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Abstract : This paper shows how the Asynchronous Backtracking (Yokoo
et al., 1998) algorithm, a well known distributed constraint satisfaction al-
gorithm, produces unnecessary messages and introduces our optimized algo-
rithm, Message Management Asynchronous Backtracking, which reduces the
number of messages the agents send. The message management mechanism
removes the redundant messages, keeps message queue updated, and handles
messages by package instead of individually in order to improve efficiency.
Our test results show the algorithm significantly reduces the total number of
messages sent and drastically reduces the number of cycles used when solving
instances of the graph coloring problem.
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1 Introduction

The Asynchronous BackTracking (ABT) (Yokoo et al., 1998) algorithm is
a well known algorithm for solving distributed constraint satisfaction prob-
lems. Many problems that arise in multiagent systems can be reduced to a
distributed constraint satisfaction problem and this approach has lead to sev-
eral successful multiagent applications. However, our analysis of the ABT
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algorithm has revealed some room for improvement. Specifically, we have
found that ABT sends many needless messages. In this paper we present a
new algorithm along with tests that show how it can reduce the number of
messages sent to about 67% and the number of cycles to about 25% of those
in ABT.

Section 2 starts with the formal description of a constraint satisfaction
problem and its distributed variation. Section 3 presents the ABT algorithm
and Section 4 gives our analysis of it. Section 5 then presents our improved
version of ABT. We show the test results in Section 6, the related work is in
Section 7 and our conclusion is given in Section 8.

2 The CSP Problem

In a Constraint Satisfaction Problem (CSP) the goal is to find a consistent
assignment of values for a set of variables (Wooldridge, 2002). Formally,
a CSP consists of n variables x1, x2, ..., xn, whose values are taken from
finite, discrete domains D1, D2, . . . , Dn, respectively, and a set of constraints
on their values. A constraint is defined by a predicate. The constraint
pk(xk1 , xk2 , . . . , xkj

) is a predicate that is defined on the Cartesian product
Dk1 × · · · × Dkj

. In general, there is no restriction about the form of the
predicate. It can be a logical or mathematical formula, or any arbitrary
relation defined by a tuple of variable values. We will sometimes also refer to
these constraints as nogoods. In CSP the predicate is true if and only if the
value assignment of these variables satisfies the constraint. Solving a CSP is
equivalent to finding an assignment of values for all variables such that all
constraints are satisfied.

2.1 Distributed CSP

A distributed CSP is a CSP in which the variables and constraints are dis-
tributed among automated agents (Yokoo et al., 1998). I assume the agents
use the following communication model:

• Agents communicate by sending messages. An agent can send messages
to other agents if and only if the agent knows the addresses of the
agents.



• The delay in delivering a message is finite, though random. For the
transmission between any pair of agents, messages are received in the
order in which they were sent.

In this model, the physical communication network may not be fully con-
nected. In other words, the topology of the physical communication network
doesn’t play an important role here. The model assumes the existence of a
reliable underlying communication structure among the agents and does not
care about the implementation of the physical communication network.

Every agent owns some variables and tries to determine their values.
However, there exist inter-agent constraints which must be satisfied. For-
mally, there exist m agents 1, 2, ...,m. Each variable xj belongs to one agent
i, which could be represented as belongs(xj, i)). Constraints are also dis-
tributed among agents. The fact that an agent l knows a constraint predicate
pk is represented as known(pk, l).

A Distributed CSP is solved if and only if the following conditions are
satisfied: for any i and xj where belongs(xj, i), the value of xj is dj, and for
any l and pk where known(pk, l), pk is true under the assignment xj = dj.

3 The ABT Algorithm

The ABT algorithm is a distributed, asynchronous version of a backtracking
algorithm used in solving CSP. The basic idea for backtracking algorithm is
to construct a partial solution first, which is a value assignment to a subset
of variables that satisfies all of the constraints within the subset, and then
to expand the partial solution by adding new variables, until it becomes a
complete solution. In the asynchronous backtracking algorithm, agents act
asynchronously and concurrently based on their local knowledge without any
global control, while the completeness of the algorithm is guaranteed. That
is, if there is a solution they will find it. On the other hand, the priority
order of agents is determined and each agent tries to find a value satisfying
the constraints with the variables of higher priority agents. When an agent
sets a variable value, the agent is strongly committed to the selected value,
i.e., the selected value will not be changed unless an exhaustive search is
performed by lower priority agents. Among the search, the backtracking
is achieved by checking the consistency of the variable, if not consistent,
then using hyper-resolution rule to generate new nogoods and communicating
them to higher priority variables. Therefore, in large-scale problems, a single



mistake in the selection of values becomes fatal since such an exhaustive
search can be virtually impossible for large m. This drawback is common to
all backtracking algorithms.

The original Asynchronous Backtracking Algorithm is described as in
(Yakoo et al., 1992; Yokoo et al., 1998; Yokoo and Hirayama, 2000). There
are slight differences between the different papers. Figure 1 shows a combined
version whose correctness we tested.

handle-ok-msg(“ok?”, (xj, dj))

1 add (xj, dj) to local -view
2 check-local-view

handle-nogood-msg(“nogood”, xj, nogood)

1 record nogood as a new constraint
2 for each agent xk in nogood that is not its neighbor
3 do request xk to add xi as a neighbor
4 add xk to its neighbors
5 add (xk, dk) to local -view
6 old -value ← current-value
7 check-local-view
8 if old -value = current-value
9 then send (“ok?”, (xi, current-value)) to xj

check-local-view

1 if local -view and current-value are not consistent
2 then if no value in Di is consistent with local -view
3 then backtrack
4 else select d ∈ Di where local -view and d are consistent
5 current-value ← d
6 send (“ok?”, (xi, d)) to neighbors



backtrack

1 nogoods← {V |V = inconsistent subset of local -view by using
hyper-resolution-rule}

2 if an empty set is an element of nogoods
3 then broadcast to other agents that there is no solution
4 terminate this algorithm
5 for each V ∈ nogoods
6 do select (xj, dj) where xj has the lowest priority in V
7 send (“nogood”, xi, V ) to xj

8 remove (xj, dj) from local -view
9 Check-local-view

Figure 1: ABT algorithm

4 ABT Algorithm Analysis

We implemented the ABT algorithm and tested it with graph coloring prob-
lems. Our tests revealed that many of the messages sent did not help the
algorithm move forward. As such, we performed a more careful analysis of
ABT and found a few areas where it could be improved.

4.1 Link between non-neighbor agents

We believe that lines 3 and 4 in the procedure handle-nogood-msg are not
necessary. That is, it is not necessary to add a link between non-neighbor
agents. These additional links increase the number of messages sent. We
can imagine that in some extreme case these links might keep increasing
until there is a link between every pair of agents. In this case, sending one
message amounts to a broadcast. Thus the algorithm would be greatly slowed
down. We now explain why lines 3 and 4 are not necessary.

Figure 2 shows a flowchart that represents the handling of an ok message
(dotted line) and the handling of a nogood message (solid line). The numbers
in parenthesis in the process blocks correspond to the code line number of
their procedure.

By following the arrows, a cycle of handling an ok message goes from
B1 → B3 → End of the cycle, B1 → B3 → B5 → End of the cycle, B1 →
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B3 → B6 → Terminate with failure, or B1 → B3 → B6 → B7 → B3

which has a loop. For a cycle of handling a nogood message, it goes from
B2 → B3 → B4 → End of the cycle, B2 → B3 → B5 → End of the cycle,
B2 → B3 → B6 → Terminate with failure, or B2 → B3 → B6 → B7 → B3

with a loop. The above process sequences depend on different conditions.
We now check the data flow of the variable neighbors to see in what kind

of circumstance the non-neighbor agent is added to neighbors and how it is
used. The variable neighbors appears in the algorithm twice: one is at line 3
and 4 of procedure handle-nogood-msg for adding neighbor and the other
is at line 6 of procedure check-local-view for using neighbors.

First, let us consider when will the non-neighbor agent be added as a
neighbor. The codes are in procedure handle-nogood-msg, thus there
should be at least one nogood message to handle. On the other hand, in
the beginning state, we only have ok messages. So, we start from checking
how handle-ok-msg could produce a nogood message. From the above
analysis we know that there are 4 kind of process sequences for the cycle
of handling an ok message, and the first 3 finish without involving sending
out any nogood messages, therefore the only possible process sequence is
B1 → B3 → B6 → B7 → B3.

Assume there is a nogood message from xi to xj with information of a
non-neighbor agent xk to xj. According to line 8 in procedure backtrack
(B7), we know that there is no information about xj in the local view of xi.
So far, we have that B2, xk and xj become neighbors of each other, and the
information of xk is added to the local view of xj.

Let us consider the 4 possible process sequences for a nogood message
handling cycle:

1. For B2 → B3 → B4 → End of the cycle, the variable neighbors is not
used;

2. For B2 → B3 → B5 → End of the cycle, the variable neighbors is
used, and the new value of xj is sent to xk. Obviously, this ok message
will bring the information of xj to the local view of xk. Then, let us
check if this information valuable to xk. We know that the first usage
of local view is to check if it is consistent with the current value, and
this check is based on the constraints related to the agent. Originally,
there are no constraints between non-neighbor agents. However, once
an agent handles a nogood message, non-neighbor agents may become



a constraint for the agent. In the given case, xj and xk are originally
not neighbors, and by handling nogood message, xj adds xk to its new
constraint, but so far, xj is not xk’s constraint yet. So, when xk checks
the consistence, the information of xj in the local view is useless. In
other words, xj don’t have to send its information to the new added
neighbor xk.

3. For B2 → B3 → B6 → Terminate with failure, the variable neighbors
is not used, and the whole algorithm is terminated by reporting no
solution.

4. For B2 → B3 → B6 → B7 → B3, the variable neighbors is not used in
this single sequence, but because there involves a loop, it has potential
possibility to be used. Let us analyze this potential possibility. We can
start from checking B7. For xj there are new constraints involving xk to
be added and the local view of xj is updated according to the handled
nogood message. By using hyper-resolution rule, there must be at least
one nogood in the nogoods set involving xk. Disregard those nogoods
without xk, let’s focus on the nogood with xk. If xk has the lowest
priority in the nogood, then xj will send this nogood to xk, and remove
xk’s information from its local view. Based on the hyper-resolution
rule, this nogood to xk has no information about xj, that is, xj will not
become xk’s new constraint. At the same time, xk’s information loses
its worth to xj since xk is already deleted from xj’s local view. If xk is
not the one with the lowest priority in the nogood then we could ignore
analyzing the code at line 7 and 8 in B7, because nothing related to
the relationship between xj and xk. For checking local view B3 again,
we can follow above analysis about the 4 possible process sequences.

Based on above analysis we conclude that the original algorithm does
produce unnecessary messages, and that we can delete line 3 and 4 in the
procedure handle-nogood-msg in order to simplify the algorithm without
affecting the algorithm’s correctness.

4.2 Local View Updating

In line 5 of procedure handle-nogood-msg, we can see that only the in-
formation for non-neighbor agent is recorded to the local-view and the infor-
mation from other nodes is ignored. However, based on the communication



model assumed in this algorithm, the more recently received message carries
new updated information of the agent. That is, when handling nogood mes-
sages the above algorithm doesn’t update the information of the neighbors
in the local view, it always uses the old information for the neighbors and
new information for the non-neighbors. Obviously, we should use new infor-
mation since it reflects the current agents’ values more closely. This could
also influence the efficiency of the implementation of the algorithm. In our
algorithm, we correct this by updating all agents information in the nogood
to local-view.

4.3 Ways to Improve Efficiency

There are many issues which can be considered in order to improve efficiency
for a specific case, for example, the order of selecting variables and values.
In the algorithm, the order of selecting agents or variables is determined by
the priority, and the priority is determined in advance. Since a variable’s
value will not be changed unless an exhaustive search is performed by lower
priority agents, the priority should be determined very carefully, otherwise
the exhaustive search might need a long time. However, in different cases,
the method to determine the priority might be different. Therefore, we just
focus on how to improve efficiency for the general case.

For the general case, the first thing we could do is to eliminate the un-
necessary messages and update local view in time. Just as we discussed in
Section 4.1 and 4.2, this keeps the message queue slim and updated.

Another method is the addition of a message management mechanism for
the message queue. The basic idea is still to maintain the message queue slim.
Specifically, the mechanism tries to keep the message queue slim, update lo-
cal view in time, and reduce times to call procedure check-local-view.
In our earlier tests with the ABT algorithm we found that it spends most
of the time in checking local view. If we could reduce the number of calls
to this procedure then the efficiency of the implementation should be also
improved. The next section shows how we implemented our message man-
agement mechanism.



5 Message Management ABT

Based on the above analysis, we already have a general idea about the mes-
sage management mechanism. In this section, we will show exactly how it
works with our Message Management ABT (MMABT), shown in Figure 3.

msg-manage(msg-queue, handling-size)

1 counter ← 0
2 while counter < handling-size
3 do if msg-queue is empty
4 then counter ← handling-size
5 else retrieve one message from msg-queue
6 update-local-view(message)
7 counter ← counter + 1
8 handle-msgs

update-local-view(message)

1 if message is (“ok?”, (xj, dj))
2 then add (xj, dj) to local -view
3 if message is (“nogood”, xj, nogood)
4 then add xj to nogood -senders
5 record nogood as a new constraint
6 For each agent xk in nogood
7 do add (xk, dk) to local -view

As we have shown, the goal for this message management mechanism is
to keep the message queue slim, update local view in time, and reduce times
to call procedure check-local-view. MMABT removes the unnecessary
messages as analyzed in the previous section and updates local view not only
for non-neighbor nodes but also for neighbor nodes, by these we keep the
local view more updated. On the other hand, by handling several messages
together we reduce the number of times check-local-view is called and
keep msg-queue from growing too fast.

It is possible to either handle each message as it arrives or to handle groups
of messages in one step, that is, handle more than one message and then call



handle-msgs

1 old -value ← current-value
2 Check-local-view
3 if old -value = current-value
4 then send(“ok?”, (xi, current-value)) to nogood -senders
5 reset nogood -senders to be empty

Figure 3: Message Management ABT algorithm.

backtrack. We add a variable called handling-size which places a limit
on the number of messages that are collected and handled together. On the
other hand, if the message queue has messages less than the handling-size,
we just collect those messages from the message queue and handle them.
In this way, we don’t have to wait until we get all the messages. When
handling-size is set to 1 this algorithm is equivalent to the original algorithm
which handles messages one by one as they arrive.

Another strategy we use for keeping the message queue slim is to remove
redundant messages in msg-queue. For example, assume that we have mes-
sage queue { (ok?, (x1, 1)) (ok?, (x3, 2)) (ok?, (x1, 2)) } where messages are
shown in arrival order. In this case the first message is redundant on account
of the third one. Since the later message always carries more timely infor-
mation, we can simply delete the redundant messages in the message queue
to avoid handling the out of date information.

Another technique to keep the message queue slim involves the details
about how to use hyper-resolution rule. Unfortunately, the usage of the
hyper-resolution rule in the ABT algorithm is not clearly described in the
original ABT papers. The technique we use is to minimize constrains set and
generate nogood based on the local view.

The procedures check-local-view and backtrack are kept the same
with the original algorithm, and are thus not shown in Figure 3.

5.1 Example

To show how our algorithm works we use a small example shown in Figure 4.

The constraint in this case is that the neighbor nodes couldn’t be the same



X1
{1, 2}

≠

X2
{2}

X3
{1, 2}

≠

Figure 4: Example

value, which can be represented as in Table 1. In this table the constraints
are preceded by a number which indicated the time at which they were added.

x1 x2 x3

0 : (x1 = 1 ∨ x1 = 2) 0 : (x2 = 2) 0 : (x3 = 1 ∨ x3 = 2)
0 : ¬(x1 = 1 ∧ x3 = 1) 0 : ¬(x2 = 2 ∧ x3 = 2) 0 : ¬(x1 = 1 ∧ x3 = 1)
0 : ¬(x1 = 2 ∧ x2 = 2) 1 : ¬(x1 = 1 ∧ x2 = 2) 0 : ¬(x1 = 2 ∧ x3 = 2)
2 : ¬(x1 = 1) 0 : ¬(x2 = 2 ∧ x3 = 2)

Table 1: Constraints for example.

We assume that the priority of the nodes here is decreasing with the
alphabetical order of the nodes id. That is, x1 has the highest priority and
x3 has the lowest. We assume that the original value for x1 is 1, x2 is 2 and
x3 is 2. The initial local view for all nodes is empty, but of course, they know
their own current value.

At first, the nodes with higher priority send ok? messages to their lower
priority neighbor nodes. Thus, x1 sends (ok?, (x1, 1)) to x3, and x2 sends
(ok?, (x2, 2)) to x3. When x3 accepts those messages it handles them together
and updates its local view to {(x1, 1), (x2, 2)}. Then x3 checks its local view.
It finds that the current value is not consistent with the current local view
(constraint ¬(x2 = 2 ∧ x3 = 2) is not satisfied) so it checks if there is some
other value in the domain that is consistent. However, if x3 equals 1, then
constraint ¬(x1 = 1 ∧ x3 = 1) is not satisfied. So, there is no value in the
domain which could make it consistent. Therefore, x3 has to backtrack. In
order to generate nogoods set, x3 first filters and groups the inconsistent
constraints which are {¬(x1 = 1 ∧ x3 = 1), ¬(x2 = 2 ∧ x3 = 2)}. By using



the hyper-resolution rule, we get the nogoods set {¬(x1 = 1∧x2 = 2)} which
has only one nogood. x3 then sends this nogood to x2, the lowest priority
node in the nogood.

After that, x3 deletes x2’s information from the local view, and changes
it to {(x1, 1)}. Then, x3 has to check local view again. Finally, because
x1 = 1 and x3 = 2, which is consistent, x3 stops working. For x2, once it
accepts the nogood message from x3, it updates the local view to {(x1, 1)},
and also adds the constraint to its constraints set as shown in table 1. It
checks the local view, and finds an inconsistency. Since x2 could be 2 only,
it has to backtrack. By using hyper-resolution value, it gets nogoods set
{¬(x1 = 1)}, and sends the nogood to x1. Also x2 removes x1’s information
from the local view. Once x1 gets the nogood message from x2, it updates
the constraints set. Since {x1 = 1} is a subset of {x1 = 1, x3 = 1} we can
simply delete ¬(x1 = 1 ∧ x3 = 1) and add ¬(x1 = 1), since the later is the
sufficient condition for the former. By checking local view we determine that
the current value x1 = 1 is not consistent, while we could change the value
to 2 to make it consistent (note that we don’t have x3’s information in local
view yet) and send (ok?, (x1, 2)) to x3. x3 update local view from {(x1, 1)}
to {(x1, 2)}, and then check local view again, this time, current value 2 is not
consistent, so that we can change the value to 1 to make it consistent. Note
that we don’t have x2’s information in the local view here, since the message
is sent by x2.

So far, we have reached a consistent status for all 3 nodes. We could
report success now. In some other case, if we use hyper-resolution rule and
get an empty set we could simply report failure and halt.

5.2 MMABT Analysis

The soundness and completeness for the original asynchronous backtracking
algorithm is already described as in (Yokoo et al., 1998). For our MMABT
algorithm, we just need to show that this algorithm is actually using the
same principles as ABT and achieves the same result.

Based on the analysis in Section 4, it is clear that the changes to the
original algorithm are removing unnecessary messages and making the local
view of each agent up to date, which didn’t change the searching method in
the algorithm. In other words, the new algorithm is still a kind of depth-
first search algorithm. For the worst case, this algorithm still has to do
an exhaustive search and there is not much difference between the original



Figure 5: NetLogo implementation of ABT and MMABT.

algorithm and the new one. On the other hand, our addition of the message
management mechanism and our optimized use of the hyper-resolution rule
improve the efficiency on the average case. Our changes do not change the
algorithm’s soundness and completeness.

6 Test Results

Without losing generality, we apply MMABT to graph coloring problem. The
algorithm was implemented using NetLogo (Wilensky, 1999), a screenshot is
shown in Figure 5. In our tests we generate graphs and then make both
algorithms work on the same graph with same initial colors. Our results
show that both algorithms achieve the correct result and the only difference
is that our algorithm works faster. Details on MMABT’s performance are
presented in this section.

We evaluate the efficiency of the algorithms by comparing their perfor-
mance on the graph coloring problem. We test both algorithms on identical
graphs: with the same vertexes, nodes, and initial colors.

Our first set of tests simply verified the correctness of MMABT. We have
run both algorithms on over 1,000 randomly generated graphs and in all cases
our algorithm finds the same solution as ABT.

We then tested them on one randomly generated graph with 8 nodes,
15 edges, and 2 colors. The graph has a coloring that does not violate any



constraints. We ran both algorithms on this graph for 100 times, each time
starting with a different randomly generated initial coloring. Figure 6, on the
left, shows the number of ok? and nogood messages sent by both algorithms
for all runs. The runs are sorted by the time they took to finish. We note
that in every instance MMABT sends fewer ok? messages than ABT, and
that in over 80% of the cases MMABT sends fewer nogood messages than
ABT. Figure 6, on the right, shows the number of execution cycles for both
algorithms. We define a cycle to be the number of check-local-view
calls made by the algorithm since that is by far the most compute-intensive
procedure. Note that the number of cycles for MMABT is always smaller
than for ABT. An analysis of these results lets us determine that MMABT
sends 67% of the messages sent by ABT and MMABT uses 25% of the cycles
used by ABT.

However, note that this is the ideal case which assumes that all available
messages are handled at each time step. In practice, an implementation must
set a limit on the number of messages it handles at each time step, we call
this limit the message handling size. Figure 7 shows that the number of the
cycles, the number of ok? messages, and the number of nogood messages are
reduced as message handling size increased from 1 to 30. The results are for
a graph of 10 nodes, 32 edges, and 3 colors. This reduction is due to the fact
that as the message handling size is increased the local view is kept more up
to date. However, in some cases the cycles may increase when the handling
size increases, which is a result of the difference between the local view with
the current values. In other words, though the local view of the nodes reflects
the current values more closely when message handling size increases, there
is still some difference between the local view and the current values which
makes the search order a little different. Sometimes this difference will result
a worse search but, on average, the number of messages does decrease.

We also tested our algorithm on randomly generated graphs with varying
number of nodes, 3 colors, and an edge ratio of 2. Specifically, we let the
number of nodes N be 8, 10, 12, 14, 16, 18, and 20 and for each value
of N we generated 100 random graphs with N nodes and 2N edges. We
then compared the performance of both algorithms on each graph. Figure 8
shows the total number of messages (left) and total cycles (right) used by
both algorithms for all these tests. We can see that MMABT sends fewer
messages and uses less cycles for most cases. Table 2 gives the fraction of
the number of total cases that is with messages reduced by MMABT, and
the fraction of messages from ABT that MMABT sends. If we average over
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all these number we find that around 87% of the random cases had messages
reduced by MMABT and MMABT sends around 60% of the messages sent
by ABT, which includes the worse cases.

MMABT is able to reduce the number of messages via its message man-
agement mechanism which keeps the agents’ local view more closely syn-
chronized to reality. Unfortunately, in some cases this message management
leads to changes in the search order which might result in the algorithm
going down a path in the search space that is a dead end. In these cases
MMABT performs worse than ABT. Luckily, our tests show that these cases
are rare for randomly generated graphs, and even in those worse cases, we
still manage to reduce the number of messages sent.

MMABT is able to reduce the number of cycles used because it handles
all available messages at a time instead of only one at a time, as ABT does.
However, if there are a lot of messages in the queue it might be impossible
to handle all of them in one step. As such, we also compared a variation
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N Num. cases reduce msg by MMABT
Num. total cases

Num. msgs. sent by MMABT
Num. msgs. sent by ABT

8 0.90 0.65
10 0.89 0.56
12 0.92 0.52
14 0.83 0.61
16 0.92 0.53
18 0.80 0.61
20 0.81 0.67

Table 2: Performance Evaluation on Message Reduced by MMABT.

of MMABT where the algorithms uses a fixed message handling size which
we define as the number of messages that MMABT handles at each time
step. That is, a message handling size of 1 means that we handle only
one message each time, the same as ABT. Above all, we could see that by
removing unnecessary messages we can reduce message numbers in some case,
but the improvement is not very obvious; By using message management
mechanism, it reduces both circles and messages number greatly. It works
great for average cases. In the MMABT algorithm, in general case, the cycle
number, ok message number and nogood message number will decrease with
increasing of the message handling size.

7 Related Work

These are several different versions of ABT along with extensions to original
ABT. For example, in (Bessière et al., 2001) the authors propose a backtrack-
ing algorithm which makes use of some of the good properties of centralized
dynamic backtracking, and (Zivan and Meisels, 2004) gives an asynchronous
version of dynamic backtracking. (Hamadi et al., 1998) applies ABT to a
distributed constraint network and present a generic distributed method for
computing any variable ordering heuristic. In (Silaghi et al., 2001) the au-
thors show how an algorithm for maintaining consistency during distributed
asynchronous search can be designed by expanding on ABT. In (Bessière
et al., 2005; Bessiére et al., 2003) they propose an asynchronous backtrack-
ing algorithm ABTnot which does not need to add links between initially
unconnected agents. However, none of these notices the redundancy prob-



lem in the original ABT. The algorithms in (Bessière et al., 2005; Bessiére
et al., 2003) come close—the authors notice that an ABT algorithm without
adding links between initially unconnected agents will also works correctly.
However, they did not mention that the links were unnecessary and did not
give a proof of this. According to their test result and our analysis, the mes-
sages reduced by the algorithm without adding links are not obvious. Our
paper points out the redundant messages and shows why they are redundant.

Rather than simply remove the redundant links, we also improve the ef-
ficiency of the original ABT by proposing a new algorithm, MMABT, with
a message management mechanism. MMABT implements the idea of pro-
cessing messages by packets, the benefit of which is shown in (Brito and
Meseguer, 2004; Zivan and Meisels, 2003). Instead of reading all messages,
we set handling-size to control the size of the packets, which limits the num-
ber of messages collected and handled together. In this way, we avoid having
some agents work constantly handling a lot of messages while some others
remain idle. Meanwhile, the handling-size is an upper bound, such that in
a time period, if some agents do not have messages collected to be full size,
they do not have to wait until they get the full size, which avoids having
some agents waiting too long to get enough messages to handle.

8 Conclusion

We analyzed the original asynchronous backtracking algorithm and deter-
mined that it produces unnecessary messages. We showed an optimized
asynchronous backtracking algorithm, MMABT, which achieves more effi-
ciency by incorporating an extra message management mechanism to remove
unnecessary messages, keep the message queue updated, handling several
messages together, and controlling the number of messages to be handled by
a handling-size. Our tests show that these changes improve the efficiency of
the original ABT algorithm greatly. On a set of randomly generated graphs,
the MMABT algorithm uses around 20% of the number of cycles and 60%
of the number of messages used by ABT. Since our proposed changes are
simple to implement and the gains are significant, we consider MMABT is a
significant improvement on the standard ABT.
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