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Supply Network Topology and Robustness against Disruptions – an 
investigation using multiagent model 

 
 

In this study we examine the relationship between supply network’s topology and its robustness 
in the presence of random failures and targeted attacks. The agent based model developed in this 
paper uses the basic framework and parameters in the experimental game presented in Sterman 
(1989) for modeling adaptive managerial decision making in an inventory management context. 
The study extends the linear supply chain context to a complex supply network and undertakes a 
rigorous examination of robustness of these supply networks that are characterized by distinct 
network characteristics. We theorize that network characteristics such as average path length, 
clustering coefficient, size of the largest connected component in the network and the maximum 
distance between nodes in the largest connected component are related to the robustness of 
supply networks, and test the research hypotheses using data from several simulation runs. 
Simulations were carried out using twenty distinct network topologies where ten of these 
topologies were generated using preferential attachment approach (based on the theory of scale-
free networks) and the remaining ten topologies were generated using random attachment 
approach (using random graph theory as a foundation). These twenty supply networks were 
subjected to random demand and their performances were evaluated by considering varying 
probabilities of random failures of nodes and targeted attacks on nodes. We also consider the 
severity of these disruptions by considering the downtime of the affected nodes. Using the data 
collected from a series of simulation experiments, we test the research hypotheses by means of 
binomial logistic regression analysis. The results point towards a significant association between 
network characteristics and supply network robustness assessed using multiple performance 
measures. We discuss the implications of the study and present directions for future research. 
 
Keywords: Supply networks, Topology, Disruptions, Robustness, Scale-free Networks, Random 
Networks, Agent-based model, Binomial Logistics Regression 

 

Introduction 

In recent times, supply disruptions are receiving considerable managerial attention due to 

their adverse impact on organizational performance. Sheffi and Rice (2005) highlight the 

supply chain implication of the terrorist attack on September 11, 2001 by giving the 

examples of adverse effect on Ford’s and Toyota’s operations. Chozick (2007) report that 

70% of Japan's auto production was temporarily paralyzed for a week due to the 

disruptions in the supply of piston ring caused by a 6.8-magnitude earthquake that hit 

central Japan thereby damaging Riken Corp.’s production plant, the supplier that makes 

custom piston rings for most of the car makers in Japan.  
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The increased interest in supply chain disruptions is also evident in research 

studies. For instance, studies have examined the financial implications of supply chain 

disruptions (e.g., Hendricks & Singhal, 2003; 2005) and investigated risk mitigation and 

contingency planning strategies in the presence of supply chain disruptions (e.g. Sodhi, 

2005; Tomlin, 2006). There is also a growing research stream that examines disruption 

and related supply chain issues by using a multiagent-based simulation framework (e.g. 

Thadakamalla et al., 2004).  

Our paper fits within this multiagent based approach. In this study we examine 

how supply network topology is associated with its robustness in the event of disruptions. 

It has been observed that several supply networks exhibit incredible robustness in the 

presence of disruptions while others fail to survive random failures or targeted attacks. 

Sheffi and Rice (2005) provide examples of firms, whose supply networks are 

characteristically distinct from each other, making their levels of resilience and 

robustness to random failures and targeted attacks to be considerably different. This study 

builds on the extant literature in statistical physics that examine the error and attack 

tolerance of complex networks (Albert et al., 2000; Thadakamalla et al., 2004), and 

consider the impact of supply network characteristics, such as average path length, 

clustering coefficient, size of the largest connected component, and maximum distance 

between two nodes in the largest connected component, on performance measured in 

terms of inventory levels, backorders and total costs within a supply network. 

 

Literature review and research hypotheses 
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Modeling of complex networks has focused on three main classes: (i) random graphs: 

these variants of Erdős – Rényi model (Erdős and Rényi, 1959; Bollobás, 1985) are still 

widely used in many fields and serve as a benchmark for many modeling and empirical 

studies; (ii) small-world models: these models interpolate between the highly clustered 

regular lattices and random graphs; and (iii) scale-free models (Barabási and Albert, 

1999): these are motivated by the power-law degree distribution of the nodes in complex 

networks as evident in several networks such as the World Wide Web (Albert et al., 

1999), the Internet (Faloutsos et al., 1999), or metabolic networks (Jeong et al., 2000). 

When viewed from the perspective of robustness to failures, it is observed that random 

networks and small-world networks have similar properties due to the similarity in their 

degree distribution (Thadakamalla et al., 2004). Meanwhile, scale-free networks are 

highly robust to random failures but are sensitive to targeted attacks. Thus, random 

networks and scale-free networks present two characteristically distinct topologies, a 

systematic examination of which can provide deeper insights regarding the association of 

network characteristics with its robustness against disruptions.   

Studies, such as Albert et al. (2000), have focused on random graphs and scale-

free network topologies to discern the error and attack tolerances of these networks. 

Consistent with this stream of research and with literature emphasizing that supply 

networks follow topologies commonly observed in complex adaptive systems (Surana et 

al., 2005; Sun and Wu, 2005; Pathak et al., 2007; Wang et al., 2008; Bichou et al., 2007), 

in this paper we consider random and scale-free network topologies for our research 

investigation of robustness of supply networks. 
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 The theory of random networks has its origin in the use of probability methods in 

problems related to graph theory. Erdős and Rényi (1959) define a random graph to be 

one in which N nodes are connected to n edges, chosen randomly from N(N-1)/2 possible 

edges. There are n
NNC ]2/)1([ −  possible graphs that can be formed with all graphs having 

equal probability of being realized in the probability space. The theory of random graphs 

concerns with an examination of this probability space as ∞→N .  

The scale-free networks were motivated from a mismatch between the clustering 

coefficients found in real-world network and those predicted by random graphs. Also, it 

has been observed that even for those networks for which P(k) (a distribution function 

representing the probability that a randomly selected node has exactly k edges) has an 

exponential tail, the degree distribution do not follow Poisson distribution as suggested in 

random graphs theory. Barabási and Albert (1999) present the idea of scale-free network 

by considering the power-law degree distribution that is observed in several real world 

networks. The networks grow by continuous addition of new nodes. Instead of following 

a random-attachment of nodes, these networks follow a preferential attachment logic 

whereby new nodes join a node that is already highly connected (i.e. exhibit high degree). 

Formally, the probability Π that a new node n will connect to a node i in the network 

depends on the degree ki of node i: 
∑

=Π

j
j

i
i k

k
k )( .  

Further details on the analytical and empirical developments in the random graphs 

and scale-free network theory are presented in Albert and Barabasi (2000) and 

Dorogovtsev and Mendes (2002). In the following subsections we present details 

regarding network characteristics that are used for our research investigation. 
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Average path length 

The average path length presents an approach to characterize the spread of a network by 

calculating the average distance between any pair of nodes. For a network with N nodes, 

it is likely that not all nodes will have the same number of edges (also referred as node 

degree).  The spread of the node degrees is characterized in terms of the distribution 

function P(k). The degree distribution of most random networks can be approximated by 

binomial distribution (with Poisson distribution being a more appropriate approximation 

for very large number of nodes). The average path length of a network is related to the 

number of nodes, N. The average path length of scale-free networks examined by 

Barabasi and Albert (1999) increases approximately logarithmically with the number of 

nodes, N. It can be argued that with a low average path length, the nodes within a supply 

network are able to transport products and communicate information more quickly 

thereby aiding in its robustness against disruptions. Based on this reasoning we 

hypothesize: 

H1: In the presence of disruptions, the robustness of supply network is negatively 
associated with its average path length.  

 

Clustering coefficient  

Clustering coefficient capture the small-world nature inherent in several real-world 

networks. Specifically, this measure suggests that the probability of the nearness of two 

nodes is related to the nearness of these nodes to a third node. In a random network the 

probability that nearest neighbors of a node are connected is equal to the probability that 

two nodes in the network are connected. The clustering coefficient of scale-free networks 

proposed by Barabasi and Albert (1999) are higher than that of the random networks and 
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this difference increase as the number of nodes increase. The cliquish property 

represented by clustering coefficient is expected to be useful in the normal operations of a 

supply network. However, in the event of disruptions it could result in high level of 

vulnerability due to the high levels of dependency among the nodes. The disruption of 

any node will adversely impact the functioning of all nodes that are closely connected to 

it. We hypothesize: 

H2: In the presence of disruptions, the robustness of supply network is negatively 
associated with its clustering coefficient.  
 
Largest connected component – Size and maximum distance 

A connected, isolated subgraph or cluster of a network is defined as its component. 

Several simulation studies have highlighted the importance of the size of the largest 

connected component within a network and the maximum distance between the nodes in 

the largest connected component, particularly in the context of robustness against random 

failures and targeted attacks (see for example, Albert et al., 2000; Cohen et al., 2000; 

Moreno et al., 2002; Thadakamalla et al., 2004). With a large connected component, a 

supply network is able to manage disruptive events relatively better. In spite of the loss of 

some of its structures or loss of functionalities of some of its nodes, it is able to maintain 

a fair amount of connectedness among nodes (Thadakamalla et al., 2004) due to the 

existence of a path between the pair of nodes in the component. Further, as the size of the 

largest connected component increase the maximum distance between any two nodes in 

the component increase. This allows a node to have a farther reach in the event of 

disruption. Drawing on this reasoning we hypothesize: 

H3: In the presence of disruptions, the robustness of supply network is positively 
associated with the size of its largest connected component.  
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H4: In the presence of disruptions, the robustness of supply network is positively 
associated with the maximum distance in its largest connected component. 
 

We consider robustness of the supply network in terms of three performance 

measures: inventory levels (H1a – H4a), backorders (H1b – H4b) and total costs (H1c – 

H4c). Specifically, we examine if the topological characteristics of a supply network 

explain the significant differences in these performance measures in the presence and 

absence of disruptions. 

 

Research Design 

The use of agent-based simulation model in supply chain context is gaining research 

interest (e.g. Moyaux, et al., 2007). In this study we develop multi-agent model using the 

NetLogo modeling platform (Wilensky, 1999). The approach enables us to capture the 

complexities and dynamics associated with network topologies and examine the 

evolutionary nature of choices made by firms within these supply networks. It also allows 

an investigation of the impact of failure of a node (representing a supply chain entity) on 

the overall behavior of the supply network.  

Agent-Based Model  

Our model extends the experimental game presented in Sterman (1989) by allowing for 

more complex network topologies. The dynamic decision making model has four players 

- factory, distributor, wholesaler and retailer – linked in the form of a serial supply chain. 

We model the stock and flow structure of the system, the decision rule used by managers, 

and the values for characterizing the parameters and costs similar to that in Sterman 

(1989). As an initial validation check we use the basic experimental setup and subject it 
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to a step demand function as studied in Sterman (1989), i.e. a constant demand of four 

cases and a one-time increase in customer demand to eight weeks in week 5. The results 

obtained from the agent-based model provide a satisfactory replication of the results in 

Sterman (1989).  

Once the validity of the results for the basic experimental setup was established, 

we extended it by considering multiple distributors, retailers, and customers. The model 

allows the network to evolve until a specified number of nodes (i.e. factories, distributors, 

warehouses and retailers) are created. During the evolution, we can specify the logic by 

which the nodes attach to other nodes. We subject the network formation process with 

certain conditions to ensure that the resulting network represents a valid supply network. 

In particular, we consider a single factory who can supply to warehouse, distributors or 

retailers depending upon the specific network topology (i.e. random network or scale free 

network) that is under consideration. The supplies to the factory are modeled with a lead 

time without explicitly modeling the raw materials and component suppliers. In our 

network considerations, the end customer demand is always satisfied from a retail 

location.  

Since in a network setup each supply chain entity (i.e. factory, distributors, 

warehouses, and retailers) can supply to more than one demand source, we had to add 

some extra rules that are not present in the basic experimental game setup presented in 

Sterman (1989). The supply chain entities satisfy orders they receive on a first-come first-

serve basis, regardless of the amount in the order. The quantity that a factory, distributor 

or wholesaler is unable to fulfill is treated as backorder. The shortages at the retail 

location are lost orders. In the model presented in Sterman (1989) all players start with 
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the same inventory since each has only one customer. In our model the initial inventory at 

each supply chain entity is proportional to the number of demand sources that it supplies 

to.  

Two supply chain entities that are directly connected to each other are at a 

distance of one. More generally, the distance between any pair of supply chain entities is 

the smallest number of edges which one would need to traverse in the graph to go from 

one node to the other. The calculation of these values is the classic max-flow problem in 

graph theory that can be solved using Dijkstra’s algorithm (Cormen et al., 2003). Our 

model implements Dijkstra algorithm to find the shortest path between all pairs of nodes 

and then uses these values to determine the average path length and the largest connected 

component. 

With the overall framework and constraints presented earlier, scale-free networks 

were generated by using the preferential attachment logic (Barabási and Albert, 1999), 

and the random networks are generated by following a random attachment of nodes. We 

generate ten network topologies representing random networks and ten network 

topologies representing scale-free networks. To generate a new network we start with one 

node, the factory, and then create new nodes one at a time connecting them to existing 

nodes. In the random network topology each new node is connected to one randomly 

chosen existing node where all existing nodes have equal probability of being chosen. In 

the preferential attachment topology we follow the standard algorithm (Barabasi and 

Albert, 1999) and connect each new node to one existing node but now each node's 

probability of being chosen is directly proportional to the number of edges that it has. For 

example, if there are three nodes with 1, 2, and 3 edges respectively, then each will be 
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chosen with a probability of 1/6, 2/6, and 3/6. We measure the network characteristics, 

i.e. average path length, clustering coefficient, size of the largest connected component 

and maximum distance between nodes in the largest connected component by using the 

definitions as discussed earlier in the paper.  

In an agent based model all the facilities as well as the customers (modeled as a 

random demand function that sets the value of demand at every time step as a number 

between 0 and 8) are treated as agents. To ensure consistency and comparability between 

the various topologies considered in the study, each topology consists of 18 facilities 

comprising of one factory, five intermediaries acting as distributors or warehouse, and 

twelve retail locations that are directly facing the customer demand. The choice of the 

scale (i.e. one factory, five intermediaries and twelve retailers) is arbitrary and the model 

can be scaled to higher and lower number of nodes.  

In the event when a facility fails due to random failure or targeted attack, the 

purchase orders and deliveries arriving to the facilities accumulate until the facility 

becomes functional.  Once the facility is operational, the purchase orders and deliveries 

are attended to on a first-come first-serve basis. The timing in our model is the same as in 

the experimental setup presented in Sterman (1989). The unit of analysis is in weeks and 

all facilities take decisions on a weekly basis. Both orders and deliveries have to spend 

one week in transit and the total replenishment cycle (from order to receipt) is 4 weeks.  

Experimental Design 

The development of the simulation model and the analysis of the data gathered from 

simulation runs follow the systematic approach suggested in literature (Kelton, 1997; 

Sargent, 1998; Nance and Sargent, 2002; Law, 2004). The overall experimental design 
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and parameters used for the study are reported in table 1. We ran the agent based 

simulation model for 105 time ticks; each time tick corresponds to a week. We collect 

data from twenty replications of each scenario of the simulation model, and use the 

average of the weekly data obtained from these 20 replications for analysis.  

[Table 1 about here] 

 

Results and Discussion 

We examine the robustness of individual topologies by undertaking paired sample t-test 

for each network topology considered in the study. The performance of a network in the 

absence of both random failures and targeted attacks is used as the base case. The 

performance of all twenty network topologies considered in this study in the presence of 

varying degrees of random and targeted disruptions are compared with the base case.  In 

total 24 paired sample t-tests (for each disruption scenario explained in the experimental 

design) were conducted for each topology. Robustness of a network topology against 

disruptions is gauged by a non significant difference in the mean for the performance 

measures as reported by the paired sample t-test (i.e. p-value > 0.05). The topologies that 

exhibit significant difference of performance (i.e. p-value ≤ 0.05) are considered as 

vulnerable to disruptions.  

As a next step, we utilize the information from the paired t-test and categorize the 

topologies as robust (coded as 1) or vulnerable (coded as 0). We use binomial logistics 

regression analysis to examine how the robustness of supply network against disruptions 

is associated with average path length, clustering coefficient, size of the largest connected 

component within the network, and the maximum distance between nodes in the largest 



 13

connected component of the network. Initially, we undertake the binomial logistics 

regression analysis for the entire sample of network topologies considered in this study. 

We use the topology type (categorical variable denoting scale-free and random network) 

as a control variable. Subsequently, we split the sample into scale-free and random-

networks and investigate the hypothesized relationships in these network topologies 

separately. The sample size, mean, standard deviation, minimum and maximum values 

for the independent and dependent variables used for binomial logistics regression 

analysis are presented in table 2.  

[Table 2 about here]  

Overall Sample 

The results of the binomial logistics regression analysis for the overall sample are 

presented in table 3. 

[Table 3 about here]  

The pseudo R-square value (Nagelkerke R-square) suggest that the independent 

variables explain almost 11.8%, 35.2% and 19.2% of variations in the robustness of 

supply networks from the perspectives of performance impacts measured in terms of 

inventory levels, backorders and total costs, respectively. The results emphasize the 

important role played by network characteristics and topology type in determining the 

robustness of supply networks. 

From the results of the analysis we fail to find an association between maximum 

distance between the nodes in the largest connected component and the robustness of the 

network topology examined in terms of change in inventory levels in the presence of 

disruptions (hypothesis H1c). All other hypothesized relationships are strongly supported 
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(p<0.05). The results in table 3 also show that scale-free networks are relatively more 

robust from the inventory perspective, however, when viewed from the backorders and 

total cost perspectives, random networks are more robust.  

The results present a compelling evidence of the association between network 

characteristics and robustness of supply networks. We find that a unit increase in average 

path length and clustering coefficient substantially increase the odds of making the 

supply network vulnerable from the point of view of inventory levels, backorders and 

total costs. As shown in table 3, for every unit increase in the size of the largest 

connected component the odds of having a robust supply network from the perspectives 

of inventory levels, backorders and total costs increase by about 1.6 times, 3 times and 

2.6 times respectively. A unit increase in the maximum distance between nodes in the 

largest connected component increases the odds of a robust supply network from 

backorders and total cost perspective by a factor of 8.7 and 10.2, respectively.  

Scale-free Networks 

The results of the binomial logistics regression analysis for the scale-free network 

topology sub-sample are presented in table 4. 

[Table 4 about here]  

 The pseudo R-square values (Nagelkerke R-square) suggest that the average path 

length, clustering coefficient, size of the largest connected component and the maximum 

distance between nodes in the largest connected component explain almost 21.9%, 24.5% 

and 26.3% variation in the robustness of supply networks characterized in terms of 

inventory levels, backorders and total costs, respectively. These values highlight that 
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topological considerations are extremely valuable in understanding the robustness of 

supply network. 

The results suggest that the average path length, clustering coefficient and size of 

the largest connected component are significantly associated with deterioration of 

inventory levels in the presence of disruptions, as hypothesized in H1a, H2a and H3a. We 

do not find support for the association of maximum distance between nodes in the largest 

connected component with deterioration in inventory levels in the presence of 

disruptions. Hypotheses H1b-H4b are supported, suggesting that all network 

characteristics considered in this study are significantly associated with robustness of 

supply networks evaluated from the perspective of deterioration in backorders in the 

presence of disruptions. Finally, we do not find support for hypotheses (H1c and H4c) 

linking average path length and maximum distance between nodes in the largest 

connected component with deterioration of total costs in the supply network in the 

presence of disruptions. However, clustering coefficient and the size of the largest 

connected component were significantly associated with robustness from total cost 

perspective (H2c and H3c). 

We find that a unit increase in clustering coefficient substantially increase the 

odds of making the supply network vulnerable. A unit increase in average path length 

also substantially increase the odds of making the supply network vulnerable from the 

point of view of inventory levels and backorders. Table 4 indicates that as the size of the 

largest connected component of scale-free networks increase by one unit the robustness 

of the network from inventories, backorders and total costs perspectives increase by 

almost 2, 2.7 and 5 times, respectively. While the maximum distance between nodes in 
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the largest connected component is not significantly associated with inventory and total 

cost based robustness measures, a unit increase in this variable increases robustness from 

backorders perspective by almost 5 times. 

Random Networks 

 We present the results of the binomial logistics regression analysis for the sub-sample 

comprising of random networks in table 5. 

[Table 5 about here]  

 The Nagelkerke R-square values suggest that the network characteristics 

considered in this study explain almost 8%, 33.8% and 13.6% variation in the robustness 

of supply networks from inventory, backorders and total cost perspectives. 

We find a weak association of clustering coefficient and maximum distance 

between nodes in the largest connected component with robustness of supply networks in 

terms of inventory levels (H2a and H4a). The results do not support an association of 

average path length and size of the largest connected component with robustness in terms 

of inventory levels. All hypothesized relationships for robustness, measured in terms of 

backorders and total costs, were supported (H1b – H4b & H1c-H4c).  

We find that similar to scale-free networks, a unit increase in clustering 

coefficient substantially increases the odds of vulnerability of random networks against 

random failures and targeted attacks. A unit increase in average path length substantially 

increases the odds of vulnerability from backorders and total cost perspectives. Table 5 

shows that a unit increase in the size of the largest connected component increases supply 

network robustness, viewed from backorders and total cost perspectives, by a factor of 

3.2 and 2.1 times, respectively. A unit increase in the maximum distance between nodes 
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in the largest connected component was found to increase the odds of a robust supply 

network by 3.7 times, 14.1 times and 16.9 times when the robustness is evaluated from 

inventory, backorders and total cost perspectives respectively. 

Implications and directions for future research 

Based on the findings from this study we emphasize that long average path lengths 

between nodes in a supply network are detrimental for its robustness against disruptions. 

Shorter average distances between nodes in the network allow faster propagation of 

products and information and thus aid in enhancing the responsiveness of supply network 

in the event of disruption. A clustered form of supply network has been widely adopted 

by several firms due to its advantages in terms of consolidation, efficiency and quick 

response. The results of this study suggest careful examination of the nature of 

connection between nodes within clusters as well as in the overall supply network. 

Managers ought to balance the advantages of a clustered configuration of facilities in the 

supply network with the potential disadvantages in the presence of disruptions. Finally, 

the reach of a facility in the largest sub-structure plays a positive role in enhancing the 

robustness of a supply network. The study’s findings motivate the need for an evaluation 

of supply network robustness from multiple outcome metrics. It is important to give 

consideration to various performance metrics, such as inventories, backorder, total costs, 

to get a better understanding of the robustness of the supply network.  

There are a few limitations of this study that provide directions for future 

research. In this study we do not consider the aspect of rewiring of nodes that often 

provide an adaptive mechanism in the event of disruptions. Future studies can examine 

how inventories could be reassigned in the event of disruptions and investigate efficient 
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heuristics for such reassignments. It would also be worthwhile to examine the 

implications of fortifying certain nodes, identifying the nodes that are most suitable to be 

fortified and examining the implications of such actions on the relationship between 

network characteristics and robustness of supply network. Finally, empirically validation 

of the relationship examined in this paper from real-world supply networks would be a 

fruitful area of research investigation.  
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 Table 1: Experimental Design* 
 
 

No. of Experiments 

(A) Network topologies 

(B) Probability of 
random failure of 
nodes 

(C ) Probability 
of targeted 
attack on nodes 

(D) Severity of 
disruption 

500 experiments* 
conducted by using 

different permutations of 
values for variables:  

(A) – (D) 

20 (10 topologies with 
preferential attachment and 
10 topologies with random 

attachment logic 0, 5%, 10% 0, 5%, 10% 1 week, 2 weeks, 3 weeks 
 

 
*For each topology the experimental design provides 27 potential scenarios. When the probability of 
random failure of nodes and probability of targeted attack on nodes is 0, the severity of disruption is 
redundant. We consider this “no disruption” scenario as a base case. In total we have 24 scenarios that 
represent varying degrees of disruption faced by each network topology. We examine the robustness of 
each network topology in the presence of disruption by undertaking 24 paired-samples t-tests using the no 
disruption case as reference. When the probability of random failure and targeted attack on nodes is 0, the 
severity of disruption does not have any consequence on the results. Thus, when the probability of random 
failure and targeted attack on nodes is 0 we consider only one instance of severity of disruption and remove 
the remaining redundant experiments from further consideration. In total, this provides data from 500 
experiment for further analysis. 
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Table 2: Descriptive Statistics for the Overall Sample and the Sub-sample 
comprising of scale-free networks and random networks 

 
OVERALL SAMPLE (Sample Size 480) 

 Average 
Path 

Length 

Clustering 
Coefficient 

Size of the 
largest 

connected 
component 

Maximum 
distance in 
the largest 
connected 
component 

Total 
inventory 

in the 
supply 

network 

Total 
backorders 

in the 
supply 

network 

Total 
costs in 

the 
supply 

network 
Mean 3.057 0.377 22.203 6.654 1372.579 943.369 3044.701 

Std. Dev. 0.577 0.022 3.897 0.795 2793.159 1842.997 5813.443 
Min. 1.733 0.320 14.470 4.635 57.668 181.144 498.695 
Max. 4.462 0.436 29.324 8.865 18444.936 15407.885 41363.915 

SCALE-FREE NETWORKS (Sample Size 240)
Mean 2.921 0.384 22.219 6.420 732.798 516.000 1656.374 

Std. Dev. 0.556 0.021 3.800 0.800 705.310 307.749 1102.047 
Min. 1.733 0.332 14.470 4.635 57.668 181.144 498.695 
Max. 4.057 0.436 29.079 8.697 3499.485 2406.916 7339.194 

RANDOM NETWORKS (Sample Size 240)
Mean 3.193 0.371 22.186 6.888 2012.360 1370.739 4433.027 

Std. Dev. 0.566 0.215 3.999 0.718 3783.727 2519.120 7915.055 
Min. 2.122 0.320 14.648 5.451 177.528 340.353 991.714 
Max. 4.462 0.416 29.324 8.865 18444.936 15407.885 41363.915 
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Table 3: Binary Logistics Regression Analysis Results (Overall Sample) 
 

INVENTORY 
Variable Beta Std Err Wald Sig. Exp(Beta) 

Average Path Length -2.409 .831 8.412 *** .090 
Clustering Coefficient -32.629 8.554 14.550 *** .000 
Size of the largest connected component .466 .098 22.632 *** 1.594 
Max. distance in largest connected component .024 .395 .004 - 1.024 
Topology type^ -0.447 0.269 2.773 * 0.639 
Nagelkerke R-square: 0.118; Hosmer and Lemeshow Test (χ2): 14.519 (p-value = not significant) 

BACKORDERS 
Variable Beta Std Err Wald Sig. Exp(Beta) 

Average Path Length -6.420 1.150 31.152 *** .002 
Clustering Coefficient -93.508 17.203 29.545 *** .000 
Size of the largest connected component 1.109 .154 51.592 *** 3.031 
Max. distance in largest connected component 2.160 .546 15.679 *** 8.673 
Topology type^ 1.730 .351 24.349 *** 5.643 
Nagelkerke R-square: 0.352; Hosmer and Lemeshow Test (χ2): 4.655  (p-value = not significant) 

TOTAL COST 
Variable Beta Std Err Wald Sig. Exp(Beta) 

Average Path Length -5.056 2.176 5.399 ** .006 
Clustering Coefficient -106.712 36.582 8.509 *** .000 
Size of the largest connected component .954 .291 10.738 *** 2.595 
Max. distance in largest connected component 2.326 1.084 4.602 ** 10.239 
Topology type^ 1.064 .633 2.830 * 2.899 
Nagelkerke R-square: 0.192; Hosmer and Lemeshow Test (χ2): 3.473  (p-value = not significant) 

 
***Significant at p<0.01; **Significant at p<0.05; *Significant at p<0.10 
^Scale-free network is used as a reference for the categorical variable “Topology Type” 
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Table 4: Binary Logistics Regression Analysis Results (Scale-free Networks) 
 

INVENTORY 
Variable Beta Std Err Wald Sig. Exp(Beta) 

Average Path Length -3.588 1.117 10.311 *** .028 
Clustering Coefficient -42.353 11.119 14.508 *** .000 
Size of the largest connected component .702 .129 29.658 *** 2.017 
Max. distance in largest connected component -.122 .511 .057 - .885 
Nagelkerke R-square: 0.219; Hosmer and Lemeshow Test (χ2): 4.638 (p-value = not significant) 

BACKORDERS 
Variable Beta Std Err Wald Sig. Exp(Beta) 

Average Path Length -5.570 1.821 9.351 *** .004 
Clustering Coefficient -87.722 25.477 11.855 *** .000 
Size of the largest connected component .988 .230 18.544 *** 2.687 
Max. distance in largest connected component 1.630 .831 3.845 ** 5.101 
Nagelkerke R-square: 0.245; Hosmer and Lemeshow Test (χ2): 9.011  (p-value = not significant) 

TOTAL COST 
Variable Beta Std Err Wald Sig. Exp(Beta) 

Average Path Length -5.657 4.177 1.835 - .003 
Clustering Coefficient -202.191 102.440 3.896 ** .000 
Size of the largest connected component 1.633 .729 5.019 ** 5.121 
Max. distance in largest connected component 2.136 1.965 1.182 - 8.466 
Nagelkerke R-square: 0.263; Hosmer and Lemeshow Test (χ2): 0.847  (p-value = not significant) 

 
***Significant at p<0.01; **Significant at p<0.05; *Significant at p<0.10 
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Table 5: Binary Logistics Regression Analysis Results (Random Networks) 
 

INVENTORY 
Variable Beta Std Err Wald Sig. Exp(Beta) 

Average Path Length 1.082 1.595 .460 - 2.952 
Clustering Coefficient -35.244 19.811 3.165 * .000 
Size of the largest connected component -.254 .191 1.764 - .776 
Max. distance in largest connected component 1.309 .762 2.949 * 3.703 
Nagelkerke R-square: 0.080; Hosmer and Lemeshow Test (χ2): 10.371 (p-value = not significant) 

BACKORDERS 
Variable Beta Std Err Wald Sig. Exp(Beta) 

Average Path Length -6.981 1.577 19.609 *** .001 
Clustering Coefficient -102.510 23.801 18.551 *** .000 
Size of the largest connected component 1.178 .214 30.174 *** 3.248 
Max. distance in largest connected component 2.647 .777 11.613 *** 14.109 
Nagelkerke R-square: 0.338; Hosmer and Lemeshow Test (χ2): 9.521  (p-value = not significant) 

TOTAL COST 
Variable Beta Std Err Wald Sig. Exp(Beta) 

Average Path Length -5.223 2.668 3.832 ** .005 
Clustering Coefficient -83.064 39.926 4.328 ** .000 
Size of the largest connected component .743 .334 4.955 ** 2.103 
Max. distance in largest connected component 2.827 1.401 4.073 ** 16.891 
Nagelkerke R-square: 0.136; Hosmer and Lemeshow Test (χ2): 4.475  (p-value = not significant) 

 
***Significant at p<0.01; **Significant at p<0.05; *Significant at p<0.10 
  
 
 


