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Abstract. Agent-based modeling is used to simulate human behaviors
in different fields. The process of building believable models of human
behavior requires that domain experts and Artificial Intelligence experts
work closely together to build custom models for each domain, which
requires significant effort. The aim of this study is to automate at least
some parts of this process. We present an algorithm called magic, which
produces an agent behavioral model from raw observational data. It
calculates transition probabilities between actions and identifies deci-
sion points at which the agent requires additional information in order
to choose the appropriate action. Our experiments using synthetically-
generated data and real-world data from a hospital setting show that
the magic algorithm can automatically produce an agent decision pro-
cess. The agent’s underlying behavior can then be modified by domain
experts, thus reducing the complexity of producing believable agent be-
havior from field data.

1 Introduction

Agent-based modeling has been used to simulate traffic patterns, markets, supply
chains, wildlife ecology, and networking. It is a popular method for simulating
complex systems because of its ability to show emergent behaviors, or behaviors
that arise from the interaction between the different agents. Unfortunately, the
creation of an agent-based behavioral model can be a difficult task, especially
when modeling humans that are involved in complex processes. Frequently, sim-
ulation models involving human decision processes are created using observed
behavior sequences. This model development paradigm requires that both the
programmer and the domain expert work together to create a computational
model which correctly reflects the observed behavior.

In this paper, we present magic (Models Automatically Generated from
Information Collected), an algorithm for extracting behavior models from raw
observational data consisting of time-stamped sequential observations of the sub-
ject’s behavior. Our behavior model, described in Section 3, resembles a Markov
Decision Process (MDP), but with added support for cyclic behavior and addi-
tional nodes known as decision points that indicate when the agent requires



outside input in order to proceed. In order to demonstrate the ease of modifi-
cation of the behavior model for use in simulation, we have also developed an
editing tool that allows the model to be altered, and illustrated its use in a 3D
simulation of a nurse administering medications to patients on a hospital floor.

We test our algorithm both in a synthetic test setting and a hospital setting
where we build a simulation of a nurse as she carries out a medication admin-
istration process in a hospital. Data for the nursing simulation was gathered by
following several nurses for 6 weeks as they administered medications to their pa-
tients [8, 7, 13]. Our experimental results demonstrate that the magic algorithm
can automatically build appropriate behavioral models.

2 Related Work

One possible method of building a model of human behavior is by deep analysis
of the human decision process and human cognition. This is, in essence, the goal
of cognitive psychology, which tells us that the heuristics humans use to make
decisions are highly varied and individualized [4]. This lack of a clear model
of the human decision-making process made an alternate method of deriving a
decision process an attractive alternative.

Agent decision processes that have instead been derived from sequences of
behavior observed over time have proved successful in many areas, including
human behavior modeling. For example, in smart home studies, sensor pattern
readings have been used to determine human behavior patterns in order to au-
tomate heating and lighting systems in accordance with the owners’ lifestyle [10,
6, 2]. In the RoboCup competition, a framework was developed not only to learn
from logged human behavior, but to then train other agents by using the behav-
ior it had learned [3]. The 2012 BotPrize competition, an Unreal Tournament
DeathMatch-style game where human judges attempt to distinguish between
AI-players and humans, had a tie for first place between two bots that used
mirrored human behavior sequences, fooling more than 50 percent of the judges
in the competition [12]. Thus, there is ample evidence in different settings that
agents that effectively and believably simulate human behavior can be built by
deriving decision processes from observed sequences of human behavior.

In robotic planning, there has also been some success in deriving decision
processes from observed behavior. The learning of primitives [1] or low-level
actions [5] using variations of HMM’s enables robots to learn by imitating be-
havior, although these methods necessitate online rather than offline learning.
More recently, a method has been proposed to enable robots to learn offline using
human-readable text files [9]. This method, however, requires natural language
processing and the careful construction of an appropriate ontology, unlike our
research, in which the task names are provided by domain experts, and behavior
is recorded by trained observers.

In simulation, agents have required the specialized skills of AI experts working
together with domain experts to create the needed agent behaviors. In contrast,
our research aims to develop algorithms and tools to automatically build these



agents’ behaviors using the raw observational data. That is, we want to take
observed workflow data as input and output a generalized behavior model. Also,
since these models will almost certainly require some modification, we propose
to develop tools for domain experts, who are not AI experts or developers, to be
able to modify these behaviors as needed.

3 Behavioral Model: Sequential Compressed Markov
Decision Process

The type of behaviors we wish to model can almost be captured using a Markov
Decision Process [11]. However, since MDP’s do not allow for an internal state,
they cannot be used to represent a finite loop of a length prescribed by an outside
input. For example, in our healthcare domain, we need to represent the fact that
a nurse will administer a fixed number of medications to a patient, so she will
repeat a finite set of tasks some fixed number of times, such as 5 steps for each
one of the 3 medications. We need a behavior model that can also represent
these repeated sequences.

In this study, we created a variation of the Markov Decision Process that we
will refer to as a Sequential Compressed Markov Decision Process, or SCMDP.
This SCMDP extends the basic MDP by including decision points which have
direct links to other states based on external inputs instead of a transition prob-
ability.

Definition 1. (Sequential Compressed Markov Decision Process) An SCMDP
consists of an initial state s0 and an end state sn both taken from a set S of
states where |S| = n, a transition function T (s, p, s′), a set of decision points
D ⊂ S, and a set of decision point transitions P (d, s, e) where d ∈ D and e is
some external input.

In the SCMDP, states correspond to tasks performed by the agent, such as
“wash hands” or “enter room.” The transition function T gives the probability
p that the agent will transition from one state to another, therefore doing the
corresponding task. All transition probabilities from any given state will always
add to 1, as they do in an MDP. Start and end states s0 and sn are designated to
account for the fact that only certain tasks are likely to occur at the beginning
or end of a sequence.

The decision points D are a set of special states within the decision process.
They represent the entrance to a cycle. Each decision point has at least two
edges extending out from it. One edge goes to the first state in the cycle, and
the other to the action that is to be taken after the cycle ends. The cycle begins
and ends due to some external information e. The transitions out of decision
points are represented by P . For example, a nurse agent might repeat the same
set of tasks for each medication that must be administered to a patient. The
external information in this case is the number of medications that the patient
requires. The decision point keeps track of how many medications have been
administered thus far and ends the cycle when there are no more medications
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Fig. 1. Example SCMDP.

to administer. It is possible to have more than one transition out of a decision
point, therefore requiring more than one piece of external information, such as
whether the medication the patient needs is available, and whether it is located
in the medication room or the pharmacy.

Figure 1 shows a simple example of an SCMDP. Note that at the decision
point, the agent can either repeat the cycle by going back to s3 or end the
sequence by choosing to go to s4. In this example, the cycle consists of only one
state, s3, but there could be any number of states before the agent gets back
to the decision point. The decision between s3 and s4 is made using external
information not shown in the diagram. In practice, this external information
will depend upon the domain that the SCMDP is modeling.

3.1 The MAGIC Algorithm

The magic algorithm, shown in Figure 2, takes as input a text file of se-
quential task observations and outputs an SCMDP. This input text file consists
of a sequence of observations O, where each observation o ∈ O is a sequence of
tasks, oi = (t1, t2, . . . tki), that we have observed a person perform. For example,
one observation corresponds to the sequence of tasks that we watched a nurse
perform from the time she entered a patient’s room on Monday 9:32 am until
the time that she left the room. We assume that all of the observations have
recognizable start and end points. In the nursing example, these start and end
states correspond to a change in the patient’s room number.

The magic algorithm tries to identify and extract cycles in the raw in-
put data, which is especially difficult given the fact that the data might con-
tain errors in the form of transposed tasks. For example, in the observation
t1, t2, t3, t4, t5, t6, t7, t3, t5, t4, t8 the set of tasks t3, t4, t5 should be recognized as



magic (O)

1 C = [ ] // List of cycles
2 m = k // Maximum number of tasks in a cycle, defined by user
3 O′ = [] // Updated List of Observations
4 S = [] // List of lists of tasks that have been replaced with cycle pointers
5 for o ∈ O
6 o, S, C = magic-assistant(o, S,m,C)
7 O′.append(o)
8 T = calculate-transitions(O′, S)
9 return T, S

contains(o, s)

1 if ∃0≤i≤j≤|o| o[i..j] ∩ s! = ∅ // Does o contain s, sequentially?
2 return i, j // If so, return the start and end points in o.
3 return nil

magic-assistant(o, S,m,C)

1 t = ∅ // List of repeated tasks
2 for c ∈ C
3 for j = 0 to |o| − (|c|+ 1)
4 s, e = contains(o, c)
5 if s, e 6= ∅
6 o[s..e] = c // Replace the list of tasks with a pointer to the cycle in the cycle list
7 S.append(o[s..e]) // Add list of repeated tasks to list for transition calculations
8 while m > 2
9 for i = 0 to |o| − (m + 1)

10 j = i + m− 1
11 t = o[i..j] // Set of contiguous tasks taken from the observation
12 s, e = contains(o, t)
13 if s, e 6= ∅
14 if ¬∃c∈C t ⊆ c // If t is not a subset of an old cycle
15 C.append(t)
16 o[s..e] = t // Replace the list of tasks with a pointer to the appropriate cycle
17 S.append(o[s..e]) // Add list of repeated tasks to list for transition calculations
18 m = m− 1
19 return o, S, C

Fig. 2. The magic algorithm. The contains procedure tells us if the list of observations
o contains the set of tasks t anywhere within it, but contiguously. The magic-assistant
procedure identifies cycles, checks if they are subsets of existing cycles, and records any
new cycles found.



a cycle because they appear twice, even if in different order: the first time as
t3, t4, t5 and the second time as t3, t5, t4. This match is performed by the con-
tains procedure, shown in Figure 2, which tells us if the list of observations o
contains the set of tasks t anywhere within it, contiguously, and then returns
the indexes i, j within o that mark the start and end of the set of tasks t, or nil
if they are not contained in o.

The magic-assistant procedure takes as input a single observation o, the
list of tasks S that have been replaced by a cycle, the current list of cycles found
C, and an integer m which is the maximum number of tasks that we will allow
in a cycle. magic-assistant first checks to see if o contains any cycles that are
already in the cycle list C, as seen in lines 6–7. If any are found, then it modifies
o so that tasks that we recognized as belonging to c are replaced with a pointer
to c in C (see line 6). The list of tasks that have been replaced is appended to
S, so that the transition probabilities within the cycle can also be calculated.

magic-assistant then steps through the observation sequence (see lines 8–
18) selecting the maximum number of tasks in a cycle, converting them to a set
s where s = o[i..|s| − 1] and using the contains helper function to check for
repetitions of that set of tasks in the same observation, that is, checking for a
cycle. If a new cycle is found, we determine if it is a subset of one of the cycles
that is already on the cycle list C. If the cycle is not yet on the list, it is added
to C. The cycle is then replaced in the observation o with a reference to its
location on the cycle list C. Finally, magic-assistant returns the new modified
observation o and the list of tasks S that have been replaced by a cycle c ∈ C.

The magic procedure repeatedly calls magic-assistant for each observation
o and appends the new modified observations to O′. Finally, it calculates the
transition probabilites T using the new O′ and the list S by adding how many
times a state follows another one and using the proportions as probabilities. In
other words, if state s6 appears right after s2 in 1/3 of the observations where
we see s2, then we set T (s2, 1/3, s6).

go-out , throw -ball , chase-dog , throw -ball , chase-dog , throw -ball , chase-dog , go-in
go-out , throw -ball , chase-dog , throw -ball , chase-dog , go-in
go-out , throw -ball , go-in
go-out , throw -ball , chase-dog , throw -ball , chase-dog , throw -ball , chase-dog , go-in
go-out , throw -ball , chase-dog , chase-dog , go-in
go-out , chase-dog , throw -ball , throw -ball , chase-dog , throw -ball , chase-dog , go-in
go-out , throw -ball , chase-dog , throw -ball , chase-dog , throw -ball , go-in
go-out , throw -ball , chase-dog , throw -ball , chase-dog , throw -ball , chase-dog , go-in

Fig. 3. Example input data for MAGIC algorithm.

As an illustration of the way that the magic algorithm functions, consider
the set of observations in Figure 3, which simulates the attempt to play fetch
with a dog who doesn’t seem to understand the concept of giving the ball back.



Since the length of the maximum observation is 8, we know the longest possible
cycle will be 3, because the start and end states cannot be in a cycle. Thus, we
set m = 3 in magic. However, there are no cycles 3 tasks in length. The first
and only cycle found is c = (throw -ball , chase-dog), which also matches the set
(chase-dog , throw -ball .) Each time c is found, the list of tasks that are replaced
by the pointer to c in the list of cycles C is added to the list of lists of tasks
S, to be used in transition calculations inside of the cycle. An illustration of
the SCMDP produced by magic is shown in Figure 4. At the decision point
the agent needs the external knowledge of whether or not it has the ball, and
whether or not the dog wants to play. If the agent has the ball, it can throw the
ball. If not, it must chase the dog to get the ball. If the dog doesn’t want to play
any longer, the agent will go inside. Going outside is always the first event in
the sequence, and going back inside is always the last event.

Start

Go
out

Throw
ball

Decision
Point

Chase
dog

Go
in

End

Fig. 4. Example SCMDP produced using magic algorithm

The cycle created by our decision point ensures that, after completing the
tasks of throwing the ball and chasing the dog, the agent returns to the decision
point to once again make a decision based upon who has the ball, and whether
or not the dog wants to play. This allows behavior that is based upon the human
behavior pattern, but does not necessarily repeat one particular logged observa-
tion. For instance, if the agent goes outside and the dog does not want to play,
the agent will go inside again. Likewise, the agent would continue playing fetch
with the dog for more than three cycles if the dog still wants to play.



The modeler and the domain expert must choose the specific external inputs
needed at the decision nodes. In this simple case, it is easy to determine that
the input is simply whether or not the dog wants to play. In the case of a more
complex model, however, the domain expert may need to tell the modeler what
the agent would need to know in order to proceed. Well-named tasks in the
logged data make this process simpler, so it is important for trained observers
who are logging behavior to be as accurate and clear as possible in naming tasks.
It is likewise important that they remain consistent. If the same task is given
two different names by observers, it will appear as different tasks in the final
model.

4 Validation Using Synthetic Data

In order to test how well magic can extract cycles from raw data, we performed
a test in which we created a synthetic model of a simple agent from which we
could generate observational sequences. We then used the magic algorithm to
attempt to recover the original model from the observations.

The SCMDP we created mimics a player’s movements in a first-person shooter
“capture the flag” game. The agent has a single decision point called Idle. At
this point, the agent needs to know if it is injured, needs ammunition, sees its
opponent, or is at the checkpoint that must be seized in order to win the game.
There are two possible initial actions: crouch or duck, and there are two possible
final stages: win or die. The SCMDP used for this test is shown in Figure 5.

We used a Python script to generate 10,000 strings from the SCMDP and fed
these as input 10 times to the magic algorithm, for a total of 100,000 randomly
generated strings. The resulting SCMDP mirrored the original’s pattern, provid-
ing an appropriate decision graph for an agent in a first-person shooter “capture
the flag” game. The transition probabilities found by magic were, on average,
within 0.19 percent of the ones in the original SCDMDP, with a variance of 0.08
percent, as shown by the black numbers (below) in Figure 5.

Our results show that, with the use of 10,000 strings, we are able to closely
approximate the original pattern with minimal deviation between individual test
runs. The low error rate in transition values indicated that, by adding enough
data, we were able to overcome the disadvantage of unusual behavior patterns,
allowing us to recover the correct pattern of behavior using the magic algorithm.
The identification of task cycles enabled us to determine the location of the
decision point, indicating that the Idle state is a state where the agent would
require further information before making a decision, rather than simply relying
upon a percentage chance of a transition.

We then performed further tests on this SCMDP by adding Gaussian white
noise with 1% variance to the input data, meant to simulate the type of errors
we might encounter in data gathering and subject observation. The addition of
this noise did not disrupt the location of the identification of the decision point.
It did cause a minimal error in transition values, which was easily correctable
by removing transitions that had less than one percent chance of occuring. This



Fig. 5. SCMDP used for testing the magic algorithm. The numbers in red (above) are
the original transition probabilities in the SCMDP. The numbers in black (below) are
the probabilities found by magic.

slight adjustment to transition calculations also enabled better compensation for
occasional unusual behavior patterns.

4.1 Validation With Real-World Data

A pilot study of the nurse medication administration process was conducted in
a hospital setting [8, 7, 13]. In this study, over a 6 week period of time, nurses
were shadowed by trained observers, and their activities were recorded using
an iPad application. The actions used by the observers were chosen by domain
experts. Observation data from 6 of the 17 observed nurses were used for the
study, and the resulting files were combined into a CSV file. The start and end of



each observation sequence was determined by when a nurse entered and exited
a room, as evidenced by the room number in the log files. In total, there were
10,391 tasks recorded which together comprised 313 observations.

An example of a subset of the data used is shown in Table 4.1.

Table 1. Example of nursing data.

Room Number Behavior

628 enter room

628 greet patient

628 scan patient id

628 review patient computer record

628 review patient med box

628 scan patient meds

628 document med admin

628 scan patient meds

628 scan patient meds

628 document med admin

628 scan patient meds

628 document med admin

628 review patient med box

628 scan patient meds

628 prepare meds for admin

628 administer meds

628 prepare meds for admin

628 setup for med admin

628 administer meds

628 other care

Despite the limited amount of sample data, we were able to achieve some
success using the MAGIC algorithm. We were able to identify 12 decision points
needing external information, such as the number of medications the patient
required, or whether or not the patient needed special medication. Some of these
were less obvious in nature, such as whether or not the nurse needed to wear
gloves, whether or not the patient needed the medication explained, or whether
the patient refused to take the medication.

The nursing study was particularly interesting because the nurses had two
distinct approaches to patient care, as identified by domain experts (clinicians,
in this case). We have referred to these approaches as bundled and unbundled.
Nurses that took the unbundled approach visited a patient’s room to administer
medication, and then returned later to perform any other necessary tasks, while
nurses that took the bundled approach performed all required tasks during the
same visit. The SCMDP we obtained from the test data reflected the fact that it
contained both methods, as indicated by the decision point that requires knowl-
edge of whether or not the patient requires other care than simply administering



Fig. 6. The MAGICBAG Tool (left) and the NurseView simulation (right). Simulation
video at http://youtu.be/JH94PolDhZQ

medications. While this pilot data set provided us with the location of the appro-
priate decision points, because of the difference in approaches to patient care, it
will be necessary to have a greater number of observations to ensure the correct
transition values.

Despite the smaller size of the data set, by using this format, we were able to
create simulations using both NetLogo and the Unity3D game engine that can
read the text file and use it as a logic controller for the nurse agent’s behavior,
as seen in Figure 6. This allowed the nurse domain experts to visualize current
medication administration processes.

5 Summary

As cognitive modeling is difficult, imitation is a viable alternative to achieve
believable human behavior in simulation. Statistical analysis of observed data
allows us to achieve a pattern of human actions, essentially simulating human
behavior by mimicking human behavior.

While building behavior models by hand can be complex and time-consuming,
there is a better alternative. We have shown that it is possible to derive an agent
decision process using the magic algorithm which encapsulates the observational
data in a small behavior model (SCMDP) that responds to external input, pro-
vided there is sufficient data, and tasks are labelled consistently.

Even with an automatically generated decision process, it will be necessary
for an expert in the area that is being modeled to review the results. The pro-
cess, however, will be less complex and time-consuming than making all of the
necessary calculations by hand. The simple, standardized output format used in
this study is easy to parse, allowing adjustments to be made quickly, and making
it easy to load in a wide variety of simulation environments. Therefore, as part of
our ongoing work, we have created a NetLogo tool, called MAGICBAG (MAGIC
Behavior Adjustment Graph), which allows modelers to adjust the graph in a
more visual and intuitive manner. We are continuing to refine this tool, and to
test the magic algorithm in different domains in order to further confirm its
capability to work as a generic tool, rather than being domain-specific. We are



also developing methods to determine decision points that are not cycle-specific
in order to alleviate more of the modifications to the model that must be made
by the domain expert, thereby further reducing modeling time.
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