspicious Processes

	Suspicious files/ Unauthorized modification of files
	Type of Log file
	Unusual Entries
	
	
	Denial of service
	Alteration of System Privileges
	Protocol violations

	ARCHITECTURE OF THE PROJECT
	REFERENCES

