On Bidding Algorithms for a Distributed Combinatorial
Auction

Benito Mendoza* and José M. Vidal

Computer Science and Engineering
University of South Carolina

Columbia, SC 29208
mendoza.usc @gmail.com, vidal@sc.edu

Abstract

Combinatorial auctions (CAs) are a great way to solve complex resource allocation and coor-
dination problems. However, CAs require a central auctioneer who receives the bids and solves
the winner determination problem, an NP-hard problem. Unfortunately, a centralized auction is
not a good fit for real world situations where the participants have proprietary interests that they
wish to remain private or when it is difficult to establish a trusted auctioneer. The work presented
here is motivated by the vision of distributed CAs; incentive compatible peer-to-peer mechanisms
to solve the allocation problem, where bidders carry out the needed computation. For such a
system to exist, both a protocol that distributes the computational task amongst the bidders and
strategies for bidding behavior are needed. PAUSE is combinatorial auction mechanism that natu-
rally distributes the computational load amongst the bidders, establishing the protocol or rules the
participants must follow. However, it does not provide bidders with bidding strategies. This arti-
cle revisits and reevaluates a set of bidding algorithms that represent different bidding strategies
that bidders can use to engage in a PAUSE auction, presenting a study that analyzes them with
respect to the number of goods, bids, and bidders. Results show that PAUSE, along with the afore-
mentioned heuristic bidding algorithms, is a viable method for solving combinatorial allocation
problems without a centralized auctioneer.

Keywords: Multiagent Systems, Combinatorial Auctions, Resource Allocation.

*Corresponding author
11 Westchester Terrace
Annandale, NJ 08801
Tel. 803-447-6303

1 Introduction

Combinatorial auctions (CAs)—auctions that allow bids for bundles of items—provide
a great way of allocating multiple distinguishable items amongst bidders whose per-
ceived valuations for combinations of those items differ [3]. The bundle bidding enabled
by these mechanisms allows bidders to benefit from combining the complementarities
of the items being auctioned and to better express the value of any synergies.

Companies and governments around the world have left behind administered allo-
cation systems, single item auctions, and other ad hoc mechanisms—traditionally used
to sell valuable commodities, solve sourcing problems, or allocate scarce resources—
to take advantage of the power of CAs, maximizing revenue and minimizing cost of
sales [23]]. For example, recently the Federal Communications Commission (FCC) has
raised close to $20 billion in its 700-MHz auction using these mechanisms. CAs have
been fundamentally changing the way valuable resources are sold, allowing the creation
of electronic markets to supplement traditional sales channels like bilateral negotiated
contracts, and also, creating totally new markets for scenarios where there was none
before.

However, CAs require a central auctioneer who receives the bids from the bidders,
carries out the needed computation to solve the winner determination problem (WDP)—
finding the best allocation of items to bidders—and in many cases, gets a commission
for the service [23]. Unfortunately, a centralized auction is not a good fit for real-
world situations where the participants in a resource allocation have proprietary interests
that they wish to remain private and secure—sometimes their bids represent valuable
information like production cost—or when, simply, it is difficult to establish a trusted
auctioneer. In addition, the winner determination problem is NP-hard problem [21], its
complexity grows exponentially with the number of bids and items.

The motivation for the work presented here is the vision of distributed combina-
torial auctions; incentive compatible peer-to-peer mechanisms where the bidders are
the ones who solve the winner determination problem; and consequently, there is no
need for a central auctioneer. For example, imagine a distributed combinatorial eBay—
a Web 2.0 variation on this idea is known as zBay [24]—a distributed electronic market
place where sellers can advertise their goods and buyers can place combinatorial bids
and distributively find near optimal clearings. A more detailed example is a distributed
combinatorial reverse auction in a B2B scenario—an auction used for buying instead
of selling where the roles of buyers and sellers are reversed. Computer manufacturers
(the buyers) publish their requirement for computer components such as memory chips,
hard drives, processors, and mother boards. Computer component manufacturers (the
sellers) develop agents which try to sell their particular goods by placing combinatorial
bids to satisfy the buyers demands. Imagine that, in a first round, the sellers place bids
for the items they want to sell. After that, the initial bids are disclosed to all the sellers.
Then, they have the task of finding an allocation or deal (a set of bids) that satisfies all

2

the requirements of the buyers. Thus, using his own and other seller’s bids, each seller
agent searches for a set of bids for which they can get some utility, while satisfying
buyers’ requirements, and propose it as a deal. Notice that if the deals accepted by the
buyer do not include a bid from a given agent, this agent gets zero utility. Thus, seller
agents have to negotiate (indirectly) by proposing new bids or adjusting the price of
their current ones to create deals where they maximize their own utility and at the same
time reduce the price the buyer has to pay.

A system using the above described mechanism can also effectively and distribu-
tively calculate the solution to complex coordination problems. For such a system to
exist, both a protocol that distributes the computational task amongst the bidders and
strategies for bidding behavior are needed [17]. The PAUSE (Progressive Adaptive User
Selection Environment) mechanism [10, [11] is an increasing price combinatorial auc-
tion that naturally distributes the problem of winner determination amongst the bidders
in such a way that they have an incentive to perform the calculation. Thus, the task of the
auctioneer is reduced to simply making sure that the bidders follow the rules established
by PAUSE. It can even be envisioned to completely eliminating the auctioneer and, in-
stead, have every agent perform the task of the auctioneer. A system implementing a
PAUSE auction, would achieve much more efficient allocations than would be possible
with sequential or simultaneous single item auctions—some of the approaches used to
solve combinatorial auctions in a distributed way [7]—with no need to rely in a central
auctioneer, with no need for the bidders to reveal their true valuations, and eliminating
the exposure problem—the problem of exposing the bidders to the possibility that they
will win some, but not all the items they desire [2].

PAUSE, as an auction mechanism, establishes the protocol or rules the participants
must follow. However, it is not concerned with how the bidders determine what they
should bid, that is, it does not provide a bidding strategy. In addition, little is known
about the performance of the PAUSE auction under different type of problems or bids
distributions. In [15, [16]], a set of bidding algorithms, representing different bidding
strategies that bidders can use to engage in a PAUSE auction, where introduced. This
article presents a study that analyzes the scalability of those algorithms with respect
to the number of goods, bids, and bidders. It also compares the revenue, the allocative
efficiency, and the bidders’ expected utility of the allocation found by PAUSE with those
of the revenue-maximizing solution—as found by CASS [4], a well known centralized
winner determination algorithm. The results of this study show that the PAUSE auction
along with the developed heuristic bidding algorithms is a viable method for solving
combinatorial allocation problems without the use a centralized auctioneer.

2 Related Work

Although the research of various aspects of combinatorial auctions is vast (for a good
review, [3] is recommend), the study of distributed winner determination algorithms for
combinatorial auctions is still relatively new. One way of distributing the WDP among
the bidders is provided by the Virtual Simultaneous Auction (VSA) [4] which is based
on market-oriented programming ideas [26]. The VSA assumes the bids themselves
perform the computation. It is an iterative algorithm where successive auctions for the
items are held and the bidders change their bids based on the last auction’s outcome.
The auction is guaranteed to find the optimal solution when the bidding terminates. Un-
fortunately, there is no guarantee that bidding will terminate and experimental results
show that in most cases bidding appears to go on forever. Another approach consists of
the algorithms for distributing the WDP in combinatorial auctions presented in [17], but
these algorithms assume the computational entities are the items being sold and thus end
up with a different type of distribution. In [19] the authors present a distributed mecha-
nism for calculating VCG payments in a mechanism design problem. Their mechanism
roughly amounts to having each agent calculate the payments for two other agents and
give these to a secure central server which then checks to make sure results from all
pairs agree, otherwise a re-calculation is ordered. This general idea, which they call
the redundancy principle, could also be applied to our problem but it requires the ex-
istence of a secure center agent that everyone trusts. Another interesting approach is
given in [18] where the bidding agents prioritize their bids, thus reducing the set of bids
that the centralized winner determination algorithm must consider, making the problem
easier. Finally, in the computation procuring clock auction [1]] the agents are given an
ever-increasing percentage of the surplus achieved by their proposed solution over the
current best. As such, it assumes the agents are impartial computational entities, not the
set of possible buyers as assumed by the PAUSE auction.

Approximate algorithms are one way to tackle the complexity of the WDP. One of
the simplest methods is the greedy algorithm described in [12]. This greedy algorithm
has been used to speed up an iterative combinatorial auction (which is also multistage
auction) with noteworthy results [20]. In this work it is also suggested that with slightly
less greedy strategy, approximate algorithms will give even further performance im-
provements to this kind of auctions. [27] presents an approximate algorithm to solve
the WDP combining linear programming, a sequence of greedy algorithms, and hill-
climbing to generate local improvements in the order of bids. In [8] different heuristics
for sorting the bids are considered. Other meta-heuristics have been applied to improve
the quality of the solutions, amongst them, a simulated annealing [S]] and the stochas-
tic local search technique [9]] bringing some improvements in speed and quality of the
solution’s.

3 The PAUSE Auction

A PAUSE auction for m items has m stages. Stage 1 consists of having simultaneous
ascending price open-cry auctions and during this stage the bidders can only place bids
on individual items. At the end of this stage it is known what the highest bid for each
individual item is and who placed that bid. Each successive stage k = 2,3,...,m
consists of an ascending price auction where the bidders must submit bidsets that cover
all items but each one of the bids must be for k items or less. The bidders are allowed
to use bids that other agents have placed in previous rounds when building their bidsets,
thus allowing them to find better solutions. Also, any new bidset has to have a sum
of bid prices which is bigger than that of the currently winning bidset. At the end of
each stage k all agents know the best bid for every subset of size £ or less. Also, at any
point in time after stage 1 has ended there is a standing bidset whose value increases
monotonically as new bidsets are submitted. Since in the final round all agents consider
all possible bidsets, it is known that the final winning bidset will be one such that no
agent can propose a better bidset. Note, however, that this bidset is not guaranteed to be
the one that maximizes revenue since this is an ascending price auction so the winning
bid for each set will be only slightly bigger than the second highest bid for the particular
set of items. That is, the final prices will not be the same as the prices in a traditional
combinatorial auction.

The PAUSE auction makes the job of the auctioneer very easy. All it has to do is
verify that each new bidset has a revenue bigger than the current winning bidset and
that every bid in an agent’s bidset that is not its does indeed correspond to some other
agents’ previous bid. The computational problem shifts from one of winner determi-
nation to one of bid generation. Each agent must search over the space of all bidsets
which contain at least one of its bids. The search is made easier by the fact that the
agent needs to consider only the current best bids and only wants bidsets where its own
utility is higher than in the current winning bidset. Each agent also has a clear incentive
for performing this computation, namely, its utility only increases with each bidset it
proposes (of course, it might decrease with the bidsets that others propose). Finally, the
PAUSE auction has been shown to be envy-free in that at the conclusion of the auction
no bidder would prefer to exchange his allocation with that of any other bidder [11].

It can even be envisioned to completely eliminating the auctioneer and, instead, have
every agent perform the task of the auctioneer. That is, all bids are broadcast and when
an agent receives a bid from another agent it updates the set of best bids and determines
if the new bid is indeed better than the current winning bid. The agents would have an
incentive to perform their computation as it will increase their expected utility. Also,
any lies about other agents’ bids are easily found out by keeping track of the bids sent
out by every agent (the set of best bids). Namely, the only one that can increase an
agent’s bid value is the agent itself. Anyone claiming a higher value for some other
agent is lying.

4 Problem Formulation: Bidding in the PAUSE Auction

In the PAUSE auction the bidders are the ones who carry out the computation for finding
the allocation. Their job is to find the set of bids that form a valid solution (bidset) and
that maximizes their utility. The agents maintain a set B of the current best bids, one
for each set of items of size < k, where k is the current stage. At any point in the
auction, after the first round, there will also be a set W C B of currently winning bids.
One restriction on the PAUSE auction is that the union of the items of all the currently
winning bids should be equal to the set that contains all the available items. Thus, W/
is a set of bids that covers all the items and currently maximizes the revenue, where the
revenue () of IV is given by

r(W) = P, (1)
beW
Agent i’s value function is given by v;(S) € R where S is a set of items. Given an
agent’s value function and the current winning bidset W the agent’s utility from W is
calculated as

w(W) = Y 0l — pPrie,)
beW | bagent=;
That is, the agent’s utility for a bidset W is the value it receives for the items it wins in
W minus the price it must pay for those items. If the agent is not winning any items
then its utility is zero.

The goal of the bidding agents in the PAUSE auction is to maximize their utility,
subject to the constraint that their next set of bids must have a total revenue that is at
least e bigger than the current revenue, where ¢ is the smallest increment allowed in the
auction. Formally, given that 11/ is the current winning bidset, agent ¢ must find a g;
such that

g7 = argmaxu;(g;), (3)
2

gC28
where each g; is a set of bids that covers all items, 7(g;) > (W) + ¢, and V¢, (b € B)
or (b€ = j and bP > B(bi*™) and [b'™|) < k), and B(b"™) is the value of the bid
in B for the set 5™ (if there is no bid for those items it returns zero). That is, each bid
b in g must satisfy at least one of the two following conditions:

1. bis already in B,
2. bis a bid of size less than or equal to £ in which the agent ¢ bids higher than the
price for the bid in B for the same items.

The only thing missing is an algorithm that bidder agents can use to calculate their
utility-maximizing bidset, g, for each agent. The next section presents a set of bidding
algorithms for the PAUSE auction.

PAUSEBID(7, k)
1 my-bids <

2 their-bids <+ ()

3 forbe B

4 do if b = § or v, (b'™S) > pPrice

5 then my-bids < my-bids +new Bid(b"™ i, v;(b"™))

6 else their-bids < their-bids +b

7 for S € subsets of k or fewer items such that v;(.S) > 0 and —Jpcgb"™ = S
8 do my-bids <— my-bids +new Bid(S, i, v;(.5))

9 bids < my-bids + their-bids
10 g*« 0 > Global variable
11 w* < u;(W) > Global variable
12 PBSEARCH(bids, (), k)
13 g* < DISTRIBUTEPAYMENTS(i, g*)
14 return g*

Figure 1: The PAUSEBID algorithm which implements a branch and bound search. 7 is
the agent and £ is the current stage of the auction, for & > 2.

S Bidding Strategies

The first stage of a PAUSE auction consists of several English auctions, where the bid-
ders submit bids on individual items. In this case, an agent’s best response is to bid €
higher than the current winning bid until it reaches its valuation for that particular item.
The algorithms presented here focus on the subsequent stages: £ > 1. When k£ > 1, the
agents have to find ¢;/. This can be done by performing a complete search on 5. How-
ever, this approach is computationally expensive since it produces a large search tree.
These algorithms represent alternative strategies to overcome this expensive search.

5.1 PAUSEBID, a myopic-optimal bidding algorithm

In the PAUSE auction, a myopic-optimal utility-maximizing bidding strategy guarantees
to find the bidset that maximizes the agent’s utility given the set of outstanding best
bids B at any given time (if one exist), without considering possible future bids. The
PAUSEBID algorithm implements this strategy [15]].

The PAUSEBID algorithm (shown in Figure [I)) uses a branch and bound technique
to prune the search tree. Given that bidders want to maximize their utility and that at
any given point there are likely only a few bids within B which the agent can dominate,

PAUSEBID starts by defining my-bids to be the list of bids for which the agent’s valu-
ation is higher than the current best bid, as given in B. It sets the value of these bids
to be the agent’s true valuation—but the agents won’t necessarily be bidding their true
valuation, as explained later. Similarly, the algorithm sets their-bids to be the rest of
the bids from B. Finally, the agent’s search list is simply the concatenation of my-bids
and their-bids. Note that the agent’s own bids are placed first on the search list as
this will enable us to do more pruning (PAUSEBID lines [3| to [0). The agent can now
perform a branch and bound search on the branch-on-bids tree produced by these bids,
implemented by PBSEARCH (Figure [2).

The bound PAUSEBID uses is the maximum utility that the agent can expect to re-
ceive from a given set of bids. It is called u*. Initially, u* is set to u;(1/') (PAUSEBID
line [T1]), where W is the current winning bidset, since that is the utility the agent cur-
rently receives and any solution he proposes should give him more utility. If PBSEARCH
ever comes across a partial solution where the maximum utility the agent can expect to
receive is less than u* then that subtree is pruned (PBSEARCH line 20). The maximum
utility can be determined only after the algorithm has searched over all of the agent’s
own bids (which are first on the list) because after that it is known that the solution will
not include any more bids where the agent is the winner thus the agent’s utility will no
longer increase. The calculation of the minimum payment is shown in line [I§] for the
partial solution case and line [§ for the case where having a complete solution in PB-
SEARCH. Note that in order to calculate the min-payment for the partial solution case
it is needed an upper bound on the payments that the agents must make for each item.
This upper bound is provided by

bprice

() Z{beBH\l;ag)gitems} |b1tems’ ()

seS

This function produces a bound identical to the one used by the Bidtree algorithm [22]—
it merely assigns to each individual item in S a value equal to the maximum bid in B
divided by the number of items in that bid.

To prune the branches that cannot lead to a solution with revenue greater than the
current W, the algorithm considers both the values of the bids in B and the valuations
of the agent. Similarly to (4))

hi(S, k) = Z {s| s))

!
poye s€S'Av; (87)>0A|S7|<k} |S ’

is defined. Which assigns to each individual item s € .S the maximum value produced
by the valuation of S’ divided by the size of S’, where S’ is a set of items for which the
agent has a valuation greater than zero, contains s, and its size is less or equal than k.
The algorithm uses the heuristics & and h; (lines[14]and [18]of PBSEARCH), to prune the

PBSEARCH(bids, g, k)
1 if bids = () then return

2 b« first(bids)
3 g«g+0
4], + itemsnotin g
5 if g does not contain a bid from ¢
6 then return
7 if g includes all items
8 then min-payment < max(0,7(W) + € — (r(g) — ri(9)), Dpey | preen; B(bitems))
9 maz-utility < v;(g) — min-payment
10 if r(g) > r(W) and maz-utility > u*
11 then g* + ¢
12 u* <— mazx-utility
13 PBSEARCH(bids, g — b) > b is Out
14 else maz-revenue < 1(g) + max(h(I,), hi(I,, k))
15 if maz-revenue < r(W)
16 then PBSEARCH(bids, g — b) > b is Out
17 elseif p*&™ £ ¢
18 then min-payment < (r(W) +¢€) — (r(g) — r:i(g)) — h(1,)
19 mazx-utility < v;(g) — min-payment
20 if maz-utility > u*
21 then PBSEARCH({z € bids | 2™ N "™ = 0}, g) > bis In
22 PBSEARCH(bids, g — b) I> b is Out
23 else
24 PBSEARCH({x € bids | "™ N b =} g) > bis In
25 PBSEARCH(bids, g — b) >> b is Out
26 return

Figure 2: The PBSEARCH recursive procedure where bids is the set of available bids
and g is the current partial solution.

just mentioned branches. A final pruning technique implemented by the algorithm is
ignoring any branches where the agent has no bids in the current answer g and no more
of the agent’s bids are in the list (PBSEARCH lines[5]and [6).

The resulting g* found by PBSEARCH is thus the set of bids that has revenue bigger
than (/) and maximizes agent ¢’s utility. However, agent i’s bids in ¢g* are still set to
its own valuation and not to the lowest possible price. If the agent has only one bid b
in g* then it is simply a matter of reducing the price of that bid (b"°) by u* from the

DISTRIBUTEPAYMENTS (4,)

1 surplus — Zbeg|bagem:i bPrice o B<bitems)

2 if surplus > 0

3 then min-payment < max(0,7(W) + € — (r(g) — ri(9)), 2pey| preen B(b*ems))
4 forb € g| b =

5 do if min-payment < 0

6 then bP1i¢ < B(pems)
7
8

bpricc -B (bitcms)
surplus

else b7 < B(b'™) + min-payment -
return g

Figure 3: The DISTRIBUTEPAYMENTS function distributes the payments of the bids
agent ¢, included in g, proportionally to the agent’s true valuation for each set of items.

agent’s true valuation (5P = v, (b"™) — u*). However, if the agent has more than
one bid then it faces the problem of how to distribute its payments among these bids.
Although, there might be many ways of distributing the payments, there does not appear
to be a dominant strategy for performing this distribution. Thus, it has been chosen to
distribute the payments in proportion to the agent’s true valuation for each set of items.

The function DISTRIBUTEPAYMENTS, shown in Figure 3] is responsible for setting
the agent’s payments so that it can achieve its maximum utility «*, by following the
above mentioned approach. It first calculates the agent’s surplus from the bids in g
(line [I). If the surplus is zero, there is nothing to do, since the price of the bids cannot
be reduced. However, if the bidder has a surplus, the minimum amount the agent has to
pay (min-payment) in order to satisfy the revenue restriction (the minimum increment
for r(W) has to be ¢) is calculated (line 3). The min-payment is the maximum value
among zero, the difference between the revenue restriction (7(WW) 4 €) and the amount
of the revenue paid from other agents (r(g) — r;(g)), and the sum of the current prices
of the agent’s bids (3| yueen; B (b®™)). Finally, if the min-payment is less or equal
than zero then all the bids are set to B(b"“™), the current highest price (line @), otherwise
the price of each bid is set proportional to the bid’s surplus (line [7).

Notice that distributing the agent’s payments proportionately to the agent’s valuation
for that set of items has the unfortunate effect of revealing, to some extent, the agent’s
true relative valuation for the items. For example, if an agent increases his bids for
two sets of items, but his increase for the first set is much greater than for the second
set then it can be deduced that the agent valuates the first set much higher than the
second. This knowledge could then, perhaps, be used by a strategic agent to place his
own bids. However, based on previous work on agent modeling [23], it is believed, that
such strategic thinking will incur in large computational costs and will deliver small

10

utility gains. But, even if this belief proves wrong, it is a simple matter of changing the
surplus distribution method to include some randomness. Of course, even with random
distributions, the fact that an agent increases the his bid for certain subsets of items
is still a clear signal that its valuation of those subsets is higher than the current price
(perhaps, a lot higher?). An opponent might be able to use this knowledge to make
better decisions about which sets of items he should bid on.

Because of these strategic issues it cannot be claimed that the PAUSEBID strategy is
a dominant strategy: the best strategy to use regardless of the other agents’ strategies.
However, we it can be claimed that at each time it is called it returns the bid that max-
imizes the agent’s utility while still having a revenue greater than the current solution
and increasing the agent’s utility over the one it is currently receiving.

5.2 GREEDYPAUSEBID, an approximate bidding algorithm

Approximate algorithms forgo optimality in favor of heuristics and simple local searches
which deliver a solution very quickly. The approximate bidding algorithm presented
here is based in strategies used by a well-known approximate algorithm for solving the
WDP for centralized CAs, the greedy algorithm described in[12]. The greedy algorithm
is a very simple linear time algorithm and can be summarized into two steps.

1. The bids are sorted by b /|p*™$|¢ for some number ¢, 0 < ¢ < 1. The authors
showed that ¢ = 0.5 is the approximate best value, it guarantees an approximation
ratio of at least /m, where m is the number of goods.

2. Proceed down the sorted list of bids accepting bids if the goods in demand are still
unallocated and not conflicted, where bids b; and by, conflict if bi™ N bie™ # ().

The GREEDYPAUSEBID algorithm (Figure 4) implements the idea discussed above
maximizing the bidder’s utility, instead of the seller’s revenue, under the condition that
the resulting revenue has to be greater or equal than (1) 4 €. It starts by defining
my-bids to be the list of bids for which the agent’s valuation is higher than the current
best bid, as given in B. As in PAUSEBID, it sets the value of these bids to be the agent’s
true valuation. Similarly, it sets their-bids to be the rest of the bids from B. If my-bids
is empty, there is no bid that the agent can dominate at this time and the algorithm ends.
The function SORTFORGREEDY (called in lines[I2]and [I6)) sorts the list of bids received
as first parameter by bPic¢ /|bi*™ | After my-bids is sorted, it takes the first bid and add
it to the initial bidset g, to make sure that the solution includes the bid from my-bids with
the highest rank. Finally, to complete the allocation containing all the items, the agent’s
search list is simply the concatenation of their-bids and the rest of my-bids sorted again
by the same criteria (lines [16] and [I5] respectively). After it finishes walking down the
bids list, it has an allocation g. However, agent 7’s bids in g are still set to his own
valuation and not to the lowest possible price. If r(g) < r(W) + ¢, then the algorithm

11

GREEDYPAUSEBID (4, k, ¢)

1 my-bids <
2 their-bids <+ ()
3 forbe B
4 do if p*" = § or v; (™) > pPrice
5 then my-bids < my-bids +new Bid(b"™ i, v;(b"™))
6 else their-bids < their-bids +b
7 for S € subsets of k or fewer items such that v;(.S) > 0 and —Jpcpb"™ = S
8 do my-bids <— my-bids +new Bid(S, i, v;(.5))
9 g« 0
10 if my-bids = ()
11 then return g
12 my-bids < SORTFORGREEDY (my-bids, c)
13 b < first(my-bids)
14 g«g+0
15 bids < their-bids +rest(my-bids)
16 bids < SORTFORGREEDY (bids, ¢)
17 while bids # ()

18 do b « first(bids)

19 bids < rest(bids)

20 I, < itemsin g

21 ifoe™ NI, =0

22 theng < g+0

23 bids < {x € bids | 2™ N bims = ()}
24 ifr(g) >r(W)+e

25 then g < DISTRIBUTEPAYMENTS(g)
26 if u;(g) < u;(W)

27 then g < ()

28 else g+ 0

29 return g

Figure 4: The GREEDYPAUSEBID algorithm returns an empty bidset if the solution it
finds does not improve the utility of bidder ¢. c is the bids sorting factor and £ is the
current stage of the auction, for £ > 2.

12

ends. Otherwise (when r(g) > r(WW)+¢), it calls the procedure DISTRIBUTEPAYMENTS
with ¢ as parameter (line 25]), the same method used by PAUSEBID. After distributing
the payments of g the algorithm ends by returning g if the utility that the agent receives
from g is greater than that it gets from IV, otherwise it returns an empty bidset.

5.3 The GREEDYPAUSEBID+HILL algorithm

A simple extension to the greedy approach consists of using a local search algorithm that
continuously updates the initial allocation found by the greedy algorithm [6], thus lo-
cally searching in the remaining bids to improve the solution. This idea is implemented
in the GREEDYPAUSEBID+HILL algorithm. This algorithm starts with the solution pro-
vided by GREEDYPAUSEBID and then explores the neighborhood of that solution, using
a simple hill climbing, looking for allocations that generate a higher utility for the bid-
der. It consist of two main steps:

1. Call GREEDYPAUSEPID algorithm with appropriate input and ¢ = 0.5.

2. If the solution g returned by GREEDYPAUSEBID is not empty then call HILL-
CLIMBING with bids = my-bids + their-bids sorted by c.

After having an algorithm that can find ¢, it would be of great interest to analyze
the solutions that this algorithm and the PAUSE auction generate. It would be also
interesting determining how long it would take for populations of agents using this
algorithm to arrive at a solution, as well as quantifying the bidders expected utility of this
solution. Also it would be interesting to know if the agents in a PAUSE auction arrive
at the revenue-maximizing solution. The following sections present a set of metrics and
the results of an experimental analysis of all this interesting points.

6 Experimental Setup

The goal of the experimental analysis presented here is to observe the computational
scalability and the efficiency of the PAUSE auction in different economic scenarios
or problems, when bidders use the bidding algorithms presented in previous sections.
Thus, it aims to identify the type of problems where the PAUSE auction is more suit-
able. In general, the time required to solve the WDP is tied to the number of bids and
goods in the auction. In the PAUSE auction there is one more factor involved, the num-
ber of bidders; since bidders are the ones that actually solve the problem. Using several
combinations of these factors, the experiment tests the three bidding algorithms under
four different problems obtained from CATS, as shown in Section @ CATS, described
in Section [6.1] is a generator of combinatorial auction instances widely used as testbed

13

for winner determination algorithms [13]]. Finally, using the metrics explained in Sec-
tion the solutions obtained by this experiment are analyzed from different points of
view—the seller’s, the buyer’s, and the designer’s point of view.

6.1 Economic distributions

The Combinatorial Auction Test Suite (CATS) [13]] features five bid distributions that
represent instances of problems from realistic, economically motivated domains, as well
as a collection of artificial distributions that have been widely used in the literature. In
[14] an empirical experiment shows that solving the WDP with some bid distributions
is harder than with others; in their experiment they use a centralized method based on
a linear programing solver. The same job presents a classification of ten of the CATS’
distributions by gross hardness, which corresponds to the running time required to solve
the WDP. Four of the ten CATS distributions were carefully selected to conduct this
experiment, making sure to cover the whole spectrum of hardness.

o Scheduling (Temporal Adjacency). The motivation of this distribution is the
problem of distributed job-shop scheduling with one resource. This represents
problems where the bidders want to use the resource for a given number of time
units. They have one or more deadlines with different values for them. It is
assumed that all jobs are eligible to start in the first time-slot and each job is allo-
cated continuous time on the resource. This bid distribution is the second easiest
amongst all the CATS distributions and allows to place X OR bids.

o L2 (weighted random). An artificial distribution with no economic motivation.
The level of gross hardness of this distribution is in the middle of the whole gross
hardness spectrum.

o Arbitrary (arbitrary relationships). The motivation of this distribution is the
type of problems where the goods do not give rise to a notion of adjacency, but
regularity in complementarity relationships can still exist, for example, physical
objects like collectables, semiconductors, etc. This distribution has the third place
in gross hardness amongst all the CATS distributions and allows X O R bids.

e L3 (uniform). This is another artificial distribution, no economic motivation, and
is the hardest to solve amongst all the CATS distributions.
6.1.1 Using CATS files to feed the decentralized combinatorial auction

CATS was created to test centralized algorithms that find the winning bidset in combina-
torial auctions. These algorithms ignore the identity of the bidders, focusing instead on
the bids. Their goal is to find the allocation of items to bidders that maximizes revenue

14

goods 5

bids ©
durmy 2 Bid Price

/ Assigned to Bidder 0
0 275.643 0 1 2 3 4 #}—
1 156.029 1 3 4 5 # . :
> 194.279 0 3 4 5 4 }\ Assigned to Bidder 1
3 170.399 0 4 # }\ . .
4 203.440 0 2 3 o6 # Assigned to Bidder 2
5 198.771 1 2 3 6 #

= \’\ - Assigned to Bidder 3
Bid ID Items on bid

Figure 5: An example of the content of a CATS file and how it has been used. It contains
six bids enumerated from O to 5; five items, from O to 4; and two dummies, 5 and 6.

regardless of who placed those bids. For this reason, CATS does not identify the bidder
that placed the bid, nor does provides with the bidder’s utility function, it only includes
a bid id, the price of the bid, and the set of items in the bid. To implement a PAUSE
auction it is needed to know every bidder’s valuations. In order to use a CATS file in
the PAUSE auction testbed without changing the economic distribution, it is necessary
to assign each bid from the file bid to a different bidder, except when the bids are XOR
bids. The XOR bids in the CATS file include an easily identifiable dummy item. All
bids with the same dummy item are assigned to one bidder. In addition, CATS does not
offer a direct way to control the number of bidders. The only way to do this is by gener-
ating a file and then check how many bidders can be obtained. For instance, if 100 runs
with 10 bidders are needed, a number much bigger than 100 problem instances have to
be generated; throwing out all those instances having a number of bidders different than
10. Figure [5|shows an example of a CATS file and how it was used to create a data set
for the experiments presented here.

6.2 Metrics

In order to determine the scalability of the PAUSE auction using the bidding algorithms
previously introduced, the running time required to clear an auction is analyzed. Know-

15

ing how the PAUSE auction scales based on the bidding strategy is of interest not only
to the seller and the buyer, but also the auction designer.

In an auction the seller wants to maximize the revenue. Thus, the revenue generated
by the PAUSE auction is compared to the maximum possible revenue for that auction—
assuming truthful bidding, the way in which CATS is usually used to evaluate algorithms
to solve the WDP. This is done by calculating a revenue ratio.

revenueRatio(Wy) = T(WS), (6)

¥

where 7* is the optimal revenue, which was obtained by using the Combinatorial Auc-
tions Structured Search (CASS) algorithm [4], and 7(W;) = >,y bPrice is the revenue
generated by the allocation W, found by the PAUSE auction using bidding strategy s.
It is known beforehand that the prices paid in PAUSE are lower than those paid in a
centralized first price sealed-bid combinatorial auction when assuming truthful bidding,
because PAUSE is an English auction. Thus, the prices paid are roughly the second
highest price plus some e—the minimum bid increment allowed in the auction. In the
experiments € is set to be 1.

A designer would be interested also in the (allocative) efficiency of the solutions
found by the PAUSE auction. The revenue-maximizing solution is efficient since the
bidders with highest valuation (paying higher) are the ones that win the items. In order
to compare the efficiency, the efficiency ratio is defined as the ratio of the sum of the
valuations of the winning bidders for the bids they win to the maximum revenue.

1items
efficiencyRatio(Wy) = ZbGWS U (b), (7)

r*

where Vgaeen (b™) € R is the valuation that the bidder 5™, the winner of bid b, has
for items b'™s, It gives the efficiency of the allocation W, found by PAUSE using the
bidding algorithm s as compared to r*, the optimal revenue. A ratio of 1 means that the
PAUSE solution has allocated the items to the same buyers that they are allocated to in
the revenue-maximizing allocation—or at least to a set of buyers with the same sum of
valuations.

When assuming truthful bidding in a centralized first price sealed-bid auction the
winners pay their true valuation, thus their utility is zero. In the PAUSE auction, the
bidders’ utility can be greater than zero, since as mentioned before, the winners end
up paying less, given that PAUSE is an increasing price auction. When considering
whether or not to participate in a PAUSE auction, bidders would be more interested in
knowing the expected utility from switching to the PAUSE auction or, more precisely,
the expected utility of choosing amongst the different bidding algorithms. Thus, the
bidders’ expected utility ratio is calculated by dividing the sum of the bidders utility

by 7.
U pagent b
expectedUtility Ratio(Wy) = 2Lovew, U), 3)

%

16

Bidders Bids Goods
for Bidders* | (4 to 10) 20 10
for Bids 5 (12-20) 10
for Goods 5 20 (10 to 15)

Table 1: Combination of parameters used to create the data set for each one of the
CATS distributions described in the previous section. *xThe number of bidder cannot
be manipulated in the L2 and L3 distributions, in these cases the number of bidders is
equal to the number of bids.

where wpeen () = Upagent (V™) — B i the utility obtained by bidder %", who is
wining bid b; and as before, WW; is the allocation found by PAUSE using the bidding
algorithm s and 7* is the optimal revenue.

6.3 Experimental settings

The experiments presented here consist of combinations of the parameters mentioned at
the beginning of this section. A dataset for each one of the CATS distribution mentioned
above was created. Each data set contains 100 bid files or auctions for some combina-
tions of number of bidders, bids, and goods. Table m shows the combinations used in the
experiments. To analyze the effect of one variable the value of the other two was fixed.

For each bidding strategy, a PAUSE auction over each distribution was carried out.
It is important to remember that in each auction all the bidders use the same bidding
algorithm. The experiments where carried on in an SGI Altix 4700 with 128 Itanium
Cores @ 1.6 GHz/8MB Cache and 256 GB of RAM (shared-memory system).

7 Results

In this section, the findings of the experiments are shown. The average value of each
one of the metrics mentioned before is calculated and plotted for its analysis.

7.1 Time

To exactly determine how the running time of each bidding strategy increases, a regres-
sion analysis was carried out. The curve of the corresponding running time is calculated
as,

y=bxm", 9)

where the dependent variable y (average time in this case) is a function of the indepen-
dent variable x under analysis (the number of bidders, bids, or goods), b is the slope

17

Distribution | Bidding Algorithm m b
PAUSEBID 1.115 | 1848.56

Arbitrary | GREEDYPAUSEBID 1.094 2.682
GREEDYPAUSEBID+HILL | 1.087 | 24.738
PAUSEBID 2.718 6.474

Scheduling | GREEDYPAUSEBID 1.381 0.208
GREEDYPAUSEBID+HILL | 1.374 2.413

Table 2: The slope coefficient b and the intercept coefficient m, obtained by logarithmic
regression, that describe the curve of average time for each bidding strategy as a function
of the number of bidders, under different CATS distribution.

. Arbitrary . Scheduling
10 ——— 10 —
INAPAUSEBID AAPAUSEBID
5 @-@GREEDYPAUSEBID 5 @-@GREEDYPAUSEBID A
100 oo E-EGREEDYPAUSEBID+HILL [§ 10° | M=EGREEDYPAUSEBID+HILL [e
@ L0% fr o] 100 pe T
g A A A B A 27 A
- 3 i 3L A i
o 10 10 &
£ A
TL0% 1 10°} .
g g——a———a——-
2
00 oo 1 10%¢ 1
101 L L L L L L L 101 L L L L L !

Bidders Bidders

Figure 6: Average Time as a function of the number of bidders in the auction. For the
arbitrary and scheduling distributions. The number of goods and bids is fixed to 10 and
20 respectively.

coefficient and m is the intercept coefficient. The m value is a base corresponding to
the exponent x, and b is a constant value. When m is 1, the corresponding curve grows
up linearly on steps of b. When m is less than 1 the curve will decrease. Thus, a curve
having an m much bigger than 1 indicates an exponential increment.

The first test looks at the running time needed to clear an auction as a function of
the number of bidders, as shown in Figure[6] In the arbitrary distribution the number of
bidders does not significantly affect the running time. The time remains linear for all the
algorithms. On the other hand, in the scheduling distribution, the number of bidders has
a stronger effect over the running time, with PAUSEBID being the most affected since its

18

10° -

Avg. time (secs)

107

Arbitrary

Scheduling

L2

L3

f[A APAUSEBID
@-@GREEDYPAUSEBID
M- GREEDYPAUSEBID +HILL

A"APAUSEBID i

@-@GREEDYPAUSEBID

EHEGREEDYPAUSEBID+HILL
e

ACNTE AN

A APAUSEBID i
@-@GREEDYPAUSEBID
-l GREEDYPAUSEBID+HILL

>

A APAUSEBID
@-®GREEDYPAUSEBID
B-BIGREEDYPAUSEBID+HILL

12 14 16 18 20
Bids

16 18
Bids.

12 14 20

16 20
Bids

12 14 18

12 14 16 18 20

Bids

(a) Average Time as a function of the number of bids (the number of goods and bidders is fixed to 10 and
5 respectively)

Arbitrary

Scheduling

L2

10°

L3

prmeges Lo
& & & g

Avg. time (secs)

-
£

A

10°

10° 1

AAPAUSEBID
@-@GREEDYPAUSEBID A
BHEGREEDYPAUSEBID+HILL |

A

A

10°

1 10

A APAUSEBID
@-@GREEDYPAUSEBID
BHBGREEDYPAUSEBID+HILL

10% +

10’

A APAUSEBID
@-@GREEDYPAUSEBID
B-BGREEDYPAUSEBID+HILL

A APAUSEBID
@-@GREEDYPAUSEBID
BHBGREEDYPAUSEBID+HILL

10°

102 b

—————

10°

10% b

1 102k

A

S -

100 b

-o—o—0—0—0—

10t |

10t |

10°

o—e— o ¢

H
<
©

0 11 12 13

Goods

14 15

16

10°

9

0 11 12 13

Goods

14 15 16

10°

9

0 11 12 13

Goods

14 15 16

9

0 11 12 13 15 16

Goods

14

(b) Average Time as a function of the number of goods (the number of bids and bidders is fixed to 20 and
5 respectively)

Figure 7: Average Time for each distribution as a function of the bids and goods in the
auction. In the L2 and L3 distributions the number of bidders is the same as the number
of bids.

curve grows exponentially. As shown in Table [2]its corresponding intercept coefficient
m is greater than 2. However, the time remains linear for the greedy algorithms. For
these algorithms, it is easier to solve the problem in the scheduling distribution than in
the arbitrary distribution. For PAUSEBID it is the opposite—the arbitrary distribution
is easier than the scheduling distribution. The slope of its corresponding curve in the
scheduling distribution is much bigger, and although with few bidders (3-7) the time is
low, it soon becomes higher.

Figure |/| shows the average running time as function of the number of bids and
goods. In general, the number of bids does not affect the running time of the greedy al-
gorithms, whose curve remains linear. As shown in Table[3] the corresponding intercept
coefficient m is close to 1 and in some cases less than that. The number of bids affects
the PAUSEBID running time in the arbitrary distribution, although this effect is not as
big as the one provoked by the number of goods. It is interesting that the running time
of PAUSEBID in L3 drops as the number of bids increases, this phenomenon is discussed
later. The number of goods has an exponential effect over the running time of PAUSEBID
in all the distributions. Table 4] shows that its corresponding intercept coefficient m is
around 2—which indicates an exponential growth.

19

Distribution | Bidding Algorithm m b
PAUSEBID 1.191 82.713
Arbitrary | GREEDYPAUSEBID 1.028 2.393
GREEDYPAUSEBID+HILL | 1.040 16.445
PAUSEBID 1.034 | 486.593
Scheduling | GREEDYPAUSEBID 0.998 1.338
GREEDYPAUSEBID+HILL | 1.026 8.832
PAUSEBID 1.079 | 82.0315
L2 GREEDYPAUSEBID 1.065 2.792
GREEDYPAUSEBID+HILL | 1.082 | 17.0171
PAUSEBID 0.887 | 1743.058
L3 GREEDYPAUSEBID 0.931 26.187
GREEDYPAUSEBID+HILL | 0.968 | 138.530

Table 3: The slope coefficient b and the intercept coefficient m, obtained by logarithmic
regression, that describe the curve of average time for each bidding strategy as a function

of the number of bids, under different CATS distribution.

Distribution | Bidding Algorithm m b
PAUSEBID 2.043 2.0
Arbitrary | GREEDYPAUSEBID 1.113 | 1.419
GREEDYPAUSEBID+HILL | 1.160 | 8.364
PAUSEBID 1.995 | 0.917
Scheduling | GREEDYPAUSEBID 1.077 | 0.625
GREEDYPAUSEBID+HILL | 1.076 | 6.907
PAUSEBID 2.114 | 0.203
L2 GREEDYPAUSEBID 1.149 | 2.412
GREEDYPAUSEBID+HILL | 1.214 | 11.704
PAUSEBID 2.161 | 0.074
L3 GREEDYPAUSEBID 0.982 | 8.225
GREEDYPAUSEBID+HILL | 1.030 | 58.299

Table 4: The slope coefficient b and the intercept coefficient m, obtained by logarithmic
regression, that describe the curve of average time for each bidding strategy as a function

of the number of bids, under different CATS distribution.

In general, the running time of GREEDYPAUSEBID and GREEDYPAUSEBID+HILL
remains linear in all the bid distributions, independently of the number of bidders,
bids, and goods—the same pattern found in a previous experimental simulation [16].
GREEDYPAUSEBID is 10 times faster than GREEDYPAUSEBID+HILL. For these algo-
rithms, the scheduling distribution is the easiest to solve, followed by the arbitrary, L3,

20

and L2. GREEDYPAUSEBID is 99 times faster than PAUSEBID, or more, depending on
the number of goods being auctioned, or the number of bidders in the scheduling distri-
bution. For PAUSEBID the easiest bid distribution is L3 followed by L2, scheduling, and
arbitrary.

Something important, shown by the experiments, is that when using the PAUSE
auction, where the allocation problem is solved by the bidders, the hardness of these
distributions changes, depending in the bidding strategy. For example, L3 is one of the
easiest for all the bidding strategies; however, according to the study presented in [14],
it is the hardest CATS distribution for centralized solutions. In the L3 all the bids are for
exactly 3 items. Thus, for this distribution, the PAUSE auction is basically developed in
two stages, stage 1 (very fast, since there are no singleton bids) and stage 3. Because of
the way CATS files are used here, each bidder corresponds to exactly one bid (the same
case for L2, although the bids in that distribution can be for any number of items). That
is, bidders have preferences for only one set of three items. The space search for each
bidder is very small, since few of the bids from other bidders do not conflict with its
bid. In other words, in this distribution, there are many bidders with common interest in
at least one item. So, when forming their search tree the bids of theirs competitors are
left out, reducing the search space. On the other hand, in the centralized approach, the
search tree produced by this type of bid distributions has many leafs and nodes and very
large branches, given the way these three-item bids can be combined.

7.2 Revenue

In general, for all the bidding strategies, the average revenue ratio increases as function
of the number of bidders in the auction, as shown in Figure @ It seems that as the com-
petence increases, the prices that the winning bidders pay also increase. Figure [§]also
shows that the revenue ratio is higher in the arbitrary distribution than in the scheduling
distribution. In both distributions, PAUSEBID generates higher revenue; although the
approximate bidding strategies get very close to it as the number of bids increases. In
the arbitrary distribution, the average revenue ratio ranges between 0.75 and 0.91, while
in the scheduling distribution it ranges between 0.60 and 0.87, in both cases it depends
on the number of bidders and the bidding strategy.

Figure [9] shows the average revenue ratio as function of the number of bids and
goods. In the arbitrary and scheduling distributions the revenue ratio decreases non-
monotonically as a function of both the number of bids and goods, for all the bidding
strategies. However, in these two distributions, the PAUSEBID generates higher rev-
enue than the other two algorithms. In the arbitrary distribution, the difference is about
2% higher than GREEDYPAUSEBID+HILL and 3% higher than GREEDYPAUSEBID. In
the scheduling distribution, the difference is about 4% higher than GREEDYPAUSE-
BID+HILL and 7% higher than GREEDYPAUSEBID. Also, in these two distributions,
GREEDYPAUSEBID+HILL has a higher revenue ratio than GREEDYPAUSEBID, although

21

1.0

Arbitrary

Scheduling

1.0

AAPAUSEBID
@-@GREEDYPAUSEBID
-l GREEDYPAUSEBID+HILL

°
)
o
() .]
=}
C
()
>
[0)
S0 T R 1
(o)}
>
<
0.6 e R 1
A-APAUSEBID
@@ GREEDYPAUSEBID
-l GREEDYPAUSEBID+HILL
0'53 4 5 6 7 8 9 10 11 0'53 4 5 6 7 8 9 10 11
Bidders Bidders

Figure 8: The Average Revenue Ratio as a function of the number of bidders in the
auction. For the arbitrary and scheduling distributions. The number of goods and bids
is fixed to 10 and 20 respectively.

Arbitrary Scheduling L2 L3
1.00 1.0 1.00 1.00

A APAUSEBID A APAUSEBID A APAUSEBID A APAUSEBID

@-@GREEDYPAUSEBID @@GREEDYPAUSEBID @-@GREEDYPAUSEBID @-@GREEDYPAUSEBID
0.95- BHGREEDYPAUSEBID +HILL 0.95)- B GREEDYPAUSEBID +HILL 0.95)- B GREEDYPAUSEBID+HILL 0.95 B GREEDYPAUSEBID +HILL
0.90 0.90 0.90 0.90

Avg. revenue ratio
o
o
&

4 o085k 4 osst 4 osst —
= o A
0.80 X A 0.80 0.80 -
A A A

12 14 16 18
Bids

12 14 16 18 20 : 12 14 16 18 20 12 14 16 18 20
Bids. Bids. Bids

(a) Average Revenue Ratio as a function of the number of bids in the auction (the number of goods and
bidders is fixed to 10 and 5 respectively)

)
@
S

Avg. revenue ratio
o
3
&

Arbitrary Scheduling L2 L3
x 1 0.90r A APAUSEBID 0.90f 1 o0.90F
@-@®GREEDYPAUSEBID A
E-EGREEDYPAUSEBID+HILL
X 0.85 0.85 o . 0.85
k> A p—cb =

<4 0.75f A 0.75r 4 0.75f
0.70 0.70 0.70
1 0.65f 0.65 1 0.65

0.70
0.65[{ A APAUSEBID i A APAUSEBID A APAUSEBID
@-@GREEDYPAUSEBID @-@GREEDYPAUSEBID @-@®GREEDYPAUSEBID
E-EGREEDYPAUSEBID+HILL =B GREEDYPAUSEBID+HILL E-EGREEDYPAUSEBID+HILL
o 9 0 11 12 13 14 15 16 0'609 0 11 12 13 14 15 16 C"609 10 11 12 13 14 15 16 o 9 0 11 12 13 14 15 16
Goods Goods Goods Goods

(b) Average Revenue Ratio
bidders is fixed to 20 and 5 respectively)

as a function of the number of goods in the auction (the number of bids and

Figure 9: Average Revenue Ratio for each distribution as a function of the bids and
goods in the auction. In the L2 and L3 distributions the number of bidders is the same
as the number of bids.

22

the difference is very small, between 1% and 2%.

Figure [9 also shows that, in the L2 distribution, all the bidding strategies have the
same revenue ratio; which increases non-monotonically as a function of the number
of bids but remains linear as a function of the number of goods. Similarly, in the L3
distribution, the revenue ratio of all the bidding strategies increases non-monotonically
as a function of the number of bids, and decreases non-monotonically as a function of
the number of goods. However, in the L3, there is a small difference (less than 1%) of
revenue ratio in favor of the PAUSEBID algorithm.

The arbitrary distribution is the one where the PAUSE auction generates higher rev-
enue, followed by the L2, and the L3. On the other hand, the scheduling distribution is
the one where the lowest revenue is obtained.

The allocations found by PAUSE and these algorithms do not always have the same
distribution of items to bidders of that of the revenue-maximizing solution (as shown in
all the experiments). The cases where the algorithms fail to arrive at the distribution of
the revenue-maximizing solution are those where there is a large gap between the first
and second valuation for a set (or sets) of items. If the revenue-maximizing solution con-
tains the bid (or bids) using these higher valuation then it is impossible for the PAUSE
auction to find this solution because that bid (those bids) is never placed. For example,
if agent ¢ has v;(1) = 1000 and the second highest valuation for (1) is only 10 then 7
only needs to place a bid of 11 in order to win that item. If the revenue-maximizing
solution requires that 1 be sold for 1000 then that solution will never be found because
that bid will never be placed.

7.3 Allocative efficiency

As expected the allocations found by PAUSEBID, since it is a myopic optimal strategy,
have higher efficiency ratio than those found by the greedy strategies. As shown in Fig-
ures[I0]and [T 1] in this experiment the allocations found by PAUSEBID have an efficiency
ratio grater than 0.97 independently of the distribution and the number of bidders, bids,
and goods. The allocations found by the greedy strategies have lower efficiency ratio
than those found by PAUSEBID. However, their corresponding efficiency ratio is pretty
high too, grater than 0.90 for most of the cases.

As shown in Figure |10} the efficiency ratio increases as a function of the number of
bidders in both, the arbitrary and scheduling distributions. The fact that the efficiency
ratio is not 1 (except for PAUSEBID in the scheduling distribution with more than 5
bidders) indicates that the allocation of goods to bidders obtained by PAUSE differs,
sometimes, from that obtained by a centralized winner determination algorithm. Al-
though, the efficiency of the solutions found by all the algorithms is very high. The
average efficiency ratio of all the algorithms is very close to 1 when the number of bid-
ders goes above 8. In average, the allocations obtained in the scheduling distribution are
more efficient than those obtained in the arbitrary solution.

23

Arbitrary

Scheduling

1.00 ‘ , 1.00 s
o 0.98f 0.98} .
=
e
3 0.96f 0.96} .
C
]

o
&
© 0.94} 0.94} .

o
>
<

0.92}- 0.92} g

/A"APAUSEBID /A“/APAUSEBID

@-@GREEDYPAUSEBID @-@GREEDYPAUSEBID

=B GREEDYPAUSEBID+HILL =B GREEDYPAUSEBID+HILL
09035 6 7 8 9 10 1% 4 5 6 7 8 9 10 11

Bidders Bidders

Figure 10: The Average Efficiency Ratio as a function of the number of bidders in the
auction. For the arbitrary and scheduling distributions. The number of goods and bids

Arbitrary Scheduling L2 L3
1.00 1.00F s 1.00F 1.00F s
A
PO e e =S 000l T 0.99] 0.99f 1
2 X A . .
' 0.98 0.98f - | 0.98F 0.98F B
3 | \T1
9 1 -
£0.971 0.97f —=-1 097 0.97
S
0.6 - F-1 0.6 2R 0.96 0.96
o I 0 / -
< 0.95 y 0.95 e 0.95 0.95
A APAUSEBID A APAUSEBID A APAUSEBID A APAUSEBID
0-94/1 @@GREEDYPAUSEBID L 0.94) 0.94/| @-@GREEDYPAUSEBID 0.94/| @-@GREEDYPAUSEBID
BHEGREEDYPAUSEBID +HILL B GREEDYPAUSEBID-+HILL B GREEDYPAUSEBID +HILL BHEGREEDYPAUSEBID +HILL
12 14 16 18 20 12 14 16 18 20 12 14 16 18 20 12 14 16 18 20
Bids Bids Bids Bids

(a) Average Efficiency Ratio as a function of the number of bids (the number of goods and bidders is fixed

to 10 and 5 respectively)

Arbitrary Scheduling L2 L3
1.00 X 1.00 i 1.00] e 1.00 S
Ak A A ©-@GREEDYPAUSEBID
0.98[A& 0.98+ 4 A 0.98} BB GREEDYPAUSEBID +HILL 0.98}
°
©0.96 0.96 0.96 0.96
o
$0.94F 0.94 0.94- 0.94f
S
% 0.92 0.92+ 4 o092t 0.92¢
g \
< 0.90 0.90 1 0.90f- 0.90f
A APAUSEBID A APAUSEBID k A APAUSEBID
0.88 @@GREEDYPAUSEBID 0.88 @@GREEDYPAUSEBID 0.88 0.88 @-@GREEDYPAUSEBID
E-EGREEDYPAUSEBID+HILL BB GREEDYPAUSEBID+HILL E-EGREEDYPAUSEBID+HILL
9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 10 11 12 13 14 15 16 9 10 11 12 13 14 15
Goods Goods Goods Goods

(b) Average Efficiency Ratio as a function of the number of goods (the number of bids and bidders is fixed

to 20 and 5 respectively)

Figure 11: Average Efficiency Ratio for each distribution as a function of the bids and
goods in the auction. In the L2 and L3 distributions the number of bidders is the same
as the number of bids.

24

Arbitrary Scheduling
0-40 T T T 0.40 T T T
A APAUSEBID A APAUSEBID
0.35F @-@GREEDYPAUSEBID 035l L @-@®GREEDYPAUSEBID
' - GREEDYPAUSEBID+HILL ' I GREEDYPAUSEBID+HILL

o o

N w

(6] o
T T

Avg. expected utility ratio
o
N
o
T

0.15f |

0.10f R

0.05F i

0'003 4 5 6 7 8 9 10 11 0'003 4 5 6 7 8 9 10 11
Bidders Bidders

Figure 12: The Average expected Utility Ratio as a function of the number of bidders in
the auction. For the arbitrary (a) and scheduling (s) distributions. The number of goods
and bids is fixed to 10 and 20 respectively.

In general, the number of bidders has a positive effect on the revenue and the effi-
ciency of the final allocations. It seems that as the competition increases, the bidders
tend to increase the prices of their bids, thus, the resulting allocations provide more rev-
enue for the seller and reflect more precisely the nature of the bidders’ private valuations

Figure [T1] shows how the number of bids and goods affect the efficiency. In the L2
distribution, all the biding strategies reach the highest efficiency ratio. In other words,
in this distribution, the average efficiency ratio is not affected at all for any of these
parameters. The efficiency ratio is also very high in the L3 distribution (more than
0.99), for all the bidding strategies. On the other hand, in the arbitrary and scheduling
distributions, the efficiency ratio decreases non-monotonically as a function of both the
number of bids and goods. Although in general, all the bidding strategies are very close
to each other in terms of efficiency, the efficiency of the approximate strategies is lower.
The efficiency of the solution obtained by the approximate algorithms is more affected
by the number of bids and goods in the scheduling distribution. In this distribution, the
slope of the curves of GREEDYPAUSEBID and GREEDYPAUSEBID+HILL is bigger than
in other distributions, specially the one corresponding to the number of goods.

7.4 Bidders’ expected utility

The average bidders’ expected utility ratio (Figures [12] and [I3), produces curves with
values roughly inverse to that of the average revenue ratio (Figures [§] and [9). This

25

Arbitrary Scheduling L2 L3

0.30 A APAUSEBID 0.30 A APAUSEBID 0.30 A APAUSEBID 0.30 A APAUSEBID
@@GREEDYPAUSEBID ®-@GREEDYPAUSEBID @-@GREEDYPAUSEBID @@GREEDYPAUSEBID
BB GREEDYPAUSEBID+HILL Bl GREEDYPAUSEBID +HILL EHEGREEDYPAUSEBID+HILL W GREEDYPAUSEBID+HILL

Avg. expected utility ratio

o °

o N

S &

i

. o o
N N

S &

s é

i

o o

v N

S &

o o

o N

S &

o
o
o
o
o
o
o
o

0.1

12 14 16 18 20 . 12 14 16 18 20) 12 14 16 18 20 12 14 16 18 20
Bids Bids Bids Bids

(a) Average expected Utility Ratio as a function of the number of bids (the number of goods and bidders
is fixed to 10 and 5 respectively)

Arbitrary Scheduling L2 L3
A APAUSEBID A APAUSEBID A APAUSEBID
@-@GREEDYPAUSEBID @-@GREEDYPAUSEBID @-@GREEDYPAUSEBID
© 0.25 E-EGREEDYPAUSEBID+HILL 0.25 0.25 Bl GREEDYPAUSEBID+HILL 0.25 E-EGREEDYPAUSEBID+HILL
]
z
So.20f 1 o0.20f 1 o0.20f 1 o020} 1
°
g
ko]
\g_ —_
50150 4 0.15F 1 015k NGy g 0,150 w 4
° -+ a E
< A
A APAUSEBID
0.101 1 0.10]| @-@GREEDYPAUSEBID 4 0.10f 4 0.10f 1
B GREEDYPAUSEBID+HILL
9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16
Goods Goods Goods Goods

(b) Average expected Utility Ratio as a function of the number of goods (the number of bids and bidders
is fixed to 20 and 5 respectively)

Figure 13: Average expected Utility Ratio for each distribution as a function of the bids
and goods in the auction. In the L2 and L3 distributions the number of bidders is the
same as the number of bids.

relation was expected, since the higher the payments (the revenue) the lower the possible
expected utility. That means that in distributions where the revenue of all the bidding
strategies 1s the same, L2 and most of the case of L3, the bidding strategy does not
have any effect over the bidders’ expected utility (Figure [13). The only incentive to
choose one over the other would be speed (the lowest running time). Since in general
GREEDYPAUSEBID is the fastest, that would be the best choice.

In the case where the revenue ratio is different amongst the bidding strategies, the ap-
proximate strategies offer higher bidders’ expected utility (another incentive in addition
to speed). However, GREEDYPAUSEBID, the one that in general provides lower revenue,
does not offer the highest expected utility; unexpectedly, GREEDYPAUSEBID+HILL does
provide the highest utility—although the error bars in the plots overlap most of the time.
The reason for this is that, as shown before, the allocations obtained by GREEDYPAUSE-
BID+HILL are, in general, more efficient. This means that in the allocations obtained
by GREEDYPAUSEBID+HILL, the winners are bidders that have higher valuations than
those in the allocations obtained by GREEDYPAUSEBID, and yet they do not pay as
much as the bidders in the allocations obtained by PAUSEBID. This shows a relationship
between efficiency and bidders utility.

26

8 Conclusions

In general, the PAUSE auction with either myopic-optimal or approximate bidders, pro-
duces highly efficient allocations. Bidders have an incentive to join a PAUSE auction
instead of a centralized auction, since they have the opportunity to obtain the goods
with prices 25% to 10% lower than the prices they would pay when participating in a
centralized auction. However, as expected, this incentive has an impact on the sellers’
revenue. The revenue produced by the allocations obtained by PAUSE falls between
75% and 90% of the optimal revenue, depending on the combination of different factors
(goods, bids, bidders, bidding strategy, and bid distribution). That is, a small part of the
revenue is taken from the sellers and given to the buyers.

The running time of the PAUSEBID algorithm grows exponentially as a function of
the bidders and goods, and varies depending in the bid distribution. The running time of
the heuristic-approximate bidding strategies remains linear independently of the number
of bidders, bids, goods, and bid distribution.

The approximate algorithms offer higher utility to the bidders than PAUSEBID, which
would make them the best strategy for the bidders. GREEDYPAUSEBID+HILL provides
higher bidders’ utility than GREEDYPAUSEBID, about 1% higher. However it is 10 times
slower. Bidders should consider the trade off between utility and time.

In summary, the experiments presented here have shown that, over a representative
set of problems, the PAUSE auction along with the heuristic bidding strategies is a real-
istic method for solving combinatorial allocation problems without the use a centralized
auctioneer. The PAUSE auction is both efficient in terms of the solution it finds as well
as the time it takes to find it. Although the revenue generated by a PAUSE auction is
lower than the optimal, it has been found that it increases as the number of bidders in
the auction increases, as consequence of the increased competition. Thus, the incen-
tives provided by PAUSE will attract more bidders, which would result in more benefits
for the seller, in addition to the savings from eliminating the cost of having a central
auctioneer.

Future work will consist of looking at how to further increase the scalability of the
PAUSE auction by allowing agents to place incomplete bid sets and only communicate
their bids to a subset of agents. The goal is to develop new auctions which can scale to
any number of bidders while distributing the computational cost evenly among them.

Acknowledgments

Acknowledgment is made to the University of South Carolina’s High Performance
Computing Group for the computing time used in this research.

27

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

P. J. Brewer. Decentralized computation procurement and computational robust-
ness in a smart market. Economic Theory, 13(1):41-92, January 1999.

P. Cramton. Simultaneous ascending auctions. In Cramton et al. [3], chapter 4,
pages 99-114.

P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions. MIT
Press, 2006.

Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational com-
plexity of combinatorial auctions: Optimal and approximate approaches. In Pro-
ceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
pages 548-553. Morgan Kaufmann Publishers Inc., 1999.

N. Fukuta and T. Ito. Towards better approximation of winner determination
for combinatorial auctions with large number of bids. In Proceedings of the
IEEE/WIC/ACM international conference on Intelligent Agent Technology, pages
618-621, 2006.

N. Fukuta and T. Ito. Short-time approximation on combinatorial auctions: a
comparison on approximated winner determination algorithms. In DEECS °07:
Proceedings of the 3rd international workshop on Data enginering issues in E-
commerce and services, pages 26-33, New York, NY, USA, 2007. ACM.

P. Gradwell and J. Padget. Markets vs auctions: Approaches to distributed combi-
natorial resource scheduling. Multiagent and Grid Systems, 1(4):251 — 262, 2005.

R. C. Holte. Combinatorial auctions, knapsack problems, and hill-climbing search.
InAI°01: Proceedings of the 14th Biennial Conference of the Canadian Society on
Computational Studies of Intelligence, pages 57-66, London, UK, 2001. Springer-
Verlag.

H. H. Hoos and C. Boutilier. Solving combinatorial auctions using stochastic lo-
cal search. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial Intel-
ligence, pages 22-29. AAAI Press / The MIT Press, 2000.

F. Kelly and R. Steinberg. A combinatorial auction with multiple winners for
universal service. Management Science, 46(4):586—-596, 2000.

A. Land, S. Powell, and R. Steinberg. PAUSE: A computationally tractable com-
binatorial auction. In Cramton et al. [3], chapter 6, pages 139-157.

28

[12] D. Lehmann, L. I. Ocallaghan, and Y. Shoham. Truth revelation in approximately
efficient combinatorial auctions. Journal of the ACM, 49(5):577-602, 2002.

[13] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for
combinatorial auction algorithms. In Proceedings of the 2nd ACM conference on
Electronic commerce, pages 66—76. ACM Press, 2000.

[14] K. Leyton-Brown and Y. Shoham. A test suite for combinatorial auctions. In
Cramton et al. [3], chapter 18, pages 451-478.

[15] B. Mendoza and J. M. Vidal. Bidding algorithms for a distributed combinato-
rial auction. In Proceedings of the Autonomous Agents and Multi-Agent Systems
Conference, 2007.

[16] B. Mendoza and J. M. Vidal. Approximate bidding algorithms for a distributed
combinatorial auction (short paper). In Padgham, Parkes, Miiller, and Parsons,
editors, Proceedings of the 7th International Conference on Autonomous Agents
and Multiagent Systems, Estoril, Portugal, May 2008.

[17] M. V. Narumanchi and J. M. Vidal. Algorithms for distributed winner determina-
tion in combinatorial auctions. In LNAI volume of AMEC/TADA. Springer, 2006.

[18] S. Park and M. H. Rothkopf. Auctions with endogenously determined allowable
combinations. Technical report, Rutgets Center for Operations Research, January
2001. RRR 3-2001.

[19] D. C. Parkes and J. Shneidman. Distributed implementations of vickrey-clarke-
groves auctions. In Proceedings of the Third International Joint Conference on
Autonomous Agents and MultiAgent Systems, pages 261-268. ACM, 2004.

[20] D. C. Parkes and L. H. Ungar. Iterative combinatorial auctions: Theory and prac-
tice. In Procedings of the 17th National Conference on Artificial Intelligence
(AAAI-00), pages 74-81, 2000.

[21] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computationally manageable com-
binational auctions. Management Science, 44(8):1131-1147, 1998.

[22] T. Sandholm. An algorithm for winner determination in combinatorial auctions.
Artificial Intelligence, 135(1-2):1-54, February 2002.

[23] T. Sandholm. Expressive commerce and its application to sourcing: How we con-
ducted $35 billion of generalized combinatorial auctions. Al Magazine, 28(3):45—
58, 2007.

29

[24] J. M. Tenenbaum. AI meets web 2.0: Building the web of tomorrow, today. Al
Magazine, 27(4), 2006.

[25] J. M. Vidal and E. H. Durfee. Learning nested models in an information economy.
Journal of Experimental and Theoretical Artificial Intelligence, 10(3):291-308,
1998.

[26] G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, 1999.

[27] E.Zurel and N. Nisan. An efficient approximate allocation algorithm for combina-
torial auctions. In Proceedings of the ACM Conference on Electronic Commerce,
2001.

Authors’ Biographical Notes

Benito Mendoza is a postdoctoral research engineer at ExxonMobil Research and En-
gineering Company. His research interests are in the areas of multiagent systems, sit-
uation awareness, and distributed information fusion. He has a PhD. in Computer Sci-
ence and Engineering from the University of South Carolina and a MSc in Artificial
Intelligence and a BSc in Computer Science from the University of Veracruz, Mexico.

José M. Vidal is an associate professor at the University of South Carolina. His research
interests are in the area of multiagent systems. He has a PhD. from the University of
Michigan and a BSE from the Massachusetts Institute of Technology, both in Computer
Science and Engineering.

30

	Introduction
	Related Work
	The PAUSE Auction
	Problem Formulation: Bidding in the PAUSE Auction
	Bidding Strategies
	pausebid, a myopic-optimal bidding algorithm
	greedypausebid, an approximate bidding algorithm
	The greedypausebid+hill algorithm

	Experimental Setup
	Economic distributions
	Using CATS files to feed the decentralized combinatorial auction

	Metrics
	Experimental settings

	Results
	Time
	Revenue
	Allocative efficiency
	Bidders' expected utility

	Conclusions

