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Abstract

Distributed software systems are a norm in today’s computing environment. These

systems typically comprise of many autonomous components that interact with each

other and negotiate to accomplish joint tasks. Today, we can integrate potentially

disparate components such that they act coherently by coordinating their actions via

message exchanges. Once this integration issue is resolved, the next big challenge in

computing is the automation of the negotiation process between the various system

components. In this dissertation, we address this automated negotiation problem in

environments where there is a conflict of interest among the system components. We

present our negotiation model - a negotiation network - where a software system is

a network of agents representing individual components in the system. We analyze

the software system as a characteristic form game, one of many concepts in this

dissertation borrowed from game theory. The agents in our model preserve the self-

interest of the components they represent (their owners), and make decisions that

maximize the expected utilities of their owners. These agents accomplish joint tasks

by forming coalitions. We show that the problem of computing the optimal solution,

where the utilities of all agents are maximized, is hyper-exponential in complexity. We

present an approximate algorithm for this hard problem, and evaluate it empirically.

The simulation results show that our algorithm has many desirable properties - it

is distributed, efficient, stable, scalable, and simple. Our algorithm produces the

optimal (social welfare maximizing) solution for 96% of cases, generates maximal

global revenue for 97% of cases, converges to 90% of the best found allocation after
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only 10 rounds of negotiation, and finds a core-stable solution for revenue distribution

among the agents for cases with nonempty core. Finally, to ensure stability for

all cases, we present a sliding-window algorithm that computes the nucleolus-stable

solution under all situations.
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Chapter 1

Introduction

Distributed information systems are a norm in today’s computing environment. All

but the most trivial of systems contain a number of subsystems that must interact

with one another in order to successfully carry out their tasks. These subsystems can

either be a part of the same organization, cooperatively solving the complex problems

daily faced by the organization, or be owned by separate, autonomous organizations,

which collaborate competitively only to further their own interests. Nonetheless,

building information systems that can collaborate with each other and make joint

decisions over issues of mutual interest remains a hard problem in computer science.

We are witnessing a fundamental shift in the way enterprises conduct their busi-

nesses today. The current trend in information systems is toward increased dis-

tribution, decoupling, local intelligence, and collaboration. Traditional integrated

enterprises with centralized control are giving way to loosely-coupled networks of ap-

plications (or services) owned and managed by diverse business partners that interact

via standard protocols. The Web services technology adopts a data model based

on XML, and uses standard Internet protocols for interacting with other services.

This standards-based approach helps reduce development and maintenance costs for

integrated systems, and prepares the enterprises to address the heterogeneous, au-

tonomous, and dynamic nature of today’s business environment. Eventually, Web
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services could become the basis for a seamless and almost completely automated in-

frastructure for enterprise integration. Now, once the integration issues are resolved

for an information system, we believe that the research focus will shift on higher-level

goals such as automation of the decision processes of subsystems. This can lead to

higher efficiency and robustness towards achieving the enterprise’s business goals. In

an attempt to collaborate, the subsystems will negotiate with each other to reach

agreements that are mutually favorable. This dissertation focuses on automating this

negotiation step in enterprise information systems.

In this dissertation, we model information systems as multiagent systems. Mod-

eling information systems as a society of autonomous agents has its merits. They

naturally represent the decentralized nature, the multiple loci of control, the multiple

perspectives and/or the competing interests that prevail in most real-world problems

(Jennings, Faratin, Lomuscio, Parsons, Wooldridge, & Sierra, 2001). They are also

capable of interacting with other agents (or humans) in order to satisfy their design

objectives (Wooldridge & Jennings, 1995). Now, for many real-world application

scenarios, particularly domains where the subsystems represent interests of humans

(or groups of humans), we encounter situations where there is a conflict of interest.

For example, business partners in a small business can have diverging interests that

result in different opinions on how to allocate the resources of their corporation. For

such settings, agents (representing the various subsystems) can potentially negotiate

and automatically resolve the situation between the involved parties by reaching an

agreement that best meets everybody’s requirements. The focus of our research is in

devising negotiation mechanisms that allow agents to cooperate and coordinate their

actions, and automatically arrive at mutually acceptable agreements in situations of

conflict.

We present some examples of target applications for this work in the next section.

These examples highlight the scope and significance of this research. We follow this
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up with an explicit description of the problem statement, along with the deliverables

for this work. Finally, we present an overview of the rest of the dissertation.

1.1 Motivating Examples

Three motivating examples from three different fields are presented in order to illus-

trate various settings where negotiations among agents can be beneficial. The first

example involves software agents, the second concerns with a futuristic technology,

while the third scenario involves mobile robots. Clearly, these are just a sampling of

the plethora of application domains for automated negotiations among autonomous

agents.

1.1.1 Workflow and Business Process Management

Workflow management systems, which aim to automate the processes of a business,

have been around for decades. With the advent of the service-oriented computing

paradigm and the Web services technology, we have means for addressing the hetero-

geneity that currently exists across enterprises. Today we have standard languages

such as WS-BPEL for defining business processes that span across enterprise bound-

aries. We need business process management systems to handle such cross-enterprise

workflows. The current incarnations of such systems, such as IBM’s BPEL4J engine,

leave a lot to desire. Typically, these systems are centralized and lack the adaptability

to cope with unpredictable events. Systems for handling workflows involving multiple

businesses must adopt a decentralized, peer-to-peer architecture to avoid privacy and

trust issues. There have been many proposals for modeling business process manage-

ment systems as multiagent systems (Buhler & Vidal, 2005; Vidal, Buhler, & Stahl,

2004; Goradia & Vidal, 2005) as they naturally address many issues that plague the

current workflow systems. For example, adopting an agent-based approach naturally
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addresses the issue of aggregating information from distributed data sources owned

by different parties. The inherent dependencies and conflicts of interest among the

participants in the business processes can be resolved through agent interactions.

Such systems could also respond more rapidly to changing circumstances in business

environments. The ADEPT system (Jennings, Faratin, Johnson, Norman, O’Brien,

& Wiegand, 1996) is an example of an agent-based business process management sys-

tem from the pre-Web services era. Once the integration issues between businesses

are resolved, there will be a need for automatically resolving higher level issues such

as contractual agreements. Automated negotiation mechanisms can potentially ad-

dress these concerns. (Goradia, 2006) presents our position paper for future research

in this area.

1.1.2 Agent-Mediated Electronic Commerce

As we all know, electronic commerce is rapidly gaining acceptance in every industry

today, and it will only become more widespread in the future. It offers opportunities

to significantly improve the way that businesses interact with both their customers

and their suppliers. Current (first-generation) e-commerce systems such as Ama-

zon.com allow a user to browse an online catalog of products, choose some, and then

purchase these selected products using a credit card. However, agents can lead to

second-generation e-commerce systems where many aspects of consumer buying be-

haviors (in B2C systems) and business-to-business transactions (in B2B systems) are

automated (Guttman, Moukas, & Maes, 1998; Sierra & Dignum, 2001). Sophisticated

automation on both the buyer’s and the seller’s side can lead to applications that are

more dynamic and personalized. Both buyers and sellers gain from these changes -

the buyers can expect the agents to search for and retrieve the best deals available,

while the sellers can have the agents that automatically customize their offerings to

customers based on various parameters, such as the customer type, current seller

5



competition, and current state of the seller’s own business. This advanced degree

of automation can be achieved by modeling the e-commerce systems as interacting

agents (Jennings, 2001; He, Jennings, & Leung, 2003). Research in this disserta-

tion can potentially lead to the kind of agent negotiation mechanisms necessary for

second-generation e-commerce systems.

1.1.3 Multirobot Coordination

Consider multirobot environments where these robots are responsible for accomplish-

ing tasks such as transporting equipments within a manufacturing plant, delivering

packages in an office, rescuing victims in situations inaccessible by humans, or track-

ing enemy targets in battlefields. In all these scenarios, the robots have to coordinate

their actions, usually through communication, in order to achieve their goals. They

have to make independent decisions based on their perception of the environment, and

act in a manner that optimizes the global utility. (Dias, Zlot, Kalra, & Stentz, 2006)

presents an recent survey of multirobot coordination research. Again, the automated

negotiation mechanisms from this dissertation address these issues.

1.2 Problem Statement

How can a group of agents in a situation where there is a conflict of interest (i.e.

scenarios where the agents have to cooperate in order to improve their utilities, but

an agent’s gain is always at the expense of other agents) automatically come to an

agreement that is mutually beneficial? This is the automated negotiation problem

that we address in this dissertation. We define this problem formally in the following

subsection.
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1.2.1 Automated Negotiation Problem

Definition 1 (Automated Negotiation Problem) Say, there are N utility-maximizing

agents in the environment, where N > 2. The worth v(S) of each subset S ⊆ N agents

is common knowledge. Now, the agents have to collaborate and commit as a group of

size i, where 1 ≤ i ≤ N , to make any profit (determined by the worth of the group).

Also, each agent can commit to at most one group at a time. How should an agent

choose its group such that it maximizes its expected utility? What should the revenue

of each agent in a committed group be (such that they cannot do any better with some

other group, and therefore, will not have any incentive to break their commitment)?

Can the collective utility of all agents be maximized too?

An intuitive approach for addressing the automated multilateral negotiation prob-

lem is where the agents go through a coordination process involving negotiations over

all possible agreements covering issues of common interest, eventually bringing them

all to a consensus. In their pioneering work, Jeffrey Rosenschein and Gilad Zlotkin

(Rosenschein & Zlotkin, 1994) proposed that we must define the ’rules of encounter’

between agents 1. Defining these rules entail mechanism design, which involves de-

vising a negotiation protocol and a negotiation strategy (or strategies) for the agents.

What is a good negotiation mechanism that automates the agents’ decision-making

process while preserving the best interests for each of them? We present such a

mechanism in this dissertation.

1.2.2 Desiderata for the Automated Negotitaion Mechanism

There are many desirable properties in a negotiation mechanism. Efficiency is ar-

guably the most important property for a mechanism. Here we mean efficiency in

1This topic is discussed in further details in section 4.1
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many forms - economic efficiency, computational efficiency, and communication effi-

ciency. By economic efficiency we mean that the agreement that a mechanism yields

should be (close to) optimal. Optimality can also be measured in many ways, and is

domain-specific. For example, maximizing the global revenue might be the primary

concern for certain domains (e.g. e-commerce applications), while it might be more

important to perform as many tasks as possible in some other domains (e.g. multi-

robot coordination in manufacturing companies). We would want a mechanism to be

computationally efficient for obvious reasons - faster the agreement is reached, fewer

the resources consumed. This can lead to significant savings in cost. The majority of

computer systems today are established over networks that are unreliable and/or ex-

pensive. So, assuming all else is equal, a mechanism that involves less communication

between the agents during the negotiation process would be preferred in a real-world

setting.

Another highly desirable property in a mechanism is stability. A mechanism is

stable if it provides all agents with an incentive to behave in a particular way. This

is an essential property in multiagent systems with self-interested agents because if a

self-interested agent is better off by behaving in some other manner, then it will do

so. Having said that, even for many settings with cooperative agents, it would not

be a far-fetched idea to assume that the agents constantly work towards improving

their individual utilities within the confines of the mechanism. Therefore, stability is

important in either case.

Distribution of command and decision-making is essential in certain settings where

the very nature of the problem makes it infeasible to aggregate all the necessary data

at some central location and perform the computation for all agents over there. For

example, consider the B2B automation scenario, where individual businesses form

dynamic alliances (also called virtual organizations or virtual enterprises) to perform

tasks of mutual interest. In such scenarios, the companies would not be interested
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in sharing their private information with others while trying to come up with an

agreement. They would rather make local decisions based on existing knowledge and

share only the non-sensitive information with other companies while negotiating with

them. Distribution is desirable even for systems that are not inherently decentralized,

as it avoids a single point of failure and minimizes performance bottleneck among

other things.

Scalability is another important issue in settings where we have a large number of

agents. We would want a mechanism that degrades gracefully with increasing number

of agents in the system.

It is also desirable that a mechanism be simple. A simple mechanism is one

where the choice of the negotiation protocol makes it tractable for the agents to

determine their optimal strategies. Negotiation processes that are simple and efficient

are preferable to complex processes, as they are feasible to build into an automated

agent. It is not a mere coincidence that most widely adopted protocols are simple

(e.g. monotonic concession protocol (section 4.1.1)).

Clearly, the desiderata for a mechanism presented above is by no means compre-

hensive. However, we believe that the above-mentioned properties are desirable for

all negotiation scenarios. In this work, we present a mechanism that incorporates all

of the above-mentioned properties.

1.3 Dissertation Overview

In this section, we summarize the contents of this dissertation. The dissertation

is divided into four major parts - Overview, Literature Survey, Original Research

Contributions, and Future Extensions and Conclusions.

Chapter 1 introduced the audience to the automated multilateral negotiation prob-

lem addressed in this dissertation, and provided an overview of the target applications

9



for the problem. It forms the first part of the dissertation.

The second part comprises of chapters 2-4, where we present a literature survey

on the research problem. Negotiation theory is of immense interest in many fields

such as economics/game theory, social sciences, and multiagent systems. We discuss

some of the most notable work in each of these areas in the chapters for this part.

Our original contributions to the literature are collectively presented in the third

part of this dissertation. Chapter 5 describes negotiation networks - our agent-based

model for information systems studied in this work. We also provide examples of

how the computer systems for various target applications can be modeled as nego-

tiation networks. In Chapter 6 we analyze the automated multilateral negotiation

problem as a negotiation network and discuss the theoretical complexity of solving

it optimally. We present PACT (Progressive Anytime Convergent Time-efficient) -

our approximation algorithm for solving the hyper-exponentially complex automated

negotiation problem. We evaluate our mechanism empirically, and present simulation

results to express the properties of our algorithm. We also apply the algorithm to

a slightly modified automated negotiation problem that further extends the scope of

our work. Chapter 7 addresses the stability property in our mechanism, and presents

our sliding-window algorithm that always produces a nucleolus-stable solution for any

negotiation network. Again, we present theoretical and experimental results for this

algorithm.

Finally, chapter 8 forms the final part of this dissertation, where we describe some

possible future extensions of our work and conclude respectively.
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Part II

Background and Related Work
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Given the ubiquity and importance of negotiations, researchers from various dis-

ciplines such as Game Theory, Sociology, and Artificial Intelligence have contributed

significantly towards its theory. We present a synopsis of this work along with refer-

ences for further reading in this part.

12



Chapter 2

Negotiation Research in Game

Theory and Economics

Game Theory has its roots in the work of John Von Neumann and Oskar Morgenstern

(Neumann & Morgenstern, 1944) and provides general mathematical techniques for

analyzing situations in which two or more players make decisions that will influence

each other’s welfare. We provide a short introduction to the field of game theory

here, emphasizing more on the aspects that are relevant to our work. Readers are

referred to the following books (Kahan & Rapoport, 1984; Moulin, 1995; Myerson,

1997; Osborne & Rubinstein, 1999; Osborne, 2004) for a detailed description of the

field.

In all game theoretic models, the basic entity is a player. A player may represent

an individual or a group of individuals making a decision. Given the set of players,

there are two types of models that are studied: noncooperative (or strategic) games

(where the sets of possible actions of individual players are primitives), and cooper-

ative (or coalitional) games (where the sets of joint actions of groups of players are

primitives)1. The defining quality of a cooperative game is that players may enter

1Note that the players in cooperative games are still self-interested; the term cooperative simply
means that the players form coalitions to maximize their expected utilities in these games.
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into mutually binding agreements. Such binding agreements prior to decisions by

the players are not allowed in noncooperative games. A distinction is made within

noncooperative literature between normal (or standard) form games (where all play-

ers move simultaneously, or if they do not move simultaneously, the later players are

unaware of the earlier players’ actions, making them effectively simultaneous) and

extensive (or sequential) form games (where the players move sequentially, and later

players have some information about earlier actions). A further distinction is made

within extensive games based on whether the players have perfect information (where

all players know the moves previously made by all other players) or imperfect infor-

mation. Coalition formation in cooperative game theory is usually studied in the

context of characteristic function form games, where it is assumed that the utilities

of the coalition members are independent of the nonmembers’ actions.

2.1 Bargaining Problem

Negotiations among self-interested players was formally introduced by John Nash as

a bargaining problem (Nash, 1950) in game theory.

Definition 2 (Bargaining problem) A bargaining problem is a pair 〈U, d〉, where

U is a set of pairs of numbers (the set of pairs of payoffs to agreements) and d is a pair

of numbers (the pair of payoffs to disagreement), satisfying the following conditions:

• d is a member of U . (Disagreement is a possible outcome of bargaining - the

players may agree to disagree.)

• For some member (v1, v2) ∈ U we have v1 > d1 and v2 > d2. (Some agreement

is better for both players than disagreement.)

• If (v1, v2) and (w1, w2) are both in U , then for every α with 0 ≤ α ≤ 1 the pair

of payoffs (αv1 +(1−α)w1, αv2 +(1−α)w2) is also in U . (The set U is convex.)
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• U is bounded (i.e. it is a subset of a sufficiently large disk) and closed (i.e. the

limit of every convergent sequence (v1, v2, . . .) of members of U is in U).

Note that the set U represents the von Neumann-Morgenstern utility functions

for the individual players over all agreements. Let ∆ be the set of agreements (which

includes the conflict deal d) in U . Then the utility function for each player i is given

by ui : ∆→ <.

Definition 3 (Bargaining solution) A bargaining solution is a function that

associates with every bargaining problem 〈U, d〉 a member of U .

2.1.1 Nash Bargaining Solution

Nash presented an axiomatic model for studying the bargaining problem, where he

proposed a set of reasonable conditions, or axioms, that a bargaining solution must

satisfy to be fair to both players, without actually modeling the bargaining process.

He suggested five axioms for a fair outcome. First, the bargaining solution must be

individually rational to both players, i.e. no player should receive a payoff lower than

its disagreement payoff.

Axiom 1 (Individual rationality (IR)) Let 〈U, d〉 be a bargaining problem. The

bargaining solution does not assign (v1, v2) to U where v1 < d1 or v2 < d2.

Second, the outcome should be Pareto efficient, i.e. no other agreement yields

both players higher payoffs.

Axiom 2 (Pareto efficiency (PAR)) Let 〈U, d〉 be a bargaining problem, and let

(v1, v2) and (w1, w2) be members of U . If v1 > w1 and v2 > w2, then the bargaining

solution does not assign (w1, w2) to 〈U, d〉.
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Third, in the absence of any asymmetry between the players, the outcome should

give all players the same payoff. Equivalently, if the two players swap their utility

functions, then the bargaining solution must swap their payoffs too.

Axiom 3 (Symmetry (SYM)) Let 〈U, d〉 be a bargaining problem for which (v1, v2)

is in U iff and only if (v2, v1) is in U , and d1 = d2. Then the pair (v∗1, v
∗
2) of payoffs

the bargaining solution assigns to 〈U, d〉 satisfies v∗1 = v∗2.

Fourth, a bargaining solution depends only on player preferences, not on their

payoff representations.

Axiom 4 (Invariance to equivalent payoff representations (INV)) Let 〈U, d〉

be a bargaining problem, let αi and βi be numbers with αi > 0 for i = {1, 2}, let U ′

be the set of all pairs (α1v1 + β1, α2v2 + β2), where (v1, v2) is a member of U , and let

d′ = (α1d1 + β1, α2d2 + β2). If the bargaining solution assigns (w1, w2) to 〈U, d〉, then

it assigns (α1w1 + β1, α2w2 + β2) to 〈U ′, d′〉.

Fifth, a bargaining solution must not change when a losing agreement is removed

from the original bargaining problem.

Axiom 5 (Independence of irrelevant alternatives (IIA)) Let 〈U, d〉 and 〈U ′, d′〉

be bargaining problems for which U ′ ⊂ U and d = d′. If the agreement the bargain-

ing solution assigns to 〈U, d〉 is in U ′, then the bargaining solution assigns the same

agreement to 〈U ′, d′〉.

The five axioms IR, PAR, SYM, INV, and IIA are sufficient to determine a unique

bargaining solution. It is the Nash bargaining solution.

Definition 4 (Nash bargaining solution) A unique bargaining solution satisfies

the axioms INV, SYM, IIA, IR, and PAR. This solution assigns to the bargaining
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problem 〈U, d〉 the pair of payoffs (v1, v2) that solves the problem

arg max
(v1,v2)

(v1 − d1)(v2 − d2)

subject to (v1, v2) ∈ U .

Apart from the Nash bargaining solution, many other axiomatic solution concepts

have been proposed in welfare economics and social choice theory for the bargaining

problem. We present some of the important concepts here. Note that while these

solution concepts have been defined in the context of a two person bargaining problem

defined above, they can be easily extended to games with more players.

2.1.2 Pareto-optimal Solution

Definition 5 (Pareto optimality) Let 〈U, d〉 be a bargaining problem and ui : ∆→

< where i = {1, 2} be the utility functions for the two players over the agreements ∆

in U . An outcome δ ∈ ∆ is Pareto optimal (or Pareto efficient) if

¬∃δ′ ∈ ∆

such that

∀iui(δ
′) > ui(δ)

If a bargaining solution is Pareto efficient, then it is the case that no player can

be made better off without another being made worse off. If a bargaining solution

is not Pareto efficient, then there is theoretical potential for a Pareto improvement

- an increase in the utility of at least one participant without reducing any other

participant’s utilities. It is commonly accepted that outcomes that are not Pareto

efficient are to be avoided, and therefore Pareto efficiency is an important criterion for
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evaluating negotiation mechanisms. A bargaining problem can have multiple Pareto-

optimal solutions; the set of all these solutions is referred to as the Pareto frontier.

2.1.3 Utilitarian Solution

Definition 6 (Utilitarian solution) Let 〈U, d〉 be a bargaining problem. A bar-

gaining solution is a utilitarian solution if it assigns to the bargaining problem

〈U, d〉 the pair of payoffs (v1, v2) that solves the problem

arg max
(v1,v2)

∑
i={1,2}

vi

subject to

(v1, v2) ∈ U

A utilitarian solution, also referred to as the social welfare maximizing solu-

tion, is the one where the participants are assigned the agreement that maximizes the

sum of their individual payoffs. Thus, a utilitarian solution is also a Pareto-optimal

solution.

2.1.4 Egalitarian Solution

Definition 7 (Egalitarian solution) Let 〈U, d〉 be a bargaining problem. A bar-

gaining solution is an egalitarian solution if it assigns to the bargaining problem

〈U, d〉 the pair of payoffs (v1, v2) that solves the problem

arg max
(v1,v2)

∑
i={1,2}

vi

subject to

(v1, v2) ∈ U
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and

v1 = v2

In an egalitarian solution, the participants seek for the agreement that yields the

highest payoffs, which are then split equally among them. This is a useful solution

concept in systems where the participants are working for some higher order, where

there is no self-interest involved. A variation of the egalitarian solution - the egalitar-

ian social welfare solution, is useful for systems where there is no feasible agreement

that provides the same payoff for all players. This solution concept choses the agree-

ment that maximizes the utility of the weakest player in the bargaining game.

Definition 8 (Egalitarian social welfare solution) Let 〈U, d〉 be a bargaining prob-

lem. A bargaining solution is an egalitarian social welfare solution if it assigns

to the bargaining problem 〈U, d〉 the pair of payoffs (v1, v2) that solves the problem

arg max
(v1,v2)

vi

subject to

(v1, v2) ∈ U

where player i is given by

i = arg min
j

vj

2.1.5 Kalai-Smorodinsky Solution

Definition 9 (Kalai-Smorodinsky solution) Let 〈U, d〉 be a bargaining problem.

A bargaining solution is a Kalai-Smorodinsky solution if it assigns to the bar-

gaining problem 〈U, d〉 the pair of payoffs (v1, v2) that solves the problem

arg max
(v1,v2)

∑
i={1,2}

vi
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subject to

(v1, v2) ∈ U

and

v1

v2

=
max v1

max v2

This is another solution concept of note. The Kalai-Smorodinsky solution (Kalai

& Smorodinsky, 1975; Vidal, 2006) is the agreement on the Pareto frontier that

distributes the payoffs between the participants in proportion to the maximum payoff

that they can get from any agreement in the system.

2.2 Bargaining Game of Alternating Offers

Presenting axiomatic models with desired properties is one way of analyzing the

bargaining problem. The other way is to model the bargaining process as a nonco-

operative game, allow each player to behave in a manner that satisfies its personal

utility maximization criterion, and analyze the equilibrium solutions that it would

lead to. Ariel Rubinstein presented a model for the bargaining process between two

players as an extensive game with perfect information (Rubinstein, 1982).

Definition 10 (Extensive game with perfect information) An extensive game

with perfect information consists of:

• a set of players

• a set of sequences (terminal histories) with the property that no sequence is

a proper subhistory of any other sequence

• a function (the player function) that assigns a player to every sequence that

is a proper subhistory of some terminal history

• for each player, preferences over the set of terminal histories.
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The set of terminal histories is the set of all sequences of actions that may occur

in the game. The player assigned by the player function to any history h is the player

who takes an action after h. Note that although the definition does not directly specify

the set of actions available to the players at their various moves, these can be deduced

from the set of terminal histories and player function. If, for some nonterminal history

h, the sequence (h, a) is a history, then a is one of the actions available to the player

who moves after h. Thus the set of all actions available to the player who moves

after h is A(h) =

{
a : (h, a) is a history

}
. In some situations, an outcome is

associated with each terminal history, and the players’ preferences are defined as

payoff functions over these outcomes (as in normal games) rather than directly over

the terminal histories.

Given this background, a bargaining game of alternating offers is defined as follows.

Definition 11 (Bargaining game of alternating offers) The bargaining game

of alternating offers is the following extensive game with perfect information.

Players: Two negotiators, say 1 and 2.

Terminal histories: Every sequence of the form (x1, N, x2, N, . . . , xt, Y ) for t ≥ 1,

and every (infinite) sequence of the form (x1, N, x2, N, . . .), where each xr is a

division of the pie (a pair of numbers that sums to 1).

Player function: P (Φ) = 1 (player 1 makes the first offer), and

P (x1, N, x2, N, . . . , xt) = P (x1, N, x2, N, . . . , xt, N) =

 1 if t is even

2 if t is odd.

Preferences: For i = 1, 2, player i’s payoff to the terminal history (x1, N, x2, N, . . . , xt, Y )

is δt−1
i xt

i, where 0 < δi < 1, and its payoff to every (infinite) terminal history

(x1, N, x2, N, . . .) is 0.
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The structure of this game is as follows: player 1 makes a proposal, which player

2 either accepts or rejects; then, if player 2 rejects the proposal, it makes a proposal,

which player 1 either accepts or rejects; and so on. Note that each subgame 2 is

identical to the whole game - not only are the players, terminal histories, and player

function the same in the subgame as they are in the game, but so too are the players’

preferences (for any number k, each player i is indifferent between receiving k units

of payoff with t periods of delay and receiving δt
i · k units of payoff immediately).

However, the players’ payoffs are discounted by a factor of δ over each time period.

2.2.1 Nash Equilibrium

How would a self-interested player behave in an extensive game? What outcome

would result when all players adopt strategies that are in their best interest? The

Nash equilibrium is the most commonly used solution concept in game theory to

answers these questions.

Definition 12 (Strategy) A strategy of player i in an extensive game with perfect

information is a function that assigns to each history h after which it is player i’s

turn to move (i.e. P (h) = i, where P is the player function) and action in A(h) (the

set of actions available after h).

A strategy profile is a collection of strategies, one for each player. For each

strategy profile s = (si)i∈N (where N is the number of players) in an extensive game,

we define the outcome O(s) of s to be the terminal history that results when each

player i ∈ N follows the precepts of si.

2For any non-terminal history h, the subgame following h is the part of the game that remains
after h has occured. This concept is defined formally in section 2.2.2.

22



Definition 13 (Nash equilibrium of extensive game with perfect information)

The strategy profile s∗ in an extensive game with perfect information is a Nash equi-

librium if, for every player i and every strategy ri of player i, the outcome O(s∗)

generated by s∗ is at least as good according to player i’s preferences as the outcome

O(ri, s
∗
−i) generated by the strategy profile (ri, s

∗
−i) in which player i chooses ri while

every other player j chooses s∗j . Equivalently, for each player i,

ui(O(s∗)) ≥ ui(O(ri, s
∗
−i) for every strategy ri of player i,

where ui is a payoff function that represents player i’s preferences and O is the out-

come function of the game.

This means that if all the other players use the strategies specified for them in the

strategy profile of the Nash equilibrium, then the best strategy for any player is the

one given by the Nash equilibrium. The most significant aspect of Nash equilibrium

as a solution concept is that every game has at least one Nash equilibrium, as long as

mixed strategies are allowed. Unfortunately, there are also some significant limitations

with the Nash equilibrium concept. First, many games have multiple Nash equilibria,

and it is not always clear which one the players should actually adopt. Second, a

stationary Nash equilibrium does not exist for many games, and since a player often

has only discrete actions available in many real-world systems, a mixed strategy might

be difficult to incorporate. Third, while the Nash equilibrium is stable under single

player deviations, it does not guarantee stability against multiple player deviations -

a group of players can collude and defect from the proposed solution to gain a higher

utility for them all.
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2.2.2 Subgame Perfect Equilibrium

The notion of Nash equilibrium ignores the sequential structure of an extensive game

- it treats strategies as choices made once and for all before play begins (as in normal

games). A player that plays later in the extensive game should have the advantage

of knowing the moves made by the other players before it has to make its own move.

Instead, with Nash equilibrium, the strategy profile is determined based on perceived

threats that the players might not play if they are not in their best interests. Con-

sequently, Nash equilibrium strategies may be in equilibrium only in the beginning

of the extensive games; it may be unstable in later stages. The subgame perfect

equilibrium solution concept is more appropriate for extensive games.

Definition 14 (Subgame of extensive game with perfect information) Let Γ

be an extensive game with perfect information, with player function P . For any non-

terminal history h of Γ, the subgame Γ(h) following the history h is the following

extensive game:

Players: The players in Γ.

Terminal histories: The set of all sequences h′ of actions such that (h, h′) is a

terminal history of Γ.

Player function: The player P (h, h′) is assigned to each proper subhistory h′ of a

terminal history.

Preferences: Each player prefers h′ to h” if and only if it prefers (h, h′) to (h′, h”)

in Γ.

We now define the subgame perfect equilibrium solution concept.

Definition 15 (Subgame perfect equilibrium of extensive game with perfect information)

The strategy profile s∗ in an extensive game with perfect information is a subgame
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perfect equilibrium if, for every player i, every history hafter which it is player i’s

turn to move (i.e. P (h) = i), and every strategy ri of player i, the terminal history

Oh(s
∗) generated by s∗ after the history h is at least as good according t player i’s

preferences as the terminal history Oh(ri, s
∗
−i) generated by the strategy profile (ri, s

∗
−i)

in which player i chooses ri while every other player j chooses s∗j . Equivalently, for

every player i and every history h after which it is player i’s turn to move,

ui(Oh(s
∗)) ≥ ui(Oh(ri, s

∗
−i)) for every strategy ri of player i,

where ui is a payoff function that represents player i’s preferences and Oh(s) is the

terminal history consisting of h followed by the sequence of actions generated by s

after h.

The important point in this definition is that each player’s strategy is required to

be optimal for every history after which it is the player’s turn to move, not only at the

start of the game as in the definition of a Nash equilibrium. Thus, a subgame perfect

equilibrium is a strategy profile that induces a Nash equilibrium in every subgame.

From the above discussion it must be clear that the subgame perfect equilibrium

solution concept is appropriate for analyzing the bargaining game of alternating offers

introduced in section 2.2. The big question is - does the bargaining game have a

subgame perfect equilibrium in which each player’s strategy is stationary (i.e. each

player always makes the same proposal and always accepts the same set of proposals)?

The answer is in the affirmative.

Definition 16 (Subgame perfect equilibrium of bargaining game of alternating offers)

The bargaining game of alternating offers has a unique subgame perfect equilibrium,

in which

• player 1 always proposes x∗ and accepts a proposal y if and only if y1 ≥ y∗1
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• player 2 always proposes y∗ and accepts a proposal x if and only if x2 ≥ x∗
2

where

x∗ =

(
1− δ2

1− δ1δ2

,
δ2(1− δ1)

1− δ1δ2

)

y∗ =

(
δ1(1− δ2)

1− δ1δ2

,
1− δ1

1− δ1δ2

)
The outcome of the equilibrium strategy pair is that player 1 proposes x∗ at the

start of the game, and player 2 immediately accepts this proposal. An informal

discussion that provides insights into how this outcome is derived follows.

Note that since the players’ payoffs are discounted over time, it is in their best

interest to reach an agreement in the first step. Therefore, for equilibrium, each

player must propose an offer that yields a sufficiently high payoff to the opponent

without unnecessarily cutting into its own utility. Now, say players 1 and 2 offer

each other proposals x∗ and y∗ respectively. Clearly, the proposals must satisfy the

following conditions for equilibrium: x∗
2 = δ2y

∗
2 and y∗1 = δ1x

∗
1. Also note that the

players’ payoffs in the bargaining game are complimentary, therefore x∗
1 + x∗

2 = 1 and

y∗1 + y∗2 = 1. Solving these simultaneous equations gives the values for x∗ and y∗ in

the above definition.

The subgame perfect equilibrium has some noteworthy properties:

Efficiency: The equilibrium agreement for the bargaining game of alternating offers

is reached immediately; no resources are wasted in delay. Also, the agreement

is pareto efficient.

Stationarity of strategies: As mentioned before, the subgame perfect equilibrium

strategies are stationary for both players. Also, the players have no motivation

to deviate from the proposed strategies.

Effect of changes in patience: For a given value of δ2, the value of x∗
1, the equi-

librium payoff of player 1, increases as δ1 increases to 1. That is, assuming
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that player 2’s patience is fixed, player 1’s share increases as it becomes more

patient. Further, as player 1 becomes extremely patient (δ1 close to 1), its share

approaches 1. Symmetrically, fixing the patience of player 1, player 2’s share

increases to 1 as it becomes more patient.

First-mover advantage: If δ1 = δ2 = δ, then the only asymmetry in the game is

that player 1 moves first. Player 1’s equilibrium payoff is (1 − δ)/(1 − δ2) =

1/(1 + δ) > 1/2. The fact that player 1 obtains more than half of the pie

indicates that there is an advantage to being the first to make a proposal.

2.2.3 Extensions to the Bargaining Game

Many extensions of the bargaining game of alternating offers have been studied in the

literature. The most relevant of those with respect to our research are the variants

of models that allow three or more players. However, these extensions have not been

very successful in one major aspect. They have many nonstationary subgame perfect

equilibria, with a wide range of equilibrium payoffs. To the best of our knowledge,

there is not much work done on circumventing this problem.

2.3 Coalitional Games and Cooperative Game The-

ory

Our research interest is in bargaining games with multiple players, where players

coordinate their activities and form coalitions with other players to further their

own self interest. As mentioned earlier, the Nash equilibrium is not stable against

deviation in a coordinated manner by a group of players. The subgame perfect

equilibrium concept also suffers from existence and uniqueness problems. Instead of

the strategic approach that uses equilibrium analysis, game theorists typically study
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coalition formation as a characteristic form game (also called characteristic function

games, and coalitional games), which matches more closely to the actual negotiation

practices in real-world scenarios.

2.3.1 Characteristic Form Games

In a characteristic form game, each group of players is associated with a single num-

ber, interpreted as the payoff that is available to the group. A special case of the

characteristic form game is the transferable payoff game, where there are no restric-

tions on how the payoff may be divided among the members of the group. This is the

most commonly studied model in coalition games, and is the only form introduced in

this report 3.

Definition 17 (Characteristic form game with transferable payoff) A char-

acteristic form game with transferable payoff consists of:

• a finite set N (the set of players)

• a function v that associates with every nonempty subset S of N (a coalition)

a real number v(S) (the worth of S).

There are many points worth mentioning about characteristic form games. First,

for each coalition S, the number v(S) is the total payoff that is available for division

among the members of S. That is, the set of joint actions that the coalition S can

take consists of all divisions of v(S) among the members of S. The coalition S forms

by making a unanimous, consensual, and binding agreement on the way its value v(S)

is to be distributed among its members. Second, a characteristic form game models

a situation in which the actions of the players who are not part of S do not influence

3From hereon in the document, a characteristic form game (or coalitional game) represents a
transferable payoff characteristic form game, unless stated otherwise.
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v(S). None of the amount v(S) can be given to a member of N − S, nor can any

member of S receive payment from N − S. Third, the characteristic function v is

assumed to be common knowledge - all players know the valuations for all coalitions.

Any agreement concerning the formation of a coalition and the disbursement of its

value is known to all N players as soon as it is made. The termination of negotiations

with respect to a proposed agreement is also publicly known. Finally, it is commonly

assumed that the characteristic form game has the property that the worth of the

coalition N of all players is at least as large as the sum of the worths of the members

of any partition of N , i.e. it is cohesive. Note this assumption is true for almost all

real-world settings as, in the worst-case scenario, a player can cooperate with another

player by rejecting every joint deal. It also ensures that it is optimal that the coalition

N of all players form.

Definition 18 (Cohesive characteristic form game) A characteristic form game

〈N, v〉 with transferable utility is cohesive if

v(N) ≥
∑K

k=1 v(Sk) for every partition {S1, . . . , SK} of N

Just as in bilateral game theory discussed above, we have to address the following

question in coalitional games - which coalitions will form in situations where all players

are trying to maximize their expected utilities? John von Neumann and Morgenstern

adopted the approach of defining some sense of stability that all players subscribe

to, and make that concept inherent in the solutions for a game. Many others have

followed this approach for coalitional games and, therefore, we have many solution

concepts that tell us which solutions will be agreed upon by the players in such

games. We present some definitions next, and following that we describe some of the

important solution concepts in n-person cooperative game theory.

Definition 19 (Coalition structure) Let 〈N, v〉 be a characteristic form game. A
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coalition structure is a division of N players in the game into mutually exclusive

and exhaustive coalitions, given by

CS = {S1, S2, . . . , Sm} , 1 ≤ m ≤ N

where

Sj 6= Φ, j = 1, . . . ,m

and

∀i6=jSi ∩ Sj = Φ

and ⋃
Sj∈CS

Sj = N

Definition 20 (S-feasible payoff vector) Let 〈N, v〉 be a characteristic form game

with transferable payoff. For any profile (xi)i∈N of real numbers and any coalition S

we let x(S) =
∑

i∈S xi. A vector (xi)i∈S of real numbers is an S-feasible payoff

vector if x(S) = v(S).

Definition 21 (Feasible payoff profile) Let 〈N, v〉 be a characteristic form game

with transferable payoff. A feasible payoff profile is an N-feasible payoff vector.

Definition 22 (Imputation) Let 〈N, v〉 be a characteristic form game with trans-

ferable payoff. An imputation of 〈N, v〉 is a feasible payoff profile x for which

xi ≥ v({i}) for all i ∈ N . Thus, an imputation is a payoff profile that is both

individually rational and feasible.

2.3.2 The Core

The core solution concept was introduced in (Gillies, 1953). The idea behind the

core is analogous to that behind a Nash equilibrium of a noncooperative game: an
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outcome is stable if no deviation is profitable. In the case of the core, an outcome is

stable of no coalition can deviate and obtain an outcome better for all its members.

For a coalitional game, the stability condition is that no coalition can obtain a payoff

that exceeds the sum of its members’ current payoffs. Assuming that the game is

cohesive, we confine ourselves to outcomes in which the coalition N of all players

forms.

Definition 23 (Core) The core of the characteristic form game 〈N, v〉 with trans-

ferable utility is the set of feasible payoff profiles (xi)i∈N for which there is no coalition

S and S-feasible payoff vector (yi)i∈S for which yi > xi for all i ∈ S. Equivalently,

the core is the set of feasible payoff profiles (xi)i∈N for which v(S) ≤ x(S) for every

coalition S.

The search for a solution to a game can be viewed as a search for a feasible payoff

profile that satisfies certain restrictions (based on the desired solution concept). Some

of these restrictions can be stated in terms of rationality requirements - individual

rationality, group rationality, and coalitional rationality. Individual rationality states

that a player in a coalition will not accept any payoff less than what it could obtain

by forming its own 1-person coalition (i.e. xi ≥ v(i), for all i ∈ N). Group rationality

extends the notion of individual rationality for the whole group of players. It states

that the players will only accept a coalition structure if it maximizes social welfare

(i.e.
∑

S∈CS v(S) = v(N)4. Coalitional rationality further extends the principle of

group rationality to every subset of players in a coalition structure. It states that no

combination of players will settle for less than what they can obtain by forming a

4For nonsuperadditive games, v(N) is replaced by its superadditive cover, given by

v̂(N) = max
∑P

j=1 v(Sj) such that P = (S1, . . . , Sp) is a partition of N
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coalition (i.e. x(T ) ≥ v(T ) for every T ⊆ N). The biggest strength of the core as a

solution concept for characteristic function games is that it satisfies all three forms

of rationality mentioned above.

As seen above, many constraints must be satisfied for a feasible allocation of a

characteristic function game to be in the core. These constraints are often too strong

and result in coreless games - games where the set of core solutions is empty. Consider

a cohesive characteristic form game 〈N, v〉, and a feasible payoff profile (xi)i∈N for

the game that lies in the core. For a coalition S in the game, we have

xi ≤ v(N)− v(N − i) for all i ∈ S and v(S) ≤
∑

i∈S xi

Combining these inequalities gives us the other necessary condition for nonempti-

ness of the core in a cohesive coalitional game:

v(S) +
∑
i∈S

v(N − i) ≤ |S| · v(N)

As can be seen from the above formula, the number of inequalities that must

be fulfilled for a game to have a nonempty core increase rapidly with the number

of players in the game. Therefore, most real-world situations with large number of

participants are coreless.

Definition 24 (Vector of balanced weights) Let 〈N, v〉 be a characteristic form

game with transferable payoff. A balanced family of coalitions is a subset Ψ of 2N −N

such that there exists, for each S in Ψ, a weight δs, 0 ≤ δs ≤ 1, satisfying

for all i ∈ N :
∑

S∈Ψi
δS = 1, where Ψi = {S ∈ Ψ|i ∈ S}

A mapping δ satisfying the above equations is called a vector of balanced weights.

Definition 25 (Balanced game) Let 〈N, v〉 be a characteristic form game with
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transferable payoff. It is a balanced game if, for every vector of balanced weights δ,

we have ∑
S⊂N

δS · v(S) ≤ v(N)

A characteristic form game has a nonempty core if and only if it is balanced.

Thus, the core is empty for many coalitional games, and this property limits its

usefulness. On the other hand, there are many situations where a game has multiple

core solutions. This is problematic in an axiomatic approach like the core and reduces

its prescriptive powers as the players would not know which core solution to converge

on. The other drawback of the core solution is that for certain classes of games (e.g.

veto games), the core leads to solutions that might seem unreasonable. For example,

consider the following 3-person game: v(12) = 50; v(13) = 50; v(23) = 0; v(123) = 50.

The core of this game is the payoff profile (x1 = 50; x2 = 0; x3 = 0) for any of the

possible coalition structures {12, 3} , {13, 2} , {123}. So, the necessary member of all

nonzero coalitions, player 1, gets all the reward. However, one might argue that even

though player 1 is necessary to any coalition, players 2 and 3 are not powerless as

they can form a blocking coalition and keep player 1 from obtaining any reward since

v(1) = 0. Therefore, they should be (either singly or jointly) entitled to some of the

reward.

As suggested by the above discussion, the core solution concept is inadequate.

It imposes an overly strong constraint that no deviations are allowed, ignoring the

fact that a deviation may trigger a reaction that leads to a different final outcome,

one where the deviating players are worse off than in the original solution! Many

solution concepts discussed in the next few sections allow deviations by players under

certain restrictions such as the deviation itself must be stable, or not be balanced by

a counterdeviation.
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2.3.3 The Stable Sets

The idea behind the stable sets (Neumann & Morgenstern, 1944) solution concept is

that a coalition S that is unsatisfied with the current division of v(N) can credibly

object by suggesting a stable division x of v(N) that is better for all the members

of S and is backed up by a threat to implement (xi)i∈S on its own (by dividing the

worth v(S) among its members). The logic behind the requirement that an objection

itself be stable is that otherwise the objection may unleash a process involving further

objections by other coalitions, at the end of which some members of the deviating

coalition may be worse off.

An imputation x is considered an objection of the coalition S to the imputation

y in a coalitional game if xi > yi for all i ∈ S and x(S) ≤ v(S). This is also referred

to in the literature as x dominates y via S, denoted as x �S y.

Definition 26 (Stable set) A subset Y of the set X of imputations of a charac-

teristic form game with transferable payoffs 〈N, v〉 is a stable set if it satisfies the

following two conditions:

Internal stability: If y ∈ Y then for no z ∈ Y does there exist a coalition S for

which z �S y.

External stability: If z ∈ X−Y then there exists y ∈ Y such that y �S z for some

coalition S.

The stable set solution concept produces feasible payoff profiles that are individu-

ally and group rational but relaxes the coalitional rationality requirement. The core

is the set of imputations to which there are no objections. Therefore, whenever the

core is nonempty, it lies in the stable set. Unfortunately, the stable set is also plagued

with the same limitations of emptiness and nonuniqueness as the core. The number

of stable sets and the number of constraints characterizing those stable sets increases

rapidly with the number of players.

34



2.3.4 The Bargaining Set

As mentioned earlier, the basic assumption in game theory while analyzing character-

istic form games is that the characteristic function is common knowledge. Therefore,

the players in a game can be interpreted to negotiate together with perfect information

while attempting to reach an agreement. The outcome of the game is a settlement

on an equilibrium point based on the threats and counterthreats that each player

possesses. These threats and counterthreats reflect the bargaining power of the play-

ers as defined by the characteristic function. The central theme of the bargaining

set theory (Aumann & Mashler, 1964) is a negotiation process taking place within a

given coalition structure in which the stability of a proposed payoff allocation within

each coalition of the structure is established as the result of sequences of threats and

counterthreats among members of that coalition, as each player tries to maximize

its own payoff. Any unsatisfied player in the current allocation for any coalition is

allowed to raise a credible objection, i.e. an objection for which there is no balancing

counterobjection. Unlike the stable set, the objection or the counterobjection is not

required to be stable in any sense.

Let x be an imputation in a characteristic form game with transferable payoff

〈N, v〉. We define objections and counterobjections in the bargaining set theory as

follows:

• A pair (y, S), where S is a coalition and y is an S-feasible payoff vector, is an

objection of player i against player j to x if S includes i but not j and yk > xk

for all k ∈ S.

• A pair (z, T ), where T is a coalition and z is a T -feasible payoff vector, is

a counterobjection to the objection (y, S) of player i against player j if T

includes j but not i, zk ≥ xk for all k ∈ T − S, and zk ≥ yk for all k ∈ T ∩ S.

An objection of i against j to x specifies a coalition S that includes i but not j and
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a division y of v(S) that is preferred by all members of S to x. A counterobjection to

(y, S) by j specifies an alternative coalition T that contains j but not i and a division

of v(T ) that is at least as good as y for all the members of T who are also in S and

is at least as good as x for the other members of T . Given this, the bargaining set is

defined as follows.

Definition 27 (Bargaining set) The bargaining set of a characteristic form game

with transferable payoff 〈N, v〉 is the set of all imputations x with the property that

for every objection (y, S) of any player i against any player j to x there is a counter-

objection to (y, S) by j.

The bargaining set solution concept has many desirable properties. First, it reme-

dies the emptiness problem of other classical solution concepts such as the core and

the stable set. A bargaining set stable solution exists for all coalition structures of all

characteristic form games. Second, when the core is nonempty, it is included in the

bargaining set. Note that an imputation is in the core if and only if no player has an

objection against any other player. Third, the basic notions of objection and coun-

terobjection are amenable to psychological interpretation, which strongly enhances

the potential usefulness of bargaining set theory. Unlike the core and the stable set

theories which require stability in terms of coalitions not being able to disrupt group

rational payoff allocations, the bargaining set relaxes this requirement of group ra-

tionality (along with coalitional rationality) and instead, defines stability in terms

of objections and counterobjections that may be lodged against individually rational

payoff profiles.

Unfortunately, even the bargaining set has its drawbacks. While the computa-

tional complexity for deriving bargaining set solutions is much less than that for the

stable set, it is still exponential in the number of players. The size of the bargaining

set for a game is typically large, which limits its usefulness as a prescriptive solu-

tion concept for coalitional games. Finally, just like the core, the bargaining set also
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proposes outcomes that seem unreasonable for certain classes of games like the veto

games.

2.3.5 The Kernel

The kernel (Davis & Mashler, 1965) solution concept is similar to the bargaining set in

that it is defined by the condition that to every objection there is a counterobjection,

but differs from the bargaining set in the nature of objections and counterobjections

that are considered effective. Instead of defining stability in terms of potential threats,

the kernel balances the various alternative prospects that are available to the players

or coalitions by fairly distributing the excesses.

Definition 28 (Excess of a coalition) Let x be an imputation in a characteristic

form game with transferable payoff 〈N, v〉. For any coalition S, the excess of S is

given by

e(S, x) = v(S)− x(S)

The excess of S therefore represents the total amount that the prospective mem-

bers of coalition S collectively gain or lose (depending on the sign of the excess) if they

withdraw from the coalition structure implied by the imputation x to form coalition

S.

A player i objects to an imputation x by forming a coalition S that excludes some

player j for whom xj > v({j}) and pointing out that it is dissatisfied with the sacrifice

or gain of this coalition. Player j counterobjects by pointing to the existence of a

coalition that contains j but not i and sacrifices more (if e(S, x) > 0) or gains less (if

e(S, x) < 0). We define objections and counterobjections in the kernel as follows:

• A coalition S is an objection of i against j to x if S includes i but not j and

xj > v({j}).
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• A coalition T is a counterobjection to the objection S of i against j if T

includes j but not i and e(T, x) ≥ e(S, x).

Definition 29 (Kernel) The kernel of a characteristic form game with transferable

payoff 〈N, v〉 is the set of all imputations x with the property that for every objection

S of any player i against any other player j to x there is a counterobjection of j to

S.

For any two players i and j and any imputation x define sij(x) to be the maximum

excess of any coalition that contains i but not j:

sij(x) = max
S|i∈S,j /∈S

e(S, x)

Then we can alternatively define the kernel as the set of imputations x ∈ X such

that for every pair (i, j) of players either sji(x) ≥ sij(x) or xj = v({j}).

Thus, all players in the kernel are in an equilibrium where symmetric players

receive equal payoffs, and the more desirable players get a higher payoff than the

less desirable ones. The kernel of a characteristic function game is always nonempty,

and is always a subset of the bargaining set. The calculations required to find the

kernel, while still formidable in the general case, are considerably less than those for

the bargaining set. The size of the kernel is generally at least an order of magnitude

smaller than the bargaining set. The major sticking point with the kernel is that,

unlike the core and the bargaining set, it requires interpersonal comparison of utilities.

This requires that the ’intensity of feeling’ of each player towards its utility units be

the same.

2.3.6 The Nucleolus

Just like the bargaining set and the kernel, the nucleolus (Schmeidler, 1969) solution

concept can also be defined in terms of objections and counterobjections. The nucle-
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olus is closely related to the kernel in that it is also based on the notion of sharing the

excesses fairly. However, instead of players individually employing excesses in pair-

wise comparisons against each other like in the kernel, the excesses of each coalition

are compared without regard to the coalition’s membership.

Let x be an imputation in a characteristic form game with transferable payoff

〈N, v〉. The objections and counterobjections for the nucleolus are defined as follows:

• A pair (S, y) consisting of a coalition S and an imputation y is an objection

to x if e(S, x) > e(S, y) (i.e. y(S) > x(S)).

• A coalition T is a counterobjection to the objection (S, y) if e(T, y) > e(T, x)

(i.e. x(T ) > y(T )) and e(T, y) ≥ e(S, x).

Definition 30 (Nucleolus) The nucleolus of a characteristic form game with trans-

ferable payoff 〈N, v〉 is the set of all imputations x with the property that for every

objection (S, y) to x there is a counterobjection to (S, y).

Thus, an imputation is stable according to the nucleolus if there is no coalition

S whose excess can be reduced without increasing the excess of some other coalition

to a level at least as large as that of the original excess of S. This definition of the

nucleolus is not standard, but it facilitates a comparison with the kernel and the

bargaining set. We now present an equivalent, standard definition for the nucleolus.

For any imputation x let S1, . . . , S2|N|−1 be an ordering of the coalitions for which

e(Sl, x) ≥ e(Sl+1, x) for l = 1, . . . , 2|N | − 2 and let E(x) be the vector of excesses

defined by El(x) = e(Sl, x) for all l = 1, . . . , 2|N | − 1. Let B1(x), . . . , BK(x) be

the partition of the set of all coalitions in which S and S ′ are in the same cell if

and only if e(S, x) = e(S ′, x). For any S ∈ Bk(x) let e(S, x) = ek(x), so that

e1(x) > e2(x) > . . . > eK(x).

Given two imputations x and y, we say that E(x) is lexicographically less that

E(y) if El(x) < El(y) for the smallest l for which El(x) 6= El(y), or equivalently if
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there exists k∗ such that for all k < k∗ we have |Bk(x)| = |Bk(y)| and ek(x) = ek(y),

and either (i)ek∗(x) < ek∗(y) or (ii)ek∗(x) = ek∗(y), |Bk∗(x)| < |Bk∗(y)|.

Then, the nucleolus of the coalitional game is the set of imputations x for which

the vector E(x) is lexicographically minimal.

The nucleolus is nonempty and unique for each coalition structure of every char-

acteristic form game. It is the subset of the kernel as well as the core (whenever

nonempty). Therefore, it inherits the desirable properties of symmetry and desir-

ability from the kernel, and satisfies individual, group, and coalitional rationality

whenever the core is nonempty. The computation of the nucleolus is also consider-

ably simpler than that of the kernel or the bargaining sets.

2.3.7 Equal Share Analysis

The theory of equal share analysis (Selten, 1972) is founded on reasoning similar to

the core, but incorporates additional assumptions regarding norms of equality and

perception of power. It can be expressed in the form of three hypotheses about the

outcomes of characteristic form games. The first hypothesis states that any coalition

structure in the solution space must be exhaustive (i.e. no two coalitions in the

coalition structure would be better off by merging together). The second hypothesis

introduces the concept of equal division core.

Definition 31 (Equal division core) An imputation x for a particular coalition

structure in a characteristic form game with transferable payoff 〈N, v〉 is in the equal

division core if there is no coalition S ⊆ N such that

xi < v(S)
|S| for all i ∈ S

Thus, an imputation is in the equal division core if no coalition can divide its

value equally among its members and in this way give more to each of the members
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than they receive in the imputation. The second hypothesis states that the outcome

will lie in the equal division core. Finally, the third hypothesis is that, within a

formed coalition, stronger members will receive payoff at least equal to those of weaker

members.

The equal share analysis solution resembles the core, and the latter is indeed

a subset of the former when nonempty. The equal share analysis has the added

advantage of always being nonempty for every characteristic form game. However, its

solutions are limited to certain coalition structures, and some Pareto optimal coalition

structures have empty solution spaces. The size of the equal share analysis solution

space is typically large relative to the space of feasible outcomes. The theory is also

not conducive to many classes of coalitional games.

2.3.8 Equal Excess Theory

Unlike the solution concepts presented earlier, in which an imputation under con-

sideration is tested to see if it satisfies certain requirements of stability, the equal

excess theory (Komorita, 1979) posits assumptions of reasonableness and fairness

and derives an allocation of a coalition’s value accordingly.

Consider a characteristic form game with transferable payoff 〈N, v〉. According

to the equal excess theory, the bargaining process among the players in the game

executes over multiple rounds, and each player i has an expectation Er(i, S) of what

it will obtain from each coalition S of which it is a member in each round r. The player

expectations for various coalitions begin with an equal division, and are determined

in later rounds from their expectations in the previous round. For a player i and

coalition S, let Ar(i, S) denote the highest expectation from a set of valid coalitional

alternatives in round r. Then,

Ar(i, S) = max
T 6=S

[Er(i, T )]
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It is implicitly assumed that

∑
i∈S Er(i, S) = v(S) for all r and all S ⊆ N

Therefore, to create player expectations for round r +1, each member of coalition

S is allowed to claim their best alternative from round r and the remainder from the

sum of these claims is divided into equal parts and added to each player’s claim. That

is,

Er+1(i, S) = Ar(i, S) +
v(S)−

∑
j∈S Ar(j, S)

|S|

The players rank their coalitions based on their expectations, and negotiate with

the members of the coalitions at the top of their preference order. While the equal

excess theory does not explicitly define when a coalition forms, it is implicitly assumed

to form when all its members are satisfied by their current expectations.

The strongest property of equal excess theory is that, unlike the solution concepts

described above, it does not fix the coalition structure while determining a suitable

payoff profile for the characteristic form game. Instead, it presents a bargaining pro-

cess to compute both a coalition structure and a feasible payoff profile for a game.

The theory is also psychologically appealing in the sense that it is intuitive and re-

wards the players in proportion to their strengths as determined by the characteristic

function for the game. On the flip side, simulation results show that the bargaining

process does not converge for every game. Instead, it either falls into a cyclic equilib-

rium where few expectations keep toggling between some values, or the expectation

of the most powerful player in a coalition keeps increasing infinitely at the expense

of other members. Also, many concepts in the theory are not defined crisply. For ex-

ample, the theory does not specify when the bargaining process terminates, or which

coalitions are chosen by the players (or when are they chosen).
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2.3.9 The Shapley Value

All solution concepts considered so far rely on an a posteriori analysis of the im-

putations proposed as solutions of a coalitional game. The Shapley value (Shapley,

1953) gives us a feasible payoff profile for the given game and the particular coali-

tion structure under consideration, determined by the a priori worth to each player

of playing the game. Each player’s payoff in the Shapley value corresponds to its

marginal contribution to the chosen coalition structure of the game.

Definition 32 (Marginal contribution) The marginal contribution of player

i to any coalition S with i /∈ S in a characteristic form game with transferable payoff

〈N, v〉 is given by

∆i(S) = v(S ∪ {i})− v(S)

Definition 33 (Shapley value) Let 〈N, v〉 be a characteristic form game with trans-

ferable payoff. The Shapley value Φ defining the payoffs for individual players in

the game is given by

φi(N, v) = 1
|N |!

∑
π∈Π ∆i(Si(π)) for each i ∈ N ,

where Π is the set of all |N |! orderings of N and Si(π) is the set of players preceeding

i in the ordering π.

The Shapley value can alternatively be defined as

φi(N, v) =
∑

S⊆N
(|N |−|S|)!·(|S|−1)!

|N |! [v(S)− v(S − {i})] for each i ∈ N

We can interpret the Shapley value as follows. Suppose that all the players are

arranged in some order, all orders being equally likely. Then φi(N, v) is the expected

marginal contribution over all orders of player i to the set of players who precede
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it. Note that the sum of the marginal contributions of all players in any ordering is

v(N), so that the Shapley value is always feasible.

The Shapley value payoff profile is unique and exists for each coalition structure

for any characteristic form game. It is guaranteed to satisfy individual rationality,

but does not necessarily satisfy group and coalitional rationality. It need not be a

member of the core even if the latter is not empty. The solution concept satisfies the

desirable property of symmetry among players, and gives more desirable players a

higher payoff than less desirable ones. The biggest drawback of Shapley value is the

computational complexity.

2.4 Issues with Game-theoretic work

Game theory provides us with many useful techniques for mathematically analyzing

situations of conflicting interests among the players. However, there are also several

limitations of the game theoretic solutions which prevent us from applying it directly

to automated negotiations:

• Game theory does not provide algorithms that can be embedded into the agents

for forming coalitions. Game theoretic solution concepts are axiomatic, not

descriptive.

• Computing game theoretic solutions is usually exponentially complex, as game

theory is not concerned with the computational aspects of the solution concepts.

• Some stability solution concepts provide multiple equilibria points with no

mechanisms for selecting among them. This limits the applicability of such

solution concepts while engineering multiagent systems.

• Game theoretic solution concepts are inherently centralized as they require the

computing entity to have complete, global knowledge.
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• The solutions are static, i.e. stable payoff divisions are proposed for fixed coali-

tion structures; agents are not allowed to change their existing coalitions.

Negotiation research in artificial intelligence and multiagent systems adopts a

heuristics based approach to overcome these limitations (Jennings et al., 2001).
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Chapter 3

Negotiation Research in Social

Sciences

Sociologists study how humans act in situations where there is a conflict of interest.

Instead of assuming humans as purely rational, utility-maximizing entities as in game

theory, sociologists adopt a more descriptive approach and build their models based

on how humans actually behave in conflicting situations. We present one of the

most widely accepted theories for modeling such problems in sociology - the Network

Exchange Theory.

3.1 Network Exchange Theory

The Network Exchange Theory (Willer, 1999; Vidal, 2006) studies the effects of

power on the outcomes of exchanges between people in power relation networks. In

a network, the nodes are the human participants and any two nodes can negotiate

(for dividing a resource or exchanging goods) if they have an edge between them.

The edges represent the amount the agents are trying to divide. Based on extensive

studies with human subjects, sociologists have been able to identify equations that

can predict the outcome of human negotiations in particular networks.
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According to the theory, each agent has a resistance to each particular payment

p given by the agent’s resistance equation. Agent i’s resistance to receiving payment

p is given by,

ri =
pmax

i − pi

pi − pcon
i

where,

pmax
i = Maximum revenue that i can get in the network

and

pcon
i = Conflict deal, worth revenue 0

So, if two agents i and j want to divide some revenue ptotal between them, they

will have a resistance of ri and rj towards getting pi and pj respectively.

The Network Exchange Theory states that under these circumstances, an exchange

occurs between the two agents at the equi-resistance point.

ri =
pmax

i − pi

pi − pcon
i

=
pmax

j − pj

pj − pcon
j

= rj

such that

pi + pj = ptotal

We can solve complex networks using the iterated equi-resistance algorithm.

The algorithm simply uses the equi-resistance equation repeatedly on each edge of

the graph in order to calculate the payments that these agents can expect to receiver.

This is repeated for all edges until payments stop changing.

The iterated equi-resistance algorithm is not guaranteed to converge and it might

converge to different solutions when the edges are sorted in differently. Even when it

does converge the deal it reaches is not guaranteed to be the one that humans would

reach, that would mean we can predict human behavior. However, many experiments

have been performed with humans in small networks (less than 12 nodes) which have
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shown that the iterated equi-resistance algorithm correctly predicts the resulting deal.
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Chapter 4

Negotiation Research in Artificial

Intelligence and Multiagent

Systems

As mentioned in section 2.4, there are many limitations with research results from

game theory that make them difficult to adopt in practical settings. Research in

artificial intelligence and multiagent systems focuses on devising tractable solutions

for the negotiation problem. Many approaches make simplifying assumptions about

the negotiation problem, making it more specific to particular domains, and provide

optimal solutions for them. Others focus on devising approximate solutions without

any guarantees of optimality. We now present an overview of some of this research.

Interested readers can refer to the following books for further details: (Raiffa, 1982;

Rosenschein & Zlotkin, 1994; Kraus, 2001; Wooldridge, 2002; Vidal, 2006).

4.1 Mechanism for Automated Negotiations

Some of the earliest work in devising mechanisms for automating negotiations among

autonomous agents was conducted by Rosenschein and Zlotkin (Rosenschein & Zlotkin,
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1994). They addressed the problem of facilitating rational agents with conflicting in-

terests to arrive at an agreement that is mutually beneficial. The tools from game

theory were used for designing and evaluating their mechanisms. They adopted an

intuitive approach, where the agents go through a coordination process involving ne-

gotiations over all possible agreements covering issues of common interest, eventually

bringing them all to a consensus. There are three main issues in defining such a

coordination process: defining the space of possible deals, the negotiation process,

and the negotiation strategy.

Space of Possible Deals: This represents a finite set of candidate deals for the

agents to consider (e.g. agents may only consider payoff divisions where the

total value does not exceed $100). Possible proposals that the agents can make

are restricted by this set.

Negotiation Process: This is a negotiation protocol, which, given the set of pos-

sible deals, defines how the agents will converge to an agreement on a single

deal. It specifies the set of rules that govern the agent interactions while they

attempt to reach a consensus. The process explicitly defines the various nego-

tiation states (e.g. accepting bids, negotiation closed), the events that cause

negotiation states to change (e.g. no more bidders, bid accepted), and the valid

actions for the agents in particular states (e.g. which messages can be sent by

whom, to whom, at what stage). The negotiation process also clearly defines

the rule(s) that determines when a deal is struck, and what this agreement deal

is.

Negotiation Strategy: Given a set of possible deals and a negotiation process, a

negotiation strategy represents a model that individual agents employ to make

decisions and achieve their objectives. The negotiation protocol as well as cer-

tain agent characteristics (e.g. whether the agent has complete knowledge of its
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environment, whether it is truthful) determine the sophistication of the agent

decision model.

The above parameters lead to a rich and complex environment for analyzing ne-

gotiation problems. Negotiations typically involve a series of rounds, with each agent

making a proposal at every round, before eventually converging to an agreement.

However, there are many attributes that can complicate this model in real-world ne-

gotiation settings. For example, the complexity of the model increases rapidly with

the number of agents in the negotiation process. Not only does the negotiation space

explode, but also the negotiation strategies of the individual agents become more

complex. Also, the agents in real-world settings typically have multiple issues over

which agreement must be reached. Say there are n issues that the agents have to

negotiate over where each issue can have m possible values. This leads to a set of mn

possible deals. To make matters worse, in many situations the number of issues in

the bargaining process may itself vary based on other parameters.

Devising a negotiation mechanism entails defining a negotiation protocol and a

negotiation strategy (or strategies) for the agents in the system. The choice of the

negotiation protocol in conjunction with the negotiation strategies adopted by the

agents determines the type of outcome that is produced by the mechanism. As

mentioned earlier in the document, it is desirable that the mechanism be simple. The

most widely adopted protocol for bilateral negotiations is the monotonic concession

protocol, which we describe next. Then we describe a suitable negotiation strategy

for the monotonic concession protocol - the Zeuthen strategy. We also present the

one-step protocol that allows the agents to reach an agreement in just one step.

4.1.1 Monotonic Concession Protocol

The monotonic concession protocol (Rosenschein & Zlotkin, 1994) is a simple, bilat-

eral negotiation protocol and a direct formalization of a person’s natural negotiation
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behavior. It also adheres to the Rubinstein’s bargaining model of alternating offers

2.2.

Let A = {1, 2} be a set of two agents and let NS be a finite set of potential deals

Each of the agents i ∈ A is equipped with a utility function ui : NS → <+ mapping

deals to non-negative reals. NS also includes a conflict deal yielding utility 0 to

both agents, which is chosen in case the negotiations break down. The monotonic

concession protocol proceeds in rounds, with both agents simultaneously proposing

deals from the negotiation set NS in each round. In the first round, each agent is free

to make any proposal. In any subsequent round, each agent i ∈ A has two options

(let δi ∈ NS be the most recent deal proposed by agent i):

• Make a concession and propose a new deal δ′i that is preferable to the other

agent j: uj(δ
′
i) > uj(δi).

• Refuse to make a concession and stick to proposal δi.

An agreement is reached when one agent makes a proposal that its opponent

rates at least as high as its own current proposal, i.e. when u1(δ1) ≤ u1(δ2) or

u2(δ2) ≤ u2(δ1) or both. On the other hand, a conflict arises when both agents

refuse to make a concession during a given round. The protocols runs until either

an agreement is found or a conflict occurs. In case of an agreement, the proposal

satisfying both agents is chosen (in case both proposals are satisfiable, one is selected

at random). In case of a conflict, the conflict deal is the outcome of the negotiation.

The monotonic concession protocol is verifiable, and guaranteed to terminate.

However, it is inefficient and take a long time to converge. It also has this potentially

undesirable final step where both agents make a concession that is acceptable to the

other agent, but only one concession can be accepted, to the chagrin of its proposer.

Also, an agent has to determine its utilities for all deals in the negotiation set, which

might be computationally expensive as the negotiation set is typically huge.
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4.1.2 Zeuthen Strategy

What would be a suitable strategy to adopt when following the monotonic concession

protocol? There are three key questions to be answered for that: What should an

agent’s first proposal be? On any given round, who should concede? Finally, if an

agent concedes, then how much should it concede?

Obviously, it would be in the best interest of an agent if its first proposal is its

most preferred deal. The Zeuthen strategy (Zeuthen, 1930) can be used to answer the

other two questions. Zeuthen proposed that agents should evaluate their respective

willingness to risk conflict, and that the agent with the lower value for this measure

should make the next concession. An agent’s willingness to risk conflict at round t is

the quotient of the loss in utility incurred by conceding and accepting the other agent’s

proposal and the loss incurred by not conceding and causing conflict. Therefore, the

willingness of agent i to risk conflict (with j being the other agent) is given by

riskt
i =

 1 if ui(δ
t
i) = 0,

ui(δ
t
i)−ui(δ

t
j)

ui(δt
i)

otherwise.

The Zeuthen strategy also postulates that the conceding agent’s concession should

be just enough to ensure that the other agent will have to concede in the following

round. If the agent does not concede enough, then in the next round, the balance of

risk will indicate that it still has most to lose from conflict, and so should concede

again. On the other hand, if the agent concedes too much, then it unnecessarily cuts

into its own utility.

The Zeuthen strategy is guaranteed to terminate, and the agreement that it

reaches upon termination is guaranteed to be Pareto optimal and individually ra-

tional. Furthermore, it has been shown that two agents using the Zeuthen strategy

will converge to the Nash bargaining solution (Harsanyi, 1956, 1977; Rosenschein &
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Zlotkin, 1994). While the strategy is not stable in situations where the risk values for

both agents are equal, an Extended Zeuthen strategy (Rosenschein & Zlotkin, 1994),

where an agent is randomly selected to concede in equal risk situations, is in Nash

equilibrium.

4.1.3 One-Step Protocol

As mentioned above, the monotonic concession protocol is inefficient in that it is com-

putationally expensive and it also takes multiple steps to converge. The alternative,

one-step protocol (Rosenschein & Zlotkin, 1994) simplifies this matter. Here, each

agent is allowed to make a single offer, and the proposal that yields the higher prod-

uct of utilities is adopted. Situations where the products are equal are resolved by

flipping a coin. The best strategy that agents can follow in this protocol is to propose

the agreement that is best for themselves amongst those with maximal product of

utilities. This is clearly both stable and efficient.

4.2 Automated Negotiations in Complex Settings

The mechanisms considered in the previous section are applicable only to simple

settings with two agents that negotiate over a single issue. As mentioned earlier,

negotiation settings in real-world settings are much more complex due to at least

two factors - there are usually many issues to be addressed, and there are typically

more than two participants in the negotiation. Artificial intelligence techniques have

been combined with methods and techniques from many other multi-entity fields such

as game theory, operations research, physics, and philosophy to yield useful mecha-

nisms for such complex domains. (Kraus, 1997; Sandholm, 1999) present an excellent

overview of negotiation research in multiagent systems. We present a brief literature

survey of the key models used for reaching agreements in multiagent environments.
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4.2.1 Auctions

Auctions present a very simple mechanism for agents to reach agreements on the

distribution of a set of items. Agents (the bidders) can define how much they value

each item (or a group of items) by placing a bid for it. All these bids are analyzed

by a central agent (the auctioneer) who then decides on the allocation of items to

the bidders. There are two patterns of interactions in auctions - one-to-many auction

protocols, and many-to-many auction protocols (Wurman, Walsh, & Wellman, 1998).

In one-to-many interactions we have one agent that initiates the auction and a number

of other agents can bid in the auction. These are the most common type of interactions

observed in auction houses such as eBay (eBay, 2001). The many-to-many auction

protocols have several agents initiate an auction and several other agents can bid in

the auction. Given the pattern of interaction, the first issue to determine is the type

of protocols to use in the auction. Given the protocol, the agents need to decide on

their bidding strategy.

There are several types of one-to-many auctions that are used, including the En-

glish auction, the Dutch auction, the first-price sealed-bid auction, and the second-

price sealed-bid auction (the Vickrey auction). These auction protocols differ across

various dimensions, including how the winner is determined, whether or not the bids

are common knowledge, and how the bidding proceeds in the auction. The winner

determination problem is the problem of deciding who gets the item that all agents

are bidding for, and how much does the winner pay for it. Obviously, the agent that

bids the most gets the item. However, two possibilities are observed for the second

question in the actual auction settings. If the agent has to pay its quoted amount

for the item, it is known as first-price auctions. In some settings, the winning agent

has to pay only the amount quoted by the second highest bidder; these are known

as second-price auctions. The second dimension along which auction protocols can

vary is whether or not the bids are common knowledge (i.e. whether or not the bids
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made by the agents are known to each other). If every agent can observe what every

other agent is bidding, it is an open-cry auction, otherwise it is a sealed-bid auction.

A third dimension is the mechanism by which the bidding proceeds. The simplest

possibility is to have a single round of bidding, after which the auctioneer allocates

the item to the winner. Such auctions are known as one shot. The second possibility

is that the price starts low (often at a reservation price) and successive bids are for

increasingly large amounts. These are known as ascending auctions. The alternative

- descending - is for the auctioneer to start off with a high value, and to decrease the

price in successive rounds.

The English auction is an ascending, first-price, open cry auction. In one variant

of the English auction the auctioneer calls successively higher prices until only one

willing bidder remains, and the number of active bidders is publicly known at all times.

In other variants the bidders call out prices themselves, or have the bids submitted

electronically and the best current bid is posted. The dominant strategy for an agent

in English auctions is to bid a small amount more than the current highest bid until

the bid price reaches its current valuation, and then to withdraw. The Dutch auction

is an open-cry, descending auction where the auctioneer begins by naming a very

high price and then lowers it continuously until some bidder stops the auction and

claims the object for that price. There is no dominant strategy for Dutch auctions in

general. Both English and Dutch auctions suffer from what is known as the winner’s

curse - a situation where the winning agent worries if it has overvalued the item on

offer. The first-price sealed-bid auction is an example of a one-shot auction, and is

arguably the simplest of all auction types. The best strategy for an agent in this

auction is to bid less than it’s true valuation. This is the case because the winner

in this auction knows that it has to bid only slightly higher than the second highest

bidder for the item, and anything more is, in effect, wasted money. How much less

should an agent bid is of course dependent on what the other agents bid - there is no
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general solution. Finally, the Vickrey auction (Vickrey, 1961) is a second-price sealed

bid auction. It is also a one-shot auction where the highest bidder wins the item on

offer. Only, here the winner pays the price quoted by the second highest bid. The

significance of this apparently weird auction protocol is that, under some assumptions,

it is incentive compatible, i.e. it makes truth telling the dominant strategy for the

bidders. Consider this to see why. Suppose the agent bids more than its true valuation

for an item. In this case, it runs the risk of winning the item at a price higher than

its private valuation, thereby incurring a loss. Suppose the agent bids less than its

true valuation. Here it risks losing the item unnecessarily. Also, even if it does win,

the amount that it has to pay is not affected by bidding less. Therefore, it is in the

best interest of the agent to bid its true valuation. Unfortunately, as described in

(Sandholm, 1996, 1999), the Vickrey auction is susceptible to bidder collusion and

lying auctioneers. (Klemperer, 1999; Monderer & Tennenholtz, 2000) present further

details on the advantages and disadvantages of various auctions in real-world settings.

There are situations in which the value of some item to a bidder depends on other

items that it wins. In such cases, bidders may want to submit bids for combina-

tions of items. Such auctions are called combinatorial auctions (Cramton, Shoham,

& Steinberg, 2006). The main problem in combinatorial auctions is to determine the

revenue-maximizing set of nonconflicting bids. The general problem is NP-complete

and inapproximable (Rothkopf, Pekec, & Harstad, 1998; Lehmann, Muller, & Sand-

holm, 2006). However, in practice, modern search algorithms can optimally solve

winner determination in the large (Sandholm, 2002; Fujishima, Leyton-Brown, &

Shoham, 1999; Sandholm, 2006).

Double auction is the most well-known auction protocol for many-to-many auc-

tions. In a double auction, buyers and sellers are treated symmetrically, with buyers

submitting bids and sellers submitting minimal prices (Wilson, 1985). There are sev-

eral algorithms used for matching buyers and sellers and for determining the transac-
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tion price. Preferably, the protocol will be incentive compatible, individual rational,

and Pareto optimal (Wurman et al., 1998).

4.2.2 Coalition Formation

Coalition formation is an important form of coordination and cooperation in multi-

agent systems. It enables the agents to satisfy tasks that they would otherwise be

unable to perform, or would perform with a lower efficiency. It is a useful form of

interaction in multiagent settings with both cooperative and competitive agents. As

mentioned in section 2.3, coalition formation is typically studied as a characteristic

form game where the value of each coalition is given by a characteristic function

for the game. When applied to multiagent systems, the coalition formation problem

comprises of three important steps:

Determination of coalition values: This involves the computation of utilities of

all 2|A| possible coalitions in a multiagent system with |A| agents.

Optimal coalition structure generation: The agents must be partitioned into

disjoint and exhaustive coalitions such that the partition is optimal in the de-

sired sense. While the optimality criterion is domain-specific, most studies in

multiagent systems aim for a social welfare maximizing solution. However, the

total number of coalition structures is O(|A||A|) and ω(|A||A|/2), and finding

the coalition structure that maximizes the overall utility of the system is NP-

complete (Sandholm, Larson, Anderson, Shehory, & Tohmé, 1999).

Stable payoff distribution: This involves the distribution of utilities within coali-

tion members such that they are motivated to stay in the coalition assigned

to them. The solution concepts from game theory are employed in establishing

stability in coalitions. As mentioned earlier2.4, this step is also computationally

expensive. This step is not required for cooperative multiagent systems.
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Algorithmic approaches towards splitting the coalition value among the members

such that they yield stable solutions was addressed for certain cases by game theorists.

Transfer schemes in game theory represent a dynamic approach to the payoff divi-

sion activity of coalition formation in characteristic form games (Kahan & Rapoport,

1984). The coalition structure is fixed in these schemes, and the agents iteratively

exchange payments in a prespecified manner. (Stearns, 1968) provides two transfer

schemes, one that converges to the kernel, and another that converges to the bargain-

ing set of a coalitional game. (Wu, 1977) presents a transfer scheme that leads to a

core solution in a coalition game when it is nonempty.

Some of the earliest work in coalition formation for multiagent systems was pre-

sented in (Zlotkin & Rosenschein, 1994). They studied the problem of utility division

in subadditive task-oriented domains, which are a strict subset of characteristic form

games 1. They consider only the grand coalition structure, where all the agents be-

long to the same coalition, and provide a linear algorithm that guarantees each agent

an expected utility that is equal to its Shapley value 2.3.9. In their algorithm, each

agent gets paid its marginal contribution to the coalition. Since this depends on the

order in which the agents join the coalition, the joining order is randomized in a

nonmanipulable way by a trusted third party.

(Ketchpel, 1994) presents a coalition formation method which simultaneously ad-

dresses both coalition structure generation and payoff distribution in situations where

there is uncertainty in the utilities of the coalitions. The adopted approach involves

a pairwise auction protocol where, for each coalition, the agent that values the col-

laboration more highly is selected to manage the coalition and it offers an agreement

to other members based on their valuations. This algorithm uses cubic time in the

number of agents, but each individual step may be arbitrarily complex (depending

1In a subadditive task-oriented domain, for any two coalitions S1, S2 ∈ N , we have v(S1 ∪ S2) ≤
v(S1) + v(S2).
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on how an agent decides on its valuation of its coalition).

(Shehory & Kraus, 1998) discusses coalition formation to perform tasks in co-

operative multiagent systems, where only the optimal coalition structure generation

problem needs to be addressed. They provide an efficient, distributed algorithm that

greedily selects feasible, highly valued coalitions. The complexity of the problem is

reduced by limiting the number of agents per coalition. Their greedy algorithm guar-

antees solutions with low ratio bounds from the optimal solution (given the limit on

the number of agents) and low computational complexities. They consider both types

of scenarios, where each agent must be a member of only one coalition, and where

overlapping coalitions are allowed.

(Shehory & Kraus, 1999) consider coalition formation among self-interested agents

with perfect information in characteristic form games. Both the coalition structure

and the payoff division problems are addressed. An exponentially complex anytime

algorithm for forming coalitions that satisfy the kernel 2.3.5 stability criterion is

developed. They also provide another protocol with reduced complexity that requires

only a weaker form of kernel stability. They use Stearn’s transfer scheme introduced

above in their algorithms.

(Sandholm et al., 1999) focuses on establishing the worst case bound on the coali-

tion structure quality while searching only a fraction of the coalition structures. As

mentioned earlier, they prove that the problem of generating the optimal coalition

structure has a complexity of O(|A||A|) and ω(|A||A|/2). They show that there is a

minimal number of structures that should be searched in order to establish a bound -

at least 2|A|−1 structures must be searched to gather the valuations of all 2|A| possible

coalitions in a multiagent system with |A| agents. They present an anytime algorithm

that establishes a tight bound within this minimal amount of search. If we have the

valuations for all possible combinations of agents in a system, the dynamic program-

ming algorithm for the set partitioning problem presented by (Yeh, 1986) (and later
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used for the combinatorial auction problem in (Rothkopf et al., 1998)), which runs in

O(3|A|) and Ω(2|A|) time, can also be used. Also, (Dang & Jennings, 2004) presents a

slightly tighter bound on the anytime algorithm for computing the optimal coalition

structure than the one discussed in Sandholm’s paper.

(Kraus, Shehory, & Taase, 2003) proposes a coalition formation mechanism for

a business-to-business domain with assumptions appropriate for real-world settings,

such as incomplete information (i.e. the agents only have a partial view of their envi-

ronment), multiple valuations of specific tasks (i.e. the agents differ in their valuation

of various coalitions), and time-bounded processes. They adopt an auctions-based ap-

proach for allocating tasks and suggest some heuristics that the self-interested agents

can adopt to form coalitions. They address only the coalition structure generation

problem in this paper. (Kraus, Shehory, & Taase, 2004) extends their previous work

and presents a variety of strategies for payoff distribution, including the strategy

(using Stearn’s transfer scheme) where the resultant distribution lies in the kernel.

Finally, (Rahwan & Jennings, 2005, 2007) address the coalition value determina-

tion problem in a distributed fashion for cooperative multiagent systems. Specifically,

they present an algorithm that divides the 2|A| equally among all |A| agents, thereby

significantly reducing the computational load for the first step in coalition formation.

4.2.3 Contracting

An agent may try to contract out some of the tasks that it cannot perform by itself,

or that may be performed more efficiently by other agents. One self-interested agent

may convince another self-interested agent to help it with its task by promises of

rewards. The main question in such a setting is how one agent can convince another

agent to do something for it when the agents do not share a global task and the

agents are self-interested (Kraus, 1996). Furthermore, if the contractor-agent can

choose different levels of effort when carrying out the task, how can the manager-
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agent convince the contractor-agent to carry out the task with the level of effort that

the manager prefers without requiring the manager’s supervision?

The issue of incentive contracting has been investigated in economics and game

theory for decades (Kreps, 1990; Mas-Colell, Whinston, & Green, 1995). There are

usually two parties in all the different types of contracts considered for various ap-

plications. The first party (called the agent in economics literature) must choose an

action or a level of effort from a number of possibilities, thereby affecting the outcome

of both parties. The second party (called the principal) has the additional function of

prescribing payoff rules. Before the agent chooses the action, the principal determines

a rule of the principal’s observations. Many models of the principal-agent paradigm

differing in several aspects, such as the amount of information that is available to the

parties, the observations that are made by the principal, and the number of agents

involved, are studied in the literature.

A well-known framework for automating contracting is the contract net protocol

(Smith, 1980; Smith & Davis, 1981; Davis & Smith, 1983). In the Contract Net

protocol a contract is an explicit agreement between an agent that generates a task

(the manager) and an agent that is willing to execute the task (the contractor). The

manager is responsible for monitoring the execution of a task and processing the

results of its execution, whereas the contractor is responsible for the actual execution

of the task. The protocol works as follows. The manager of the task announces the

task’s existence to other agents. Available agents (potential contractors) then evaluate

the task announcements made by several managers and submit bids for the tasks they

are suited to perform. The manager then evaluates all the bids, selects the best bid

and awards the contract to the bidder, and rejects the other bids. Thus, the task

distribution is performed by a decentralized negotiation process involving a mutual

selection by both managers and contractors. The original contract net protocol was

developed for cooperative environments where all agents worked towards a common
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goal, so there was no need to motivate the agents to bid for tasks or to do their

best in executing them if their bids are chosen. The main problems addressed by the

contract net protocol are task decomposition, subtask distribution, and synthesis of

the overall solution (Smith, 1980; Smith & Davis, 1981; Davis & Smith, 1983).

A modified version of the contract net protocol for competitive agents is presented

in (Sandholm, 1993). It provides a formalization of the bidding and the decision

awarding processes, based on the marginal cost calculations according to local agent

criteria. A contractee agent will submit a bid for a set of tasks only if the maximum

price mentioned in the tasks’ announcement is greater than the agent’s total cost

of handling both, its original tasks and these new tasks. The contractor agent, on

the other hand, would only be interested in bids where it does not lose more than it

saves by not handling the contracted tasks itself. A simple technique is suggested to

ensure individual rationality for all agents - the actual price that the contractor pays

to the contractee is half way between their marginal costs. (Sandholm, 1997, 1998;

Andersson & Sandholm, 1998) provide asynchronous distributed implementations and

theoretical results for the contract net protocol based on marginal costs.

(Sandholm & Lesser, 2002; Sandholm & Zhou, 2002) describes a method called

leveled commitment contract where each party can unilaterally decommit to a contract

by paying a predetermined penalty. They show that such contracts improve expected

social welfare even when the agents decommit strategically in Nash equilibrium.

(Aknine, Pinson, & Shakun, 2004) also addresses agent decommitment in contract

net protocol by introducing tentative contracts. It extends the contract net protocol

by introducing two more steps - pre-bid and pre-assignment. This allows the agents

to make tentative commitments that they can make binding at a later time, when

they are more certain that no new offers better than the one currently committed to

will arrive from other agents.
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4.2.4 Market-Oriented Programming

Market-oriented programming is an approach to distributed computation based on

market price mechanisms (Wellman, 1993; Wellman & Wurman, 1998). The idea

of market-oriented programming is to exploit the institution of markets and models

of them, and to build computational economies to solve particular problems of dis-

tributed resource allocation. In market-oriented programming, the distributed com-

putational environment in a multiagent system is implemented directly as a market

price system where the agents behave as computational modules in markets and inter-

act in a very restricted manner - by offering to buy or sell quantities of commodities

at fixed unit prices. When this system reaches equilibrium, the computational market

has indeed computed the allocation of resources throughout the system, and dictates

the activities and consumptions of the various modules. Note that this approach for

multiagent coordination is applicable only when there are several units of each kind

of item and the number of agents is large. Otherwise, it is not rational for the agents

to ignore the effects of their behavior on the prices, when it actually has an influence.

Also, there are situations in which reaching an equilibrium may be time consuming,

and the system may not even converge (Wellman & Wurman, 1998). It also requires

some scalable, trustworthy mechanism to manage the auctions for each type of item

being traded. A survey and general discussion on the market-oriented programming

approach can be found in (Wellman & Wurman, 1998; Wellman, 1996).
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Chapter 5

Negotiation Networks

5.1 Our Agent-Based Negotiation Model

Target application domains for the work in this dissertation, such as the three exam-

ples presented in section 1.1, can be represented as multiagent systems and share the

following properties:

1. The individual agents in the system are autonomous, rational, and self-interested.

These agents might be owned by different organizations, and therefore, they

make independent decisions and attempt to maximize the expected utilities for

their owners within the confines of the rules laid down for admissible agent

behavior by the governing bodies (also called the mechanism).

2. The agents encounter situations where they cannot satisfy their goal(s) by them-

selves - they have to cooperate (via negotiations) with other agents and arrive

at mutually beneficial agreements in order to further their own selfish interests.

3. The agents have to cooperate in situations where there is a conflict of interest -

multiagent interactions in the system can be modeled as constant-sum games,

where an agent’s gain is always at the expense of others in the system.

4. There can be an arbitrarily large number of agents in the system. However,
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each agent can/must interact with only a small subset of other agents in the

system.

5. The agent environment is inherently distributed - the information, capabilities,

and resources are dispersed across all agents in the system, and it is not feasible

to aggregate them at some central location where the coordination problem can

be solved optimally.

6. The agents have an incomplete information about their environment. Their de-

cisions are based purely on their local knowledge, and the information gathered

by communicating with their neighbors.

Such problems are modeled as negotiation networks in this work.

5.1.1 Negotiation Network

Definition 34 (Negotiation Network) A negotiation network is an undirected

graph G = 〈V, E〉, with vertices V = A∪∆, and edges E = N∪S. Here, A is the set of

agents in the environment, while set ∆ represents the possible deals or coalitions that

can exist between these agents. The negotiation edges N connect the potential deals to

the agents that are involved in those deals, thereby representing the links over which

negotiations must happen in the system. The social edges S connect each agent to

all other agents that they can/must communicate (to make deals) with in the system,

thus representing their social network.

Figure 5.1 presents a graphical representation of a negotiation network. We for-

mally define some of the important concepts and assumptions related to negotiation

networks in the following subsections.
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Figure 5.1: Negotiation Network

5.1.2 Deal (or Coalition) in a Negotiation Network

Definition 35 (Deal or Coalition) A deal or coalition δ ∈ ∆ is a tuple 〈δa, δr〉,

where δa ⊆ A is the set of agents participating in the coalition, and δr is the total

revenue associated with the coalition (also called the coalition value) to be distributed

among the agent members δa should the deal be a part of the negotiation outcome (a

feasible coalition configuration).

For a multiagent system comprising of |A| agents, there are 2|A|− 1 possible ways

in which the agents can form coalitions and agree on a deal in order to accomplish

some task in the system. However, the total number of possible coalitions in our

model are limited by the social networks of the individual agents.

5.1.3 Expectation (or Utility) of an Agent

Definition 36 (Expectation or Utility) An agent a ∈ A has an expectation or

utility from each deal that it can potentially form in the system, given by the utility

68



function.

ua : δ → <

The agents in our system concurrently negotiate over all deals that they can poten-

tially form in order to determine the one that maximizes their own utilities. Individual

agent decisions lead to the selection of one of many feasible coalition configurations.

5.1.4 Deal (or Coalition) Configuration

Definition 37 (Deal or Coalition Configuration) A deal configuration or coali-

tion configuration is a tuple given by ~∆ =
〈
~δ, ~u

〉
, where:

• The coalition structure ~δ is a set of disjoint and exhaustive coalitions such

that every agent in A participates in exactly one coalition in the set.1 Formally,

~δ = Γ ⊆ ∆

such that

∀γ1,γ2∈Γ γa
1 ∩ γa

2 = Φ

and

∀i∈A∃γ ∈ Γ|i ∈ γa

• The payoff distribution vector ~u represents the utility earned by each agent

in the system according to the current configuration.

~u→ <|A|

1The coalition structure may include singleton coalitions involving solitary agents, where the
utility of the agent is greater than or equal to zero.
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Feasible Coalition Configuration

Definition 38 (Feasible Coalition Configuration) A coalition configuration is fea-

sible if, for all coalitions in the configuration, the total revenue associated with each

coalition meets the expected utilities of all agents in the coalition. Formally, a coalition

configuration is feasible iff

∀δ∈~δ

∑
a∈δa;ua(δ)∈~u

ua(δ) ≤ δr

.

5.2 Modeling Automated Negotiation Problem as

a Negotiation Network

Let us revisit the automated negotiation problem, using the following B2B scenario

as a running example. There are many businesses in an electronic marketplace, each

specializing in offering certain services for a price. Obviously, their sole concern is

maximizing their profits by quoting the highest possible price for the services they

offer for the tasks they commit to. These businesses may not be able to complete a

task alone (because they do not possess all the service capabilities needed to handle

the task fully). In such cases, they have to collaborate with each other to fulfill cus-

tomer requests in the marketplace. A customer request is represented as a workflow

specifying a list of services that need to be performed, and a reward that the customer

is willing to offer to the business(es) that handles its request satisfactorily. So, for

example, a customer request for online book purchase would include a workflow speci-

fying that a seller must ship the book to the customer, and the customer’s quote must

be transferred to the seller by a payment service provider upon successful comple-

tion of the transaction. Thus, businesses offering the selling, shipping, and payment

70



services must work together to perform the customer request, and agree to share the

customer’s quoted reward among themselves such that they are all satisfied with the

transaction. Now, there are multiple customer requests, and multiple businesses that

can offer these services in the marketplace. Therefore, while the businesses are inter-

ested in gaining maximum revenue, they are also competing with other businesses.

They have to outbid other similar businesses to win the contract, but lowering the

bid too much might unnecessarily reduce their share of the reward from fulfilling the

contract. Assuming that the businesses can only handle one customer request at a

time, which request should they choose to serve? How do they determine their quote

for the preferred request? These are hard questions, and are frequently encountered

by businesses in the real world. The only way to solve this problem is to allow all

agents to negotiate with each other over all customer requests that they are interested

in.

A negotiation network captures all the above mentioned characteristics of the

automated negotiation problem. Agents in a negotiation network are connected with

social edges, which allow them to interact with each other and submit joint proposals

for handling various customer requests. These proposals are deals or coalitions in the

negotiation network. Each agent can thus establish contact with every other agent

in its social network. The social network can be fully connected, as would be the

case in a small, close-knit community, or sparsely connected, as in a marketplace.

The model can be further extended to allow dynamic changes to the social network of

agents, thereby representing changes in a dynamic environment such as a marketplace.

Also, once a group of agents agree to submit a joint proposal, they would want

to negotiate over how to distribute the proceeds of the deal between themselves,

should it materialize. The negotiation edges in the negotiation network facilitate

such interactions between the coalition members.
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5.3 Agent Coordination through Coalition Forma-

tion

Agents in negotiation networks have to work together to further their own cause

of making profit. The utility of an agent depends on the coalition that it commits

to and on its coalition members, but not on any other coalition in the network.

Also, a negotiation network can be studied as a characteristic form game. All these

factors make coalition formation as the most appropriate coordination model for the

automated negotiation problem. As discussed in section 4.2.2, coalition formation

entails determining the coalition values, generating the optimal coalition structure,

and computing a stable payoff configuration. The worth of various agent sets in

automated negotiation problems represent the values of those coalitions. A feasible

coalition configuration in a negotiation network constitutes a coalition structure, and

a payoff configuration. The challenge is to determine a feasible coalition configuration

with the optimal coalition structure, and a stable payoff configuration (according

to any game-theoretic solution concept for stability). The research focus in this

dissertation is on devising a negotiation mechanism that not only converges to such

a solution, but also has the desiderata described in section 1.2.2.
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Chapter 6

Approximation Algorithm for the

Automated Negotiation Problem

As discussed in the previous chapters, the automated negotiation problem introduced

in section 1.2.1 is an important problem not only in computer science, but also in

many other fields such as social sciences and economics. We briefly discussed our

approach for solving the problem in the previous chapter. In this chapter, we present

a detailed theoretical analysis of the problem and determine the computational com-

plexity of solving the problem optimally. Then, we present our automated negotiation

mechanism, and discuss the PACT (Progressive Anytime Convergent Time-efficient)

algorithm for quickly computing an approximate solution to this hard problem. We

evaluate our algorithm empirically and present the simulation results. These results

help us understand the various properties of our mechanism. Later, we apply our

mechanism to a variant of the automated negotiation problem, where the worth of

all agent coalitions is not known a priori. Again, we measure the performance of our

approach empirically and present the simulation results for these experiments.
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6.1 Automated Negotiation Problem Revisited

The automated negotiation problem from section 1.2.1 can be restated as a negotia-

tion network problem in the following manner:

Definition 39 (Automated Negotiation Problem) Consider a negotiation net-

work, G = 〈V, E〉, with vertices V = A ∪ ∆, and edges E = N ∪ S. The set of

selfish, rational agents is represented as A = {a1, . . . , an}, and the set of coalitions

in the network is ∆ = {δ1, . . . , δm}. Each coalition δ ∈ ∆ is a tuple 〈δa, δr〉, where

δa ⊆ A is the set of agents participating in the coalition, and δr is the highest worth

of that set of agents working together for some task. The negotiation edges N connect

each δ to δa, while the social edges S connect each agent to every other agent. Given

the above network, devise a negotiation mechanism that computes a feasible coalition

configuration with optimal coalition structure and stable payoff distribution.

6.2 Theoretical Analysis of the Automated Nego-

tiation Problem

We model the automated negotiation problem as a negotiation network. Therefore,

solving the automated negotiation problem entails computing a feasible coalition con-

figuration with desired properties for its negotiation network. As mentioned in section

5.3, we use coalition formation as the coordination model for our agents in the ne-

gotiation network. This requires us to solve three subproblems: determining the

coalition values, generating the optimal coalition structure, and computing a stable

payoff configuration for the negotiation network. We address each of these subprob-

lems separately in the following subsections.
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6.2.1 Determining the Coalition Values

The first step towards agents forming favorable coalitions is determining the worth

of each candidate coalition for them. For N agents, there are 2n possible coali-

tions, where n = |N |. Therefore, the complexity of determining the coalition values

(building the characteristic function) is O(2n). However, the worth of all coalitions

is common knowledge in the automated negotiation problem, as defined in this work.

Therefore, this step can be completed in constant time.

6.2.2 Generating the Optimal Coalition Structure

A coalition structure is a partition of all agents into groups such that each group is a

coalition in the negotiation network. The problem of computing the total number of

such coalition structures is studied in mathematics (combinatorics), and is given by

n∑
k=1

S(n, k),

where,

S(n, k) =
1

k!

k∑
i=0

(−1)i

(
k

i

)
(k − i)n

is the Stirling number of the second kind (Goldberg, Newman, & Haynsworth,

1972), which gives the total number of ways of partitioning a set of n elements into

k nonempty sets. As can be seen from the above formulae, the number of coalition

structures grows rapidly (considerably faster than the number of coalitions grows)

as the number of agents increases. It is of the order of O(nn) and ω(nn/2). Table

shows the growth rate in numbers. Therefore, exhaustive enumeration is not a viable

solution for finding the optimal coalition structure, unless the number of agents is

very small (under 15 or so in practice).
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Number of Total number of
Agents Coalition Structures

3 5
4 15
5 52
6 203
7 877
8 4140
9 21147
10 115975

Table 6.1: Growth rate of the number of coalition structures with increasing number
of agents

6.2.3 Computing a Stable Payoff Configuration

Once we have derived the optimal coalition structure for a negotiation network, we

need to find a payoff distribution that is stable (as defined by the chosen game-

theoretic concept). An imputation defines a way to divide the total revenue of the

selected coalition structure among all agents in the network. The size of this im-

putation set can give us a reasonable estimate of the complexity of finding a stable

solution, as stable payoff distributions are only a tiny subset of the imputation set.

This is another combinatorial problem well-studied in mathematics.

The size of the imputation set depends on many factors:

Number of agents: Clearly, with increasing number of agents, there is an exponen-

tial growth in the number of ways that the revenue can be split between the

agents. For example, consider a system where n = 2, and v(N) = 2. Here,

the imputation set is {(2, 0), (1, 1), (0, 2)}. Now, if the number of agents in

the system changes to 3, the total number of ways to distribute v(N) among

the agents increase to {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 2, 0), (0, 0, 2)}. See

table 6.2 for more examples about this relationship.

Grand coalition value: The value of the grand coalition, v(N), in the characteris-

tic function of the negotiation network influences the size of the imputation set.
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xi 8 7 6 5 4 3 2 1 0 Imputation
n set size (I)
2 1 1 1 1 1 1 1 1 1 9
3 1 2 3 4 5 6 7 8 9 45
4 1 3 6 10 15 21 28 36 45 165
5 1 4 10 20 35 56 84 120 165 495
6 1 5 15 35 70 126 210 330 495 1287
7 1 6 21 56 126 252 462 792 1287 3003
8 1 7 28 84 210 462 924 1716 3003 6435
9 1 8 36 120 330 792 1716 3432 6435 12870
10 1 9 45 165 495 1287 3003 6435 12870 24310

Table 6.2: Growth rate of the imputation set. We set v(N) = 8. The columns show
the total number of imputations where the payoff of an agent, i ∈ N , is xi = 8, 7, . . . , 0
with different agent set sizes n = 2, . . . , 10. The final column represents the total size
of the imputation set for each row.

Consider the above example again - we have n = 2, v(N) = 2, and the imputa-

tion set is {(2, 0), (1, 1), (0, 2)}. Upon increasing v(N) from 2 to 3, the imputa-

tion set increases to {(3, 0), (2, 1), (1, 2), (0, 3)}. Table 6.2 provides the imputa-

tion values for v(N) = 8. To see the imputation values for v(N) = γ, 0 < γ < 8,

move 8− γ headings of imputation columns (columns 2 - 10 in table 6.2) to the

left, and delete 8− γ imputation columns from the right.

Desired precision level: The desired precision level in the outcome of the algo-

rithm has a significant impact on the size of the imputation set. A precision

level requirement of upto z decimal points is equivalent to an increase of v(N)

by a factor of 10z. For example, a game with n = 2, v(N) = 2 and a desired

precision level of 2 decimal points will comprise of the following imputation set:

{(2.00, 0.00), (1.99, 0.01), (1.98, 0.02), . . . , (0.00, 2.00)}.

Note that table 6.2 is the symmetric Pascal matrix. Each element in this matrix,

Inm, represents the total number of imputations in the imputation set of a negotiation

network with n agents, where an agent i ∈ N gets value m = xi out of the total

available revenue, γ = 10z · v(N). This value is given by,
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Inm =

(
a

b

)
where,

a = n− 2 + γ −m and b = n− 2

Therefore, the total size I of the imputation set in a negotiation network is given

by

I =

γ∑
m=0

Inm =

γ∑
m=0

(n− 2 + γ −m)!

(n− 2)!(γ −m)!

Thus, the sample space of candidate imputations while searching for the stable

imputation is huge, and a naive algorithm that scans through the entire search space

to derive a stable imputation will have O( (n+γ)!
n! γ!

) complexity.

6.3 PACT - Our Negotiation Mechanism to Solve

the Automated Negotiation Problem

As described in the previous section, the automated negotiation problem is hyper-

exponentially complex. Therefore, the best that we can do is present some heuristics

that yield results close to the optimal solution. In this section, we present our negoti-

ation mechanism for addressing this problem. First, we describe the basic principles

that were adopted to devise the mechanism. The following sections describe the ne-

gotiation protocol and the negotiation strategy of the mechanism. Then we present

the algorithm that puts all these ideas together, along with a running example to

demonstrate it.
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6.3.1 Basic Principles

We adopt the following principles to circumvent the enormous complexity of the

problem at hand:

1. The best way to ensure that the agents are satisfied with the results of any mech-

anism is to involve them in the decision process. We do that by distributing the

computational load among all agents in the network. In our mechanism, each

agent determines the preferable coalitions for themselves, and negotiates with

other members of these coalitions to reach a consensus over the payoff distribu-

tion. This way, the computational load is shared by all agents in proportion to

their relative bargaining strengths.

2. We allow agents to negotiate with other agents over all their candidate coalitions

concurrently. This allows the agents to assess their relative bargaining strengths,

and thereby, make a sound decision at each stage.

3. The agents follow an iterative algorithm for negotiations. Having multiple

rounds of negotiation allows the agents to rectify previous bad decisions, if

any, and ensures that the solution that they end up with when the negotiations

converge will be acceptable to them all.

4. Our mechanism simultaneously handles the constraints for optimal coalition

structure generation and stable payoff configuration determination problems,

thereby drastically limiting the sample space considered while searching for

the solution. Searching for stable solutions facilitates the agents to identify

the coalitions they prefer, and we consider only those coalition structures that

include preferred coalitions.
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6.3.2 Negotiation Protocol

The PACT negotiation protocol is a two-step process - the first step involves iterative,

distributed negotiations over payoff divisions among the agents in the negotiation

network, and the second step selects the near-optimal coalition structure based on

the payoff allocations agreed upon in the previous step.

Figures 6.2 and 6.3 describe the negotiation protocol in detail.

Input: A negotiation network, with coalition values

Output: A feasible coalition configuration, with optimal coalition
structure and stable payoff configuration

Protocol: The PACT negotiation protocol has two steps –

Step 1 – Iterative, distributed negotiations over payoff divisions

Step 2 – Selection of the (near-)optimal coalition structure
based on the payoffs decided in step 1

Figure 6.1: PACT Negotiation Protocol

6.3.3 Negotiation Strategy

Given the above negotiation protocol, we now present a negotiation strategy for the

agents in figure 6.4.

6.3.4 The Algorithm

We now present our approximation algorithm for the automated negotiation problem

based on the ideas discussed above (Goradia & Vidal, 2007b, 2007c).

The Progressive Anytime Convergent Time-efficient (PACT) algorithm is a dis-

tributed, hill-climbing algorithm that facilitates selfish, rational agents to form coali-

tions in order to handle tasks (customer requests in our B2B example from section

5.2). It is an iterative algorithm that progressively produces a better solution over
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• For the first round, each agent claims equal share of the total
value for each of its coalitions

• For each subsequent round, each agent has three options for each
of its coalitions

– Claim a new share of the coalition value

– Vote to fix the negotiations over the coalition

– Opt out of the negotiations for the coalition

• If any agent in a coalition claims a new share, then

– Compute the surplus (or deficit) for the coalition

– Equally share surplus (or deficit) among the agent members to
derive new expectations from the coalition for the current round

• If all agents vote to fix a coalition, then fix it. No negotiations
happen over the coalition in future rounds

• If any agent opts out, then remove the coalition from the system

• Repeat the negotiations for another round until all coalitions are
fixed or opted out of

Figure 6.2: Step 1 of the PACT Negotiation Protocol – Iterative, Distributed Nego-
tiations over Payoff Divisions

• Repeat until there are coalitions in the system

– Each agent broadcasts its preferred coalition

– The best of the preferred coalitions is cleared

∗ Coalitions with higher values, fewer members, and earlier arrival
in the system have a higher preference over others

∗ All agents participating in the best coalition are cleared

– All other coalitions with members from the cleared coalition are
removed from the system

• The set of cleared coalitions form the coalition structure chosen
by the PACT mechanism for the given CFG. The payoffs within
the coalitions is in accordance with the negotiations in step 1.

Figure 6.3: Step 2 of the PACT Negotiation Protocol – Near-Optimal Coalition Struc-
ture Selection
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Step 1 - Agent decision function for each negotiation round

• For each of its coalitions, an agent decides on its action for
the current round as follows:

– It opts out of the negotiations for the coalition if its derived
expectations from the previous round is below its reservation
price

– It computes its maximum expectation from alternative coali-
tions that it can participate in

– If the maximum expected value is identical to that from
the previous round, then it votes to fix the coalition, else
it claims the new value for the coalition in the current
negotiation round

Step 2 – Agents choice of preferred coalition

• An agent always chooses the coalition that yields it the high-
est payoff

Figure 6.4: PACT Negotiation Strategy

time. It is also an any-time algorithm, so it can be halted at any time before its

normal termination to provide the best solution until that time. We will show in our

experimental evaluation of the algorithm that it always converges and is very efficient

too. It is based on the Equal Excess Theory (EET) (see section 2.3.8 for details) for

coalition formation, which is a bargaining solution concept in game theory to realize

stable solutions for any characteristic function game.

We point the readers to one significant issue that we discovered about EET. We

quote from (Kahan & Rapoport, 1984), page 153:

For all games examined to-date, the sequence [of payoff allocations for

every coalition] converges to an asymptotic value, which often corresponds

to the solution of other theories, but a general proof has not yet appeared.

Our simulations show that for many games, the player expectations do not converge.

A change in a player’s expectation for a coalition changes the negotiating power of

its neighbors in the coalition, which in turn leads to a potential change (if it is the
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highest expectation) in their expectations for all coalitions in which they participate.

In some games, this results in a change in the expectations of one or more neighbors of

the original player for some other coalition(s), which forces the player to switch back

to its original expectation. This results in a cyclic equilibrium where the expectations

of all the involved players toggle between two or more values. For example, consider

this characteristic function game:

v(A) = 8; v(AB) = 15; v(AC) = 23; v(BC) = 13; v(N) = 0

All player expectations toggle between two values after round 10 of player negotia-

tions.

PACT is a distributed implementation of the EET. PACT goes beyond the EET

in that it enforces convergence, and it has a mechanism for the agents to select the

winning coalitions in a distributed fashion. 6.5 describes our PACT algorithm.

The PACT algorithm 6.5 passes through the following phases:

Pre-negotiation phase (lines 1-6): All agents are initialized here. For the given

coalition model, each agent determines its candidate coalitions (line 2) and

neighbors (line 3). For each candidate coalition, the agent initially expects an

equal division of its total value (line 5) and sets its negotiation status to active

(line 6).

Negotiation phase (lines 7-17): Each agent concurrently participates in all its

candidate coalitions. For each candidate coalition, the agent determines all

the valid alternative coalitions that it can participate in, and sets its logical

claim (expectation) from this coalition for the current round of negotiations

as the maximum revenue it received from any of these alternative coalitions

(line 9). The agent exchanges its demands with all its neighbors and then

computes its actual payoffs for the various coalitions. Demands by all agents in

a coalition may lead to some surplus (or deficit) in revenue. This excess is split
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Find-Coalition-PACT(i)

1 t← 0 � Pre-negotiation phase
2 Li ← {c ∈ T : i ∈ cagents}
3 Nagents ←

⋃
c∈Li

cagents

4 for c ∈ Li

5 do Et(i, c)← cvalue

|cagents|
6 fixed(c)← FALSE
7 t← t + 1 � Negotiation phase
8 for c ∈ Li

9 do At(i, c)← maxc′∈Li−c Et(i, c′)
10 for j ∈ cagents

11 do send At(i, c); receive At(j, c)
12 if fixed(c) = FALSE

13 then Et(i, c)← At(i, c) +
cvalue−

∑
j∈cagents At(j,c)

|cagents|
14 if (Et(i, c)has converged) ∨ (Et(i, c) ≤ 0)
15 then fixed(c)← TRUE
16 if ∃c ∈ Li : fixed(c) = FALSE
17 then goto 7
18 c∗i ← argmaxc∈Li

Et(i, c) � Post-negotiation phase
19 for j ∈ A
20 do send c∗i ; receive c∗j ; put all into C∗

preferred set
21 c∗ ←

{
cx ∈ C∗

preferred : ∀x 6= y, cvalue
x > cvalue

y

}
22 if i ∈ c∗agents

23 then return c∗

24 C∗
preferred ← C∗

preferred − c∗

25 for j ∈ c∗agents

26 do Li ← Li − {c ∈ Li : j ∈ c}
27 if not empty?Li

28 then goto 18
29 return

Figure 6.5: The Find-Coalition-PACT algorithm to find the best task allocation
for agent i.
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equally between all the members and added to the agent’s claim to get its actual

payoff for the concerned coalition in the current negotiation round (line 13). If

the agents payoff for a coalition remains steady (i.e. the coalition converges),

then the agent sets the coalitions negotiation status to terminated and no more

negotiations are conducted for this coalition (lines 14-15). An agent might also

terminate negotiations for a coalition if its payoff goes negative (i.e. the agent

has to pay to the coalition in order to participate in it). We have noticed in our

simulations that sometimes the agent payoff does not converge. Instead, it keeps

toggling between two values. However, even under such unstable conditions

the total excess generated within the coalition converges. Our agents test this

convergence to determine the termination of the negotiation process.

Post-negotiation phase (lines 18-29): This stage involves the selection of the

most preferred coalitions by the agents. Each agent initially ranks all their

coalitions based on their derived payoff from each of them and broadcasts its

most preferred coalition (lines18-20). Thus, each agent is informed about every

other agent’s preferences over the choice of coalitions. Each agent sorts this

list of preferred coalitions based on their coalition values. Ties are broken by

ranking the coalitions that have fewer agents ahead of the larger ones, as this

can potentially maximize social welfare. For further ties, the coalition that was

formed earlier in the environment is preferred. Thus, every agent knows the

winning coalition in the current round (line 21). The agent joins the winning

coalition if it is a member, or removes all coalitions involving agents in the win-

ning coalition and repeats the winner determination process if it is not (lines

22-26). An agent remains unallocated if it runs out of candidate coalitions to

participate in.

85



6.3.5 Demonstration of the PACT Algorithm

Figure 6.6 shows a pictorial description of the PACT algorithm. We consider the

following negotiation network here:

A = {0, 1, 2} , ∆ = {70, 80, 90, 105}

δa
1 = {0, 1} , δr

1 = 90; δa
2 = {0, 2} , δr

2 = 80;

δa
3 = {1, 2} , δr

3 = 70; δa
4 = {0, 1, 2} , δr

4 = 105.

Timestep t = 0 shows the status of the network at the end of the pre-negotiation

stage. All coalitions are equally split among all their agent members. For the first

round of negotiations, each agent computes, for each of its coalitions, its maximum

expectation from an alternate coalition. For example, consider agent 0 for coalition

105. The alternative coalitions to coalition 105 for agent 0 are coalitions 90 and

80, and its current expectations from them are 45 and 40 respectively, with the

maximum expectation being 45. Now, each agent claims its highest expectation

from an alternate coalition for all their coalitions. So, for coalition 105, agents 0, 1,

and 2 claim 45, 45, and 40 respectively. The resultant surplus (or deficit) is then

shared equally by all coalition members. This yields expectations 36.67, 36.67, and

31.67 for agents 0, 1, and 2 from coalition 105 at the end of the first negotiation

round, as shown in the figure with timestep t = 1. The procedure continues until the

negotiations converge after 13 rounds, as shown in the figure with timestep t = 13.

This is the end of the first stage of PACT negotiations

After the completion of the first stage, all agents have agreed upon the distribution

of the payoffs from all their coalitions. Therefore, the agents are now in a position

to select the best (most rewarding) coalition to participate in. Each agent ranks all

its coalitions and votes for their selection according to their preference order. The

coalitions chosen by all agents are selected for the coalition structure proposed by
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…

Figure 6.6: Demonstration of the PACT Algorithm
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our mechanism. Once a coalition is selected, all other coalitions that its members

participate in are removed from the system before the remaining agents make a new

selection. This procedure eventually yields the coalition structure that our PACT

mechanism proposes for the negotiation network. The payoff divisions for the selected

coalitions are in accordance with the decisions made in the first step. The network

marked PACT solution is the chosen solution for the above example.

6.4 Experimental Evaluation of PACT

We have developed a simulation system implementing the PACT algorithm and con-

ducted a series of experiments to test the quality of the solutions that it leads to.

First, we compare our algorithm’s performance with that of a centralized algorithm

that finds an optimal solution by performing an exhaustive search of the entire solu-

tion space. Specifically, we compare the coalition structures that the two algorithms

propose in terms of the number of tasks that get allocated, and the total revenue

generated as a result of that. We also present the results that show the computation

time that our PACT algorithm requires to produce it’s results. Our next set of ex-

periments concern with testing the scalability of our algorithm. Scalability is tested

with respect to the number of agents, the number of tasks, and the coalition size for

handling the tasks. Finally, we also demonstrate the anytime properties of the PACT

algorithm and show the rate of improvement in the quality of the solution produced

with extended negotiations.
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6.4.1 Experiments comparing PACT with an Optimal algo-

rithm

Comparison of the generated Coalition Structure

The goal of the first experiment is to determine how far the results generated by PACT

are from an optimal solution in terms of the number of tasks that are allocated from

the given set. As mentioned before, PACT facilitates agent negotiations such that

they can rank the tasks based on their expectations from each of them. The agents

then greedily seek out the best tasks for themselves. With such an approach, there is

a tendency for the agents to get stuck on some local maxima and this has an overall

adverse effect on the system-wide performance. To determine this sub-optimality,

we tested our system with a widely ranging distribution of agents and tasks, with

scenarios where the agent/task ratio is 0.25, 0.5, 0.75, 1, 1.33, 2, and 4. Figure 6.7

shows our algorithm’s performance as a ratio of that of the optimal solution.

Surprisingly, the simulation results show that the PACT algorithm produces solu-

tions that are almost as good as those generated by the optimal solution. Apparently,

the negotiation phase in PACT nudges the various agents towards coalitions that are

mutually beneficial to all the concerned agents, and the payoff exchanges converge at

an equilibrium point where it is in the best interest of all the participants to select

those coalitions. Therefore, although all agents adopt a myopic view in selecting the

allocations most favorable to them in the post-negotiation phase, all agents end up

selecting the favorable coalitions.

Comparison of the Global Value of the generated Coalition Structure

Allocating almost the same number of tasks as an optimal solution is good, but the

more important question is which tasks are allocated. If the agents end up selecting

tasks that are relatively less worthy, then their contribution towards social welfare
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Figure 6.7: Comparison of the coalition structure size for PACT and optimal algo-
rithms

maximization will be low. In this experiment we compare the total wealth generated

by the PACT algorithm in comparison to the highest possible value. Figure 6.8 shows

the results for the same set of agent/task distributions as in the previous experiment.

Simulation results show that the total value of the coalition structures generated

by PACT is very close to those generated by the optimal solution. This suggests

that the tasks that PACT allocates are mostly identical to those selected by the

optimal solution. Again, the agent negotiations drive them towards coalitions that

have relatively higher values, and the negotiation process keeps them interested in

those coalitions while also seeking a stable payoff configuration.
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Figure 6.8: Comparison of the coalition structure value for PACT and optimal algo-
rithms

Computation Time for PACT

The above results show that the PACT algorithm performs very creditably in com-

parison to the optimal algorithm. But it would all mean little if it also takes a long

time like the optimal algorithm to compute those results. This set of experiments

addresses that question - it determines the total computation time required by the

PACT algorithm for the various agent/task distribution scenarios. Figure 6.9 presents

the results.

Being a hill-climbing algorithm, PACT is very efficient. Also, being a distributed

algorithm, PACT segregates the computational effort of deriving the equilibrium so-

lution between all the participating agents. Therefore, PACT is incredibly efficient
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Figure 6.9: Comparison of the computational cost of PACT and optimal algorithms

for all the distribution scenarios.

Given that the PACT algorithm is very efficient, the next logical step is to deter-

mine how scalable it is. Our next set of experiments address that.

6.4.2 Experiments to test the Scalability of PACT algorithm

We test the scalability of the PACT algorithm in terms of the following: (1)the

number of agents, (2)the number of tasks, and (3)the coalition size.

Scalability of PACT in terms of the Number of Agents

In this set of experiments, we test the average number of negotiation rounds that the

PACT algorithm requires for various agent sizes, when the number of tasks and the
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coalition size is fixed. For these experiments, we set the number of tasks to 50, and

the coalition sizes for the tasks are chosen from a uniform distribution of random

numbers ranging from 1 to 5. We vary the total number of agents in our system from

5 to 500, as this presents us with a rich variety of agent/task combinations to bring

out any vagaries in the algorithm’s performance. The results from our experiments

are presented in figure .
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Figure 6.10: PACT Scalability with respect to Number of Agents

The results show that the negotiations extend for larger number of rounds when

the agents are more competitive. Since we have 50 tasks with an average coalition

size of 2.5, there will be approximately 125 edges in the network graph (see ??) for

our experimental setup. When there are very few agents in the system, each agent

will be highly connected to all the tasks in the environment, and therefore will have
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similar negotiating power in the bargaining process. Due to the lack of competition,

these agents quickly converge to the task(s) that offer them maximum benefits. On

the other hand, when we have too many agents in the system, then their connectivity

to the tasks in the environment, and therefore their negotiating power, will be very

limited. Again, such agents greedily accept their best offers and converge quickly.

When there are just enough agents in the system such that they are all heavily

connected, and they also compete with each other for the best tasks as not all of

them can be supported in the most coveted ones, the negotiations prolong for a long

period of time. This is what we see when there are about 25 agents in the system

- each will approximately be connected to 5 tasks, and there will be multiple agents

with strong negotiating powers competing for each task. PACT therefore takes a lot

longer to converge in this scenario than in other cases.

Scalability of PACT in terms of the Number of Tasks

Here we test the convergence of PACT for various values of tasks while the number of

agents and the coalition size is fixed. Here, we have 50 agents in our setup, and the

coalition size is determined randomly from a uniform distribution of values ranging

from 1 to 5. For these experiments, the number of tasks are varied from 5 to 500.

Figure 6.4.2 presents the results from our tests in these experiments.

Just as the results for the previous set of experiments, over here also we see that

when there are sufficient tasks in the environment for the agents to compete for, the

PACT algorithm executes for large number of rounds. However, it is still within

reasonable limits for being useful for practical purposes. On the other hand, when

there are fewer tasks than agents to perform them, the algorithm converges quickly.
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Figure 6.11: PACT Scalability with respect to Number of Tasks

Scalability of PACT in terms of Coalition Size

We had randomly generated all the coalitions of various sizes ranging from 1 to 5

for all our tests so far. The goal in this set of experiments is to test the algorithm

performance in an environment where all the tasks have the same number of agents

forming coalitions to perform them. Just as in previous experiments, we test for

various agent/task distributions in this one too. Figure 6.12 presents our findings for

these experiments.

There are no surprises in these results. As the coalition size grows larger, more

agents have to endorse a particular coalition for it to be selected for allocation. It

gets progressively harder to choose tasks for allocation with increasing coalition size.

For each agent/task distribution, we see that the smallest coalitions converge fast,
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Figure 6.12: Scalability with respect to the Coalition Size

while the larger ones either don’t converge, or do so after extensive negotiations only.

6.4.3 Convergence in PACT

As we saw in the previous results, PACT sometimes takes a very long time to converge,

particularly in competitive environments. That begs the question - Is PACT really

appropriate for real-life applications? The following set of experiments are geared

towards addressing this question.

For an agent participating in PACT, each round of negotiations involves setting

the expectation for each of it’s coalitions, and then computing the actual payoff for

that round by considering the expectations of all the other members of that coalition.

When the solution converges, the difference between the expectations and the actual
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payoffs diminishes. Therefore, the total change (sum of the absolute changes) in the

expectations of all the agents for all its coalitions in the system is a good metric

for testing convergence in PACT. In this set of experiments, we determine how long

PACT takes to converge up to certain percentages of its best solution by measuring

the total expectation changes for the negotiation rounds. Figure 6.13 shows the results

of our tests.
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Figure 6.13: Convergence results in PACT

The most significant observation in these results is that PACT converges up to

90% of its best solution within the first 10 rounds of negotiations. This is true even

for the most competitive environments. The quality of the solution keeps improving

as we proceed with the negotiations, with a solution 95%, 98%, and 99% close to

its best arrived by approximately the 20th, 30th, and50th rounds respectively. It is
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only the final 1% that holds back the vast majority of the PACT runs from finishing

earlier. This feature in PACT whereby it converges to a close approximation of its

best solution very early in the negotiations is critical for its application in various

real-world domains.

6.4.4 Core Stability Test for PACT Solutions

Our final set of experiments test the PACT solutions in terms of our relaxed-core

stability concept. We test various agent/task distributions and coalitions with max-

imum size of 3 and 5 to determine the percentage of PACT solutions that lie in the

relaxed-core. Figure 6.14 shows the results for these experiments.
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Figure 6.14: PACT solutions that are Core Stable

Note that the core can also be empty for a particular game. The likelihood for the
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core being empty increases with higher values for the number of tasks, agents, and

coalition sizes as the heavy constraints that the solution concept demands from a game

get harder to satisfy. Our results show that for a high percentage of settings with just a

handful of agents and tasks, the PACT algorithm leads to an equilibrium solution that

is core-stable. Not surprisingly, these percentages go down with increasing number

of tasks, agents, and coalition sizes.

6.5 Generalized Automated Negotiation Problem

The automated negotiation problem considered earlier in this chapter assumes that

the coalition values for the negotiation network are known apriori. Another way of

looking at this problem is that the environment has agents with single unique capa-

bilities, and each coalition, which is a task that requires a certain set of capabilities to

be performed, can be handled by exactly one group of agents. Now, most real world

applications are more complex than that. Agents typically have multiple, overlapping

capabilities, and there are typically multiple groups of agents that can successfully

handle each coalition. Also, each agent knows about only a subset of other agents

in the environment for practical settings. These agents are typically connected with

some social network topology, such as a ring, star, or a random graph. In this section,

we consider this generalized automated negotiation problem, and extend our PACT

algorithm to address this problem (Goradia & Vidal, 2007d).

In this problem, we have a set of N self-interested, rational agents, A = {a1, . . . , an},

where each agent is a unique node in a social network. Each agent has a single fixed

capability 1, γi ∈ Γ, assigned randomly from a uniform distribution of the interval

Γ = [1, γ], where γ is the number of different types of capabilities in the model. We

1Problems where individual agents have multiple capabilities can be transformed to this problem
by having multiple agents, one for each capability, in the environment.
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consider different types of social network topologies - agents organized in a ring, a

random graph, and a star. Depending on the social network topology, each agent has

a limited, static set of other agents in the system that it can interact and negotiate

with. The social network is modeled as an adjacency matrix E, where an element of

the adjacency matrix eij = 1 if there is an edge between agent ai and aj and eij = 0

otherwise. The social relationships among the agents are undirected, so eij = eji, and

for all agents, eii = 0.

We have a set of M tasks, T = {t1, . . . , tm}, which are globally announced to all

the agents in the model. We consider situations where each task must be addressed

by a group of agents that will perform the task. Each task ti ∈ T has an associated

size requirement, |ti|, and is defined as a pair 〈cap(ti), v(ti)〉, where cap(ti) ∈ Γ|ti| is

a |ti|-dimensional capabilities vector, and v(ti) ∈ < is the total payoff value for the

task. The agents in our model have to propose valid coalitions that can fulfill every

capability requirement for the tasks. Our problem can be modeled as a characteristic

function game with n agents, and a characteristic function v(S)→ < for each S ⊆ A.

The worth of the tasks represent the coalition values of the dynamically formed agent

sets for performing the tasks.

The outcome of the problem is represented as a coalition configuration, C̄, which

is a vector of tasks that were successfully assigned to the associated agent coalitions.

Each element Ci ∈ C̄ is a tuple
〈
ti, Āi, ūi

〉
, where ti represents the task, Āi is the set

of member agents that will jointly handle the task, and ūi is the payoff distribution

vector, which defines the utility earned by each member by successfully completing

the task. Here,
∑

ui = v(ti). We assume that an agent can participate in only one

coalition at a time, so the coalition structure CS is a partition of agents A into
∣∣C̄∣∣

disjoint sets.
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6.6 PACT Negotiation Mechanism for this Prob-

lem

Our approach to coalition formation for the above model is a two step process. First,

the agents interact with each other and determine the potential coalitions that they

can form. An agent’s avenues for collaboration depend heavily on its social network

structure, and agents with high degrees of connectivity can participate in more coali-

tions than others. Once the potential coalitions have been established, the second

step in our approach involves agent negotiations to determine the most favorable

coalitions for each of them. These negotiations yield both, the coalition structure,

and the payoff distribution for each of its coalitions. We now present further details

on both these steps.

6.6.1 Determining Potential Coalitions

Each agent in our system pro-actively seeks out as many coalitions as it can find

to participate in. For each task in the environment that it has one of the required

capabilities, it tries to determine if it’s immediate neighbors in the social network

can provide the rest of the capabilities. A task is considered feasible for an agent if

it, by cooperating with it’s neighbors, can fulfill all the capability requirements for

the task successfully. If a candidate task is not feasible by its immediate neighbors,

then the agent asks them for referrals from their own social network. If a task is

still not feasible, then it is rejected. Thus each agent performs a search in its social

network up to two levels deep while discovering potential avenues for cooperation.

For every feasible task, the agent generates coalitions for all possible permutations

for the remaining capabilities with its referral network without creating duplicates

from both its own and other agent’s proposals. Clearly, the more the coalitions an

agent participates in, the higher its probability of being selected in the final coalition
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Find-Potential-Coalitions(i)

1 for t ∈ T
2 do if γi ∈ cap(t)
3 then new c
4 cagents ← i
5 if |t| = 1 ∧ c /∈ C
6 then C ← C ∪ c
7 else cap′(t)← cap(t)\γi

8 feasible(t)← TRUE
9 for γ′ ∈ cap′(t)

10 do if ∃j ∈ eij : γj = γ′

11 then ∀j ∈ eij

12 M ←M ∪ {j, γ′}
13 elseif ∃k ∈ ejk : γk = γ′

14 then ∀k ∈ ejk

15 M ←M ∪ {k, γ′}
16 else feasible(t)← FALSE
17 if feasible(t) = TRUE
18 then ∀J ∈ permutations(M)
19 cagents ← cagents ∪ J
20 if c /∈ C
21 then C ← C ∪ c

Figure 6.15: Algorithm to find Potential Coalitions

structure. Figure 6.15 presents the complete algorithm that an agent uses to propose

coalitions.

6.6.2 Determining the Coalition Configuration

The above algorithm yields us a negotiation network with all possible coalitions in

the graph. The network is pruned, and only the coalitions with maximum value

are retained for each set of agents. This presents us with the input that our PACT

algorithm from section 6.3.4 requires to compute the feasible coalition configuration

with (near-) optimal coalition structure and stable payoff division. The second step in

our algorithm for the generalized automated negotiation problem is indeed the PACT
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algorithm described above.

6.7 Experimental Analysis

We have developed a simulation system implementing our bargaining process and

conducted a series of experiments to test the quality of the solutions that it leads to

under different settings. First, we compare our algorithm’s performance with that

of a utilitarian algorithm. Specifically, we compare the coalition structures that the

two algorithms propose in terms of the number of tasks allocated, and the total

revenue generated as a result of that. Our next set of experiments concern with

testing the scalability of our distributed algorithm. Specifically, we check for the

duration of the bargaining process before the negotiations converge. We demonstrate

the progressiveness of our algorithm by determining the rate of improvement in the

quality of the solution produced with extended negotiations. Finally, we test the

stability of the equilibrium solution produced by our bargaining process by evaluating

whether it lies in the bargaining-set. As mentioned earlier, the network topology of

the system affects its performance. We perform each test mentioned above for ring,

random graph, and star topologies 2.

6.7.1 Experiments comparing our Bargaining Algorithm with

a Utilitarian Solution

The goal of our first set of experiments is to determine how far the results generated

by our bargaining algorithm are from a utilitarian solution. We test the coalition

structure generated by our algorithm for the number of coalitions it comprises of,

2In order to test the relative performance of our algorithm with different topologies, we set the
number of edges for random graphs the same as that for the ring topology. For the star topology,
one hub node is connected to every other node in the network.
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and the total value of these coalitions. We tested our system with a widely ranging

distribution of agents and tasks, with scenarios where the agent/task ratio is 0.25,

0.5, 0.75, 1, 1.33, 2, and 4. Figure 6.16 shows our algorithm’s performance as a ratio

of that of the utilitarian solution.
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Figure 6.16: Comparison of the coalition structure size

Since our agents search for potential coalition partners two levels deep into their

search tree, a star topology allows each agent to identify every other agent, and

therefore has complete knowledge of the system. Our algorithm performs almost as

a utilitarian algorithm in a star topology, suggesting that our negotiation scheme

motivates the various agents towards coalitions that are mutually beneficial to all the

concerned agents, and the payoff exchanges converge at an equilibrium point where

it is in the best interest of all the participants to select those coalitions. Therefore,
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although all agents adopt a myopic view in selecting the allocations most favorable

to them in the post-negotiation phase, all agents end up selecting the favorable coali-

tions. With ring and random topologies, the limited network reachability is not a

hindrance for smaller agent number and the algorithm performs remarkably well for

low agent/task ratios. However, as the number of agents increase, the quality of the

solution gets correspondingly lower.
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Figure 6.17: Comparison of the coalition structure value

Another issue related to the coalition structure is the total wealth generated by

its winning coalitions. If the agents end up selecting tasks that are relatively less

worthy, then their contribution towards the utilitarian solution will be low. Figure

6.17 shows the results for the total wealth generated by our algorithm in comparison

to the highest possible value for the same set of agent/task distributions as in the

105



previous experiment. Simulation results show that the total values of the coalition

structures generated by our bargaining algorithm are very close to those generated

by the utilitarian solution for systems with fewer agents, but the quality steadily

deteriorates with increasing agent populations sue to the lack of connectivity in the

ring and random topologies. The star topology, however, always produces results close

to the utilitarian solution, which suggests that the allocated tasks in our algorithm are

mostly identical to those selected by the utilitarian solution. The agent negotiations

drive them towards coalitions that have relatively higher values, and the negotiation

process keeps them interested in those coalitions while also seeking a fair and stable

payoff configuration.

6.7.2 Experiments to test the Scalability of our Bargaining

Algorithm

We define scalability as the average number of negotiation rounds that the bargain-

ing algorithm requires for a given setting before the negotiations terminate. In these

experiments, we consider all the previous agent/task distributions to bring out any

vagaries in the algorithm’s performance. The results from our experiments are pre-

sented in figure 6.18.

The simulation results show that, for every topology, bargaining in systems with

fewer agents terminates quickly. Negotiations in ring topologies and random graphs

can continue for hundreds of rounds before terminating, while the star topologies

always converge quickly. However, these results are deceptive - the actual negotia-

tions that happen between agents in each round is directly proportional to the total

number of coalitions that are proposed by all agents in the system. In rings and

random graphs, due to the lower connectivity of each agent, the proposed coalitions

are limited, while with star networks, these are typically higher by a magnitude of

N . Consequently, while a negotiation round in rings and random graphs ends with
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Figure 6.18: Scalability of our Bargaining Algorithm

a few message exchanges, for star structures it is prolonged for a much longer time.

While optimizations are possible with star networks to limit the number of proposed

coalitions, it beyond the scope for this paper as we are primarily interested in under-

standing the dynamics of the system under different topological settings.

6.7.3 Convergence in our Bargaining Algorithm

As we saw in the previous results, the bargaining process can run for hundreds of

rounds before converging. This might be unacceptable for many competitive scenarios

where an agent might be allowed only a few opportunities before it has to make its

decision. Our current set of experiments evaluate the quality of the solution achieved

over time in a negotiation process.
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For an agent participating in our bargaining process, each round of negotiations

involves setting the expectation for each of it’s coalitions, and then computing the ac-

tual payoff for that round by considering the expectations of all the other members of

that coalition. When the solution converges, the difference between the expectations

and the actual payoffs diminishes. Therefore, the total change (sum of the absolute

changes) in the expectations of all the agents for all its coalitions in the system is a

good metric for testing convergence. In this set of experiments, we determine how

long our algorithm takes to converge up to certain percentages of its best solution

by measuring the total expectation changes for the negotiation rounds. Figure 6.19

shows the results of our tests.
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Figure 6.19: Convergence results for our Bargaining Algorithm

The most significant observation in these results is that our algorithm converges
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up to 90% of its best solution within the first 10 rounds of negotiations. This is

true even for the most competitive environments. The quality of the solution keeps

improving as we proceed with the negotiations, with a solution 95%, 98%, and 99%

close to its best arrived by approximately the 20th, 30th, and 50th rounds respectively.

It is only the final 1% that holds back the vast majority of the runs from finishing

earlier. This feature in our algorithm, whereby it converges to a close approximation

of its best solution very early in the negotiations is critical for its application in various

real-world domains.

6.7.4 Bargaining Set Stability Test

Our final set of experiments test the stability of the solutions arrived by our bargaining

process. We choose the bargaining set as the stability solution concept primarily

because for all coalition structures of all n-person games in characteristic function

form, the bargaining set is always non-empty. Whenever a core solution exists in a

coalitional game, it lies in the bargaining set. Also, the basic notions of objections

and counterobjections are amenable to psychological interpretation, which strongly

enhances the potential descriptive power of bargaining set theory (Kahan & Rapoport,

1984; Osborne & Rubinstein, 1999).

Figure 6.20 presents the stability results for our bargaining algorithm. Our bar-

gaining algorithm is based on the idea of equal shares of the excess, a line of reasoning

consistent with that of the bargaining set (Komorita, 1979). However, the stability

results for the payoff configurations reached by our algorithm are poor for all topolo-

gies and distributions. One of the reasons for these negative results is that the agents

in our system are allowed to terminate the negotiations before they converge accord-

ing to the EET, thereby avoiding the irrational situations where they incur a loss

by participating in a coalition. Also, there can be scenarios in our model where the

system turns into a veto game and we have a monopolist agent(s) with exclusive ca-
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Figure 6.20: Stability results for our Bargaining Algorithm

pabilities to perform tasks in the system. The bargaining set and the core solution for

such games is the irrational payoff configuration where the monopolist gets the entire

revenue from the coalition, a situation that will not be allowed by other agents. This

tendency reduces with increasing agent numbers and higher connectivity, as shown

by the increase in the stability percentage for star topologies with higher agent/task

distribution ratios.

For scenarios mentioned above, our algorithm does not yield bargaining set sta-

ble solutions because the monopolistic agent can raise objections against the weaker

agents for their payoffs in the equilibrium solutions, which the latter cannot counter-

object. To prevent such objections, we tested our solutions with a relaxed version of

the bargaining set, where agents can object only against those with a higher payoff
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than theirs. This prevents veto game-like scenarios in small coalitions, and is not a

strong constraint in large coalitions where the variance in the agent payoffs is unlikely

to be high. Under these constraints, our solution produces stable solutions, as shown

in figure 6.20.

6.8 Summary

In this chapter, we built on our discussion about modeling automated negotiation

problem as a negotiation network from the previous chapter, and defined the auto-

mated negotiation problem in terms of a negotiation network. We delved deeper into

our proposition from the previous chapter that coalition formation is the most appro-

priate model for coordinating the agents in negotiation networks, and presented the

computational complexity of finding the optimal solution for the automated negoti-

ation problem. Since this is a hyper-exponentially complex problem, we need good

heuristic approaches for solving this important problem in real-world situations. To-

wards this end, we presented PACT - our fully distributed, progressive, anytime

algorithm for coalition formation. It addresses both coalition structure generation

and payoff distribution among selfish agents simultaneously, cleverly handling the

constraints of the two subproblems to find a satisfactory solution in polynomial time.

We conducted extensive experiments to test the various properties of the algorithm in

order to ascertain its usefulness. Our results show that for most cases, PACT gener-

ates coalition structures and maximizes social welfare to the extent that the optimal

solution does. Being a hill-climbing algorithm, PACT is very efficient, and we show

experimentally that it scales very well with respect to the number of agents, the num-

ber of tasks, and the coalition size. The PACT algorithm extends to larger number

of negotiation rounds when the experimental settings are very competitive. However,

we showed experimentally that the negotiations are extended only at the latter stages
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of the algorithm where it is very close to convergence. On average, even for extremely

competitive settings PACT generates a solution close to 90% of its best solution after

only a few tens of negotiation rounds, and it increases to 98% of the best solution

well before 100 rounds. Therefore, we believe that PACT is very applicable to many

real-life domains. We showed that over 90% of the PACT solutions are core-stable

for environment settings with few tasks and agents, and it steadily decreases with

increasing tasks, agents, and coalition sizes as many such coalition games do not have

a core solution.

We also introduced the generalized automated negotiation problem, which allows

agents to have capabilities. Tasks in the system can be addressed by multiple groups

of agents, thereby forming multiple coalitions in the system for each task. This adds

an additional layer of exponential complexity to the original automated negotiation

problem, as coalition values are not known now - they have to be computed for

all coalitions. Also, in the generalized automated negotiation problem, we removed

the assumption from the original problem that each agent knows about every other

agent in the system. Instead, the agents in the general problem have social networks,

which constrain the total number of other agents that it can collaborate with to

jointly handle tasks. We discuss several network topologies for the social network

- ring, star, and random. We test our PACT algorithm for this general problem,

appending it to our other algorithm determining the coalition values in this problem.

Our experimental results show similar results to the original problem for optimality.

We also show that the computed solution is modified-bargaining set stable for most

cases.
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Chapter 7

Nucleolus-stable Solution for the

Automated Negotiation Problem

In this chapter, we focus on the stable payoff division problem. We assume that

the coalition values and the optimal coalition structure have already been computed.

Many approaches have been proposed recently for addressing these problems (Sand-

holm et al., 1999; Rahwan & Jennings, 2005; Rahwan, Ramchurn, Dang, Giovannucci,

& Jennings, 2007). Our work is complementary to these efforts and can be used in

conjunction with them to address the coalition formation problem in multiagent sys-

tems. As is common practice in the literature, we model coalition formation problems

as characteristic form games (CFGs). The worth of every coalition S ⊆ N in a CFG

is given by a characteristic function, v(S), and the actions of all agents who are not

part of S do not influence v(S). As mentioned earlier, game-theorists have devised

many solution concepts over the years - the core, the Shapley value, and the nu-

cleolus being some of the most prominent of them. The core is arguably the most

significant solution concept for defining stability in CFGs. Like the Nash equilib-

rium in non-cooperative games, the core has this desirable property that no coalition

can unilaterally deviate from the proposed solution and obtain a better payoff for

all its agent members. Unfortunately, many CFGs have empty cores, and some have
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multiple core solutions. Also, computing the core solution is exponentially complex.

All these factors make it difficult to design multiagent systems that are core-stable.

The Shapley value addresses some of the issues with the core solution. It is always

nonempty and unique for every CFG. It is also deemed to be fair as the agent payoffs

are determined according to their marginal contributions to the selected coalition

structure in the CFG. However, determining the Shapley value for a CFG is known

to be NP-complete. Also, the solution proposed by the Shapley value does not al-

ways lie in the core for games where the latter is nonempty - the agents are therefore

very likely to reject this solution. The nucleolus solution concept has many desirable

properties that make it the most appropriate stability concept for engineering mul-

tiagent systems in our view. Like the Shapley value, it is nonempty and unique for

every coalition structure in every CFG. It is also generally accepted as a fair way of

distributing the payoffs among the participating agents. Additionally, the nucleolus

is proved to be a subset of the core, and generally lies in the center of the core region

for games with nonempty cores. The computational cost for finding the nucleolus

solution is also known to be considerably less than that for any other solution.

Given the above background, we present an efficient, distributed algorithm for

determining the nucleolus-stable payoff division of any CFG (Goradia & Vidal, 2007a).

The rest of the paper is organized as follows. We provide some basic definitions,

including the nucleolus, and discuss existing approaches for computing it in the next

section. This is followed by a detailed description of our algorithm for computing

the nucleolus in section 3. In section 4, we empirically evaluate our algorithm and

present some test results. Finally, we conclude in section 5.

114



7.1 Basic Definitions and Related Work

Let (N, v) be a CFG with transferable utility (i.e. there are no restrictions on how the

payoff may be divided among coalition members). This game has N agents (n = |N |)

and a characteristic function v : S → <+.

For a vector x ∈ <n and S ⊆ N we denote x(S) =
∑

i∈S xi. The vector x is an

allocation if x(N) = v(N). The allocation x is an imputation if xi ≥ v({i}) for all

i ∈ N .

Given an imputation x ∈ <n, the excess of a coalition S (with respect to x) is

defined as the number

e(S, x) = v(S)− x(S)

Given an imputation x ∈ <n for the game (N, v), let Θ(x) denote the (2n − 2)-

dimensional vector of all nontrivial excesses (the excess vector) e(S, x), φ 6= S 6= N ,

arranged in nonincreasing order. For two such imputations x and y, Θ(x) is said to

be lexicographically greater than Θ(y) if there exists an integer q, 1 ≤ q ≤ 2n−2, such

that

∀p < q, Θp(x) = Θp(y)

and Θq(x) > Θq(y)

If Θ(x) is not lexicographically greater than Θ(y), we write Θ(x) 4lex Θ(y).

With this terminology, the nucleolus (Schmeidler, 1969) of a game (N, v), denoted

as N , is defined to be the (unique) imputation x∗ that lexicographically minimizes Θ

over the set of all imputations. Formally,

N =

{
x∗ ∈ <n | ∀x, Θ(x∗) 4lex Θ(x)

}

The nucleolus is a piecewise linear function of the characteristic function with

a finite number of different linear pieces (Kohlberg, 1971). All approaches towards

computing the nucleolus to date involve solving a sequence of linear programming
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problems. To the best of our knowledge, (Potters, Reijnierse, & Ansing, 1996) pro-

vides the most efficient algorithm for finding the nucleolus of a general CFG. This

algorithm finds the nucleolus after solving at most n − 1 linear problems with at

most 2n + n − 1 rows and 2n − 1 columns. So, each of the n − 1 linear programs is

large, and the number of constraints in them also grows exponentially. Also, such

approaches require the usage of commercial linear programming packages and are

inherently centralized. For multiagent settings, we need a decentralized approach

where the individual agents can collaborate by sharing the computational load and

resolving the inconsistencies through communication to jointly derive the nucleolus

solution for the system. We present a novel algorithm for computing the nucleolus in

a CFG that meets these requirements.

7.2 Our Distributed Algorithm for Computing the

Nucleolus

We present our algorithm for finding the nucleolus in a CFG. The nucleolus solution is

a single point in the entire imputation set for the CFG (see figure 7.1 for an example).

Since the nucleolus is a piecewise linear function of the values for the various

agent coalitions in a CFG, it is possible to transition through the imputation set

of the game such that we always arrive at a lexicographically smaller imputation

than the previous one, eventually reaching equilibrium at the imputation that is

lexicographically minimal. The heart of our algorithm is this transition function

which allows us to start from any initial imputation in a CFG and eventually reach

the nucleolus solution.

We have devised the transition function discussed above in the form of a sliding

window heuristic. This heuristic allows us to scan the imputations adjacent to our

current position and transition to a new imputation that takes us closer to the nucleo-
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Characteristic Form Game:
N = {A,B,C}
v(A) = v(B) = v(C) = 0;
v(AB) = 90;    v(AC) = 80
v(BC) = 70;    v(N) = 120

Nucleolus solution:
Imputation = (50,40,30)
Excess vector = (0,0,0,-30,-40,-50)

(50,40,30)

Imputation set

xC

xB

xA(a) (b)

Figure 7.1: Geometric representation of imputation set and nucleolus solution for a
3-agent CFG. (a) shows the imputation set, and (b) shows the nucleolus solution in
the set.

lus. The size of the window in the heuristic determines the adjacent imputations that

are tested for potential transitions. Our algorithm for computing the nucleolus has

two distinct stages that search through the imputation set at different levels of granu-

larity - the coarse-level search yields an imputation close to the nucleolus (sometimes

it returns the nucleolus solution itself), and the fine-level search gives the nucleolus

solution with the desired precision level. Both stages use the sliding window heuristic

discussed above with different window sizes and inter-imputation distances.

Having introduced the high-level idea of our approach, we now discuss the algo-

rithm (see figure 7.2) in detail. We will use the following CFG as a running example
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Find-Nucleolus(i, N, v, p)

1 if i is last in the preset agent order

2 then x0
i ← v(N)− (n− 1)bv(N)

n
c

3 else x0
i ← b

v(N)
n
c

4 x0 ∈ <n =
⋃

j∈N x0
j � Starting imputation

5 N ← Compute-Nucleolus(i, N, v, p, x0)

Compute-Nucleolus(i, N, v, p, x)

1 r ← 0 � Begin coarse-level search
2 xr ← x
3 xr+1 ← Slide-Window(i, N, v, 0, xr, 1)
4 if xr+1 6= xr

5 then r ← r + 1
6 go to 3
7 if p = 1
8 then return xr

9 x∗ ← xr

10 r ← 0 � Begin fine-level search
11 xr ← x∗

12 xr+1 ← Slide-Window(i, N, v, p, xr, 1)
13 if xr+1 6= xr

14 then r ← r + 1
15 go to 12
16 x∗ ← xr

17 return x∗

Slide-Window(i, N, v, p, xr, w)

1 wsi ← {xr
i + w, xr

i + w − 1, . . . , xr
i , . . . , x

r
i − w}

2 if ∃r ∈ wsi such that r > v(N) or r < v(i)
3 then Remove r from wsi

4 for j ∈ N \ i
5 do send wsi; receive wsj

6 � Generate i’s share of the imputation set
7 wsi ← {xr

i + w, xr
i + w − 1, . . . , xr

i + 1}
8 Ii =

{
x1, x2, . . . , xk

}
such that ∀xα,xβ∈Ii

9 xα =
⋃

j∈N

(
wsj

1

)
, xα(N) = v(N), xα 6= xβ

10 � Determine i’s best imputation
11 x∗

i ←
{
xα ∈ Ii such that ∀xα,xβ∈Ii

xα 4lex xβ
}

12 for j ∈ N \ i
13 do send x∗

i ; receive x∗
j

14 I∗ ←
⋃

j∈N x∗
j

15 � Determine the globally best imputation
16 x∗ ←

{
xα ∈ I∗ such that ∀xα,xβ∈I∗ xα 4lex xβ

}
17 return x∗

Figure 7.2: Our distributed algorithm for computing the nucleolus

118



(22,0,0)(0,0,22)

(0,22,0)

Characteristic Form Game:
N = {A,B,C}
v(A) = v(B) = v(C) = 0
v(AB) = 13
v(AC) = 7
v(BC) = 3
v(ABC) = v(N) = 22

Nucleolus solution:
(a) After coarse-level search:

Imputation = (9,8,5)
Excess vector = (-4,-5,-7,-8,-9,-10)

(b) After fine-level search:
Imputation = (10.0,7.5,4.5)
Excess vector = (-4.5,-4.5,-7.5,-7.5,-9.0,-10.0)

(7,7,8)

(a) (b)

(10.0,7.5,4.5)(8,7,7)
(9,7,6)

(9,8,5)

(9,7,6) (10,7,5)

(8,8,6)

(10,8,4)

(8,9,5) (9,9,4)

(9,8,5)
Sliding window

Sliding 
window

Figure 7.3: Graphical description of our algorithm for computing the nucleolus. (a)
shows the coarse-level search stage, and (b) shows the fine-level search stage of the
algorithm.

in our discussions (see figure 7.3 for a graphical description):

N = {A, B, C}

v(A) = v(B) = v(C) = 0

v(AB) = 3; v(AC) = 7; v(BC) = 13

v(ABC) = v(N) = 22

The characteristic function is assumed to be common knowledge, so all agents are

aware of their relative strengths (and weaknesses) with respect to other agents. Also,

it is assumed that a coalition structure involving all n = |N | agents is formed and a

nucleolus-stable solution dividing v(N) units among the agents is desired.
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The algorithm begins with the invocation of the Find-Nucleolus(i, N, v, p) pro-

cedure. Here, i represents the agent that executes this procedure, (N, v) is the CFG,

and p represents the desired precision level for the outcome produced by the algo-

rithm. All n agents in the system execute this code concurrently. Each agent begins

by determining the initial imputation from which the search for the nucleolus impu-

tation will begin. The agents fix a precedence order among themselves based on a

unique key such their UID. The agents pick an equal share of v(N), rounding to the

closest integer, according to their preference order. The agent that is preceded by all

other agents in the system gets the remaining part of v(N) after all other agents have

picked their share of bv(N)/nc. Each agent then uses this knowledge to generate the

initial imputation x0. For our example game, imputation x0 = (7, 7, 8) is formed.

This is the starting point in our algorithm, and is plotted in figure 7.3. Each agent

computes the excess vector for this imputation and moves on to the next stage of the

algorithm.

The Compute-Nucleolus(i, N, v, p, x) procedure begins the agents’ search for

the nucleolus of the game from the initial position x. Depending on the desired

precision level p, the search for the imputation that lies in the nucleolus can run upto

two stages. We perform a coarse-level search in the first stage of the search process

by setting the precision level to 0(lines 1-6). Thus, the inter-imputation distance

(given by 10−p) is 1, and only the imputations that are at unit distance from each

other in the imputation set are considered. Therefore, this first stage only yields

the closest integer imputation to the nucleolus (i.e. the lexicographically minimal

imputation with integer payoffs for all agents). Having said that, note that the

nucleolus solution for many games is an integer imputation. So, for such cases, our

algorithm will produce the nucleolus imputation after the coarse-level search itself.

The actual search for the imputation with lexicographically minimal excess vector is

performed by the Slide-Window procedure. The procedure is invoked repeatedly
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until it returns the same imputation in successive executions, which suggests that the

imputation that minimizes the excess vector over the entire imputation set is reached.

This is the termination condition for the search process.

The Slide-Window(i, N, v, p, x, w) procedure allows the agents to scan all im-

putations within a distance of w from the central imputation x, and determine the

lexicographically minimal imputation in that subset I of the imputation set. The win-

dow size w determines how large (or small) this subset of imputations will be. Higher

values of w result in more imputations being handled by the agents during each invo-

cation, which directly results in lesser communication between the agents during the

search process. However, this gain in communication bandwidth is achieved at the

expense of higher redundancy (i.e. the same imputation is checked multiple times by

different agents). We set w = 1 in all our experiments. Upon invocation, each agent

first determines its share of imputations to be tested in the current procedure call.

Depending on its payoff xi from the current central imputation x, and the window

size w, agent i computes its working set wsi - the range of values [xi + w, xi − w] -

for the current invocation. All values in this range that lead to search points beyond

the imputation set (i.e. xi > v(N), and imputations that are not individual rational

to i (i.e. xi < v({i}) are removed from the working set wsi (lines 1-3). The agents

exchange their working sets (lines 4-5) so that they can all compute their share of

imputations, Ii, for the current invocation (lines 6-9). To reduce redundancy, each

agent only checks the imputations that are more beneficial for itself than the central

imputation x. For this, each agent revises its working set by eliminating all values

that are less than or equal to xi. It then generates Ii by combining the values from the

working sets of all agents, such that for any allocation xα ∈ Ii, we have x(N) = v(N).

Once the set Ii is generated, agent i computes the excess vectors for them all and

determines the one, x∗
i , which is lexicographically minimal (line 11). All agents ex-

change this value to generate the set I∗ of the preferred imputations by all agents, and
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then determine the best imputation among them all, x∗, for the current invocation.

This value is returned by the procedure, and forms the central imputation for the

subsequent procedure call (lines 12-17).

The coarse-level search for our example game is shown graphically in figure 7.3(a).

The hexagonal region in the figure around the central imputation (7, 7, 8) is the sliding

window for the first procedure call. The working sets for all agents in the system

during invocation would be

wsA = {6, 7, 8} wsB = {6, 7, 8} wsC = {7, 8, 9}

The following set of adjacent imputations fall under the sliding window:

I =
{(6, 7, 9), (6, 8, 8), (7, 6, 9), (7, 7, 8),

(7, 8, 7), (8, 6, 8), (8, 7, 7)}

The distribution of the search space I1 among the agents upon selecting the most

beneficial imputations for themselves is as follows:

IA = {(8, 6, 8), (8, 7, 7)}

IB = {(6, 8, 8), (7, 8, 7)}

IC = {(6, 7, 9), (7, 6, 9)}

Note that imputation (7, 7, 8) was already checked previously, so redundant cal-

culations are avoided here. The agents check the excess vectors for their share of the

imputations and determine the one that is lexicographically smaller than the rest.
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These would be

x∗
A = (8, 7, 7) Excess vector = {−2,−7,−7,−8,−8,−11}

x∗
B = (7, 8, 7) Excess vector = {−2,−7,−7,−7,−8,−12}

x∗
C = (7, 6, 9) Excess vector = {0,−6,−7,−9,−9,−12}

The agents exchange these imputations and unambiguously select the best one for

the current round,

x∗ = (8, 7, 7) Excess vector = {−2,−7,−7,−8,−8,−11}

The window slides to this imputation for the next invocation of Slide-Window

procedure, and the process is repeated until it eventually converges. We plot these

transitions in figure 7.3. The process converges to the following imputation:

x∗ = (9, 8, 5) Excess vector = {(−4,−5,−7,−8,−9,−10}

Once the agents have computed the integer-level lexicographically minimal im-

putation, they enter the second stage of searching in the Compute-Nucleolus

procedure (lines 7-17) of our algorithm. Here, we perform a fine-level search result-

ing in a nucleolus imputation that is accurate upto the desired precision level. The

precision level for the invocations of Slide-Window procedure is set to p, so the

inter-imputation distance is 10−p. Everything else for fine-level search is similar to

that for coarse-level search.

Getting back to our example game, figure 7.3(b) show the graphical representation

of the fine-level search. This stage of computation starts with the imputation (9, 8, 5).

For a desired precision level of 2, the first invocation of Slide-Window procedure in
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this stage will lead to the following working sets and imputation sets for the agents:

wsA = {8.99, 9.0, 9.01}

wsB = {7.99, 8.0, 8.01}

wsC = {4.99, 5.0, 5.01}

IA = {(9.01, 7.99, 5.0), (9.01, 8.0, 4.99)}

IB = {(8.99, 8.01, 5.0), (9.0, 8.01, 4.99)}

IC = {(8.99, 8.0, 5.01), (9.0, 7.99, 5.01)}

Again, agents check the excess vectors for all their imputations, and exchange

their best imputations:

x∗
A = (9.01, 8.0, 4.99)

Excess vector = {−4.01,−4.99,−7.0,−8.0,−9.01,−9.99}

x∗
B = (9.0, 8.01, 4.99)

Excess vector = {−4.01,−4.99,−6.99,−8.01,−9.0,−10.0}

x∗
C = (9.0, 7.99, 5.01)

Excess vector = {−3.99,−5.01,−7.01,−7.99,−9.0,−10.0}

Finally, they determine the lexicographically smallest imputation for the current

procedure call:

x∗ = (9.01, 8.0, 4.99)

Excess vector = {−4.01,−4.99,−7.0,−8.0,−9.01,−9.99}

The window slides to this imputation for the subsequent Slide-Window proce-
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dure call, and the process is repeated until it converges to the imputation:

x∗ = (10.0, 7.5, 4.5)

Excess vector = {−4.5,−4.5,−7.5,−7.5,−9.0,−10.0}

This is the nucleolus solution returned by our algorithm.

7.3 Test Results

We evaluate the performance of our algorithm by measuring some of its key properties.

Specifically, we focus on the following:

Percentage of search space scanned during computation As mentioned pre-

viously, the size of the imputation set - the search space for our algorithm -

grows rapidly in our environment. With this performance metric, we measure

the size of the imputation set that is tested by our algorithm while finding the

nucleolus imputation.

Each agent’s share in the distribution We distribute the imputations equally

among all the agents. However, as mentioned earlier, there is redundancy in our

algorithm - the same imputation is tested by more than one agent. We measure

this redundancy with this metric.

Total execution time Here we measure the actual running time of a Java imple-

mentation of the algorithm on an Intel Pentium M, 3GHz machine with 1GB

of RAM.

We measure the above properties in different environment settings, where all the

factors that contribute towards the exponential growth of the imputation space are

considered - namely, number of agents, v(N), and precision level.
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Agent Imputations Execution
Set Size Total Tested Percentage Distribution Time (msec)

3 1326 44.456 3.352639517 12.4160 2.5000
4 23426 108.844 0.464629045 34.0560 15.9400
5 316251 267.424 0.084560681 83.5840 76.0680
6 3478761 708.256 0.020359433 225.7200 403.3120
7 32468436 1360.78 0.004191086 435.96 3625.3120
8 264385836 4207.6 0.001591462 1356.6000 45974.2500
9 1916797311 11991.98 0.000625626 3881.1200 179279.2600

Table 7.1: Performance against agent set sizes

For our first experiment, we vary the number of agents in the system from 3 to 9.

The value of the grand coalition is fixed to 50, and the precision level is set to 0 (i.e.

we only seek integer solutions). The simulation results are presented in table 7.1. We

see that the search space increases from 1326 for 3 agents to 19167973311 for 9 agents.

However, the share of the imputation set that our algorithm requires to search before

finding the nucleolus reduces with increasing agent sizes - it drops from 3.35% for 3

agents to 0.0006% for 9 agents. The starting imputation from which we begin our

search plays a significant role here. The nucleolus is the lexicographically minimal

imputation, and the excess vector of all imputations in the search space grows as we

move further away from the nucleolus. Our algorithm simply traces all imputations

(approximately) along the straight line from the starting point to the nucleolus. Each

agent computes approximately 30% of all imputations that are tested in all settings

because the sliding window size is set to 1 in all our experiments - the working set

of candidate payoffs for all agents is of size 3 everytime and each agent opts to test

the case where its payoff is the highest (1 of 3 possibilities in the working set). The

execution time of our algorithm is still exponential in the number of agents.

In our second experiment, we fix the number of agents to 5 and the precision

level is still 0, but we vary the value of the grand coalition, v(N), from 20 to 100.

Simulation results in table 7.2 show that our algorithm handles high loads of v(N)

very well. From v(N) = 20 to v(N) = 100, the imputation set increases more than 40
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v(N) Imputations Execution
Total Tested Percentage Distribution Time (msec)

20 10626 138.712 1.305401845 43.18 60.056
40 135751 239.068 0.176107727 74.688 80.384
60 635376 308.224 0.048510488 96.384 72.632
80 1929501 346.576 0.01796195 108.416 83.864
100 4598126 477.34 0.010381186 149.44 98.74

Table 7.2: Performance with respect to v(N)

times over, but our algorithm searches only 4 times more imputations - the percentage

of the imputation set that is searched drops from 1.3% in the former case to 0.01%

in the latter. Moreover, the execution time increases by only a little over 50% and is

under 100 msec for the largest case.

So far we have tested the performance of our algorithm for settings where the agent

set size or the characteristic function work in isolation. However, many multiagent

settings have both these factors varying simultaneously. We test such cases in our

third experiment. We set the precision level to 0 and vary the agent size / v(N)

settings from 3 / 20 upto 7 / 100. Refer to table 7.3 for the simulation results.

Expectedly, the search space grows faster than those in the earlier experiments -

while it is a meager 231 for the simplest setting, it grows to 1705904746 for the worst

setting tested. Our algorithm still maintains the desirable property of reduction in

the percentage of imputations in the search space that are actually tested at runtime

for larger settings. From slightly over 9% for 3 / 20 setting, it goes down all the way

to 0.000132% for the 7 / 100 setting. The execution times increase exponentially as

in experiment 1.

In our final experiment, we test the effect of the precision level (p) on the per-

formance of our algorithm, fixing agent set size to 5 and v(N) = 50. As mentioned

earlier, a precision level of z is equivalent to increasing v(N) by a factor of 10z. Table

7.4 shows the simulation results of our algorithm for p = 0, . . . , 3. We see that the

imputation set size increase phenomenally with increasing precision requirements, as
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Agents Imputations Execution
/ v(N) Total Tested Percentage Distribution Time (msec)
3 / 20 231 20.824 9.014718615 5.664 2.564
4 / 40 12341 104.056 0.843173163 32.544 13.248
5 / 60 635376 308.224 0.048510488 96.384 72.632
6 / 80 32801517 878.02 0.002676766 279.9 499.364
7 / 100 1705904746 2252.104 0.000132018 721.728 5369.62

Table 7.3: Performance for various agent set size / v(N) combinations

Precision Imputations Execution
Level Total Tested Percentage Distribution Time (msec)

0 316251 269.464 0.085205738 84.224 33.624
1 2656615626 499.692 1.88093E-05 162.876 73.696
2 2.60938E+13 2630.144 1.00796E-08 801.496 420.312
3 2.60469E+17 21837 8.38373E-12 6546.944 3437.996

Table 7.4: Performance against precision levels

does the execution times of our algorithm. The percentage of search space tested goes

down from 0.085% for p = 0 to 8.38E-12 for p = 3.

7.4 Summary

Stable payoff division is an important problem in coalition formation, and we provide

a distributed algorithm for computing a nucleolus-stable solution for any CFG. Our

algorithm is particularly suited to multiagent settings where centralized solutions are

often infeasible, and where the individual agents would want to play a significant role

in determining their payoffs. We adopt a heuristic approach where we constantly

transition to successively better solutions, eventually ending with the nucleolus so-

lution. The computational load is equally distributed among all agents and they all

play a significant role in identifying the best solution at every stage. Empirical results

for our algorithm show that it performs well with increasing loads in the form of agent

population, total value of the coalition, and precision requirements for the proposed

solution. While the execution time of any algorithm for this hard problem will always
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remain exponential, the bounds on its average case scenario can always be improved.

There is high redundancy in the system with the current approach, so limiting that

can lead to further improvements in this algorithm’s performance. We would like to

address this in the future.
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Part IV

Conclusions
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we study the automated negotiation problem in multiagent sys-

tems with self-interested agents. We are interested in situations where there is a

conflict of interest among the agents in a system, i.e. an agent has to cooperate

with other agents and work as a team to accomplish tasks and make profit, but one

agent’s gain is always at the expense of others in the team. Clearly, we frequently

encounter situations like these in many real-world domains. Our research focus in this

dissertation is on devising automated negotiation mechanisms that facilitate agents

in settings with conflicting interests to make decisions in their best interest and yield

them optimal rewards. We believe that this work will be of interest to researchers

and practitioners not only in computer science, but also in other fields such as social

sciences and economics.

We now present a summary of research contributions from this dissertation:

• We introduce a novel problem - the automated negotiation problem - in multia-

gent systems, and show its scope and significance in a wide range of real-world

applications.

• We describe a model for multiagent settings with conflicting agent interests -

131



a negotiation network. We show that the model possesses all the characteris-

tics, and therefore appropriately represents the automated negotiation problem

under study.

• We present a detailed theoretical analysis of the automated negotiation problem,

and show that solving the problem optimally has hyper-exponential complexity.

• We present a negotiation mechanism - PACT - that provides an approximate

solution to the automated negotiation problem.

• We evaluate the PACT mechanism empirically, and present the simulation re-

sults. These show that the algorithm is distributed, efficient, stable, scalable,

simple, convergent, and can be terminated anytime during execution to yield

the best found result until then.

• We extend our negotiation mechanism to a generalized automated negotiation

problem, and present detailed experimental results for the same.

• We present an algorithm that can be juxtaposed to our negotiation mechanism

to yield the payoff distribution that lies in the nucleolus of any negotiation

network.

8.2 Ideas for Future Research

The real world is inherently decentralized. Examples of inherently decentralized appli-

cations include mobile computing, large-scale operations scheduling, electronic com-

merce over the Internet, teams of autonomous robots performing complex tasks, and

distributed sensor networks. In all these applications, the information needed to make

good decisions and the control necessary to implement those decisions is distributed

among system components. While many current solutions for various applications
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assume that all the necessary information can be aggregated at some central com-

puter system that can then make global decisions, such approaches will no longer

be appropriate for creating complex computer systems in the future. Building dis-

tributed systems comprised of autonomous or semi-autonomous components entails

devising mechanisms whereby the individual components can communicate to coor-

dinate their actions and effectively resolve issues of conflict via negotiations. My

dissertation presents an automated negotiation mechanism for multiagent settings

with conflicting interests. In the future, I am interested in building on this work to

address other problems in various real world application domains.

8.2.1 Automated Multilateral Multiple-Issue Negotiations

My current research addresses automated negotiations for multilateral settings where

the agents negotiate over the value of only a single issue (e.g. price, quality of ser-

vice, etc.). The mechanism also works for situations where the agent negotiations

cover multiple, mutually independent attributes, where the agents’ utility functions

over the possible outcomes are still linear. However, most real-world settings involve

negotiations among multiple attributes that are interrelated. For example, when buy-

ing a car, price is not the only issue to be negotiated over (although it might be the

dominant one). Typically, a buyer is also interested in the length of the guarantee,

the terms of after-sales service, the extras that might be included (such as air con-

ditioning, stereos and global positioning system), etc. and these issues cannot be

handled independently. Multiple issues lead to an exponential growth in the negotia-

tion space, and the buyers’ utilities over the negotiation outcomes is also non-linear.

Hill climbing approaches for such settings typically get stuck at some local optima

and are therefore inadequate. How do we address this challenge? A possible approach

worth considering is the usage of machine learning techniques, either in isolation or

in combination with other techniques.
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8.2.2 Electronic Business and Electronic Commerce

As we all know, electronic commerce is rapidly gaining acceptance in every industry

today, and it will only become more widespread in the future. It offers opportunities

to significantly improve the way that businesses interact with both their customers

and their suppliers. Current (first-generation) e-commerce systems such as Ama-

zon.com allow a user to browse an online catalog of products, choose some, and then

purchase these selected products using a credit card. However, agents can lead to

the second-generation e-commerce systems where many aspects of consumer buying

behaviors (in B2C systems) and business-to-business transactions (in B2B systems)

are automated. Sophisticated automation on both the buyer’s and the seller’s side

can lead to applications that are more dynamic and personalized. Both buyers and

sellers gain from these changes - the buyers can expect the agents to search for and

retrieve the best deals available, while the sellers can have the agents that automat-

ically customize their offerings to customers based on various parameters, such as

the customer type, current seller competition, and current state of the seller’s own

business. This advanced degree of automation can be achieved by modeling the e-

commerce systems as interacting agents. Indeed, there is a tremendous interest among

the research community in devising efficient algorithms for winner determination in

combinatorial auctions and exchanges. Most of the proposed solutions to date are

centralized and therefore have exponential run-time complexity. My current research

can potentially lead to the kind of agent negotiation mechanisms necessary for the

second-generation e-commerce systems. A huge limitation of the current mechanism,

which makes it inappropriate for e-business settings is that the agent strategy pro-

posed by the mechanism is not incentive-compatible (i.e. the may not be the best

move for the agent).

134



8.2.3 Web Services, Service-Oriented Computing, and Busi-

ness Process Management

Workflow management systems, which aim to automate the processes of a business,

have been around for decades. With the advent of the service-oriented computing

paradigm and the Web services technology, we have means for addressing the hetero-

geneity that currently exists across enterprises. Today we have standard languages

such as WS-BPEL and WS-CDL for defining business processes that span across en-

terprise boundaries. We need business process management systems to handle such

cross-enterprise workflows. The current incarnations of such systems, such as IBM’s

BPEL4J engine, leave a lot to desire. Typically, these systems are centralized and lack

the adaptability to cope with unpredictable events. Systems for handling workflows

involving multiple businesses must adopt a decentralized, peer-to-peer architecture to

avoid privacy and trust issues. There have been many proposals for modeling busi-

ness process management systems as multiagent systems as they naturally address

many issues that plague the current workflow systems. For example, adopting an

agent-based approach naturally addresses the issue of aggregating information from

distributed data sources owned by different parties. The inherent dependencies and

conflicts of interest among the participants in the business processes can be resolved

through agent interactions. Such systems could also respond more rapidly to chang-

ing circumstances in business environments. Once the integration issues between

businesses are resolved, there is a need for automatically resolving higher level issues

such as contractual agreements. Automated negotiation mechanisms can potentially

address these concerns.
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8.2.4 Semantic Web Services and the Semantic Web

Web services technology is an emerging paradigm for architecting and implementing

today’s business solutions. Web service providers can publish descriptions of ser-

vice interfaces on the Web using the XML-based Web Services Description Language

(WSDL). These descriptions include information about the message forms used to

invoke the services, which can be serialized using HTTP and SOAP protocols, among

others. WSDL does not, however, have a systematic way to associate meanings with

the messages and message arguments that appear in those descriptions. Now, the goal

of the Semantic Web is to develop XML-based languages for expressing information

in a machine processable way. This Semantic Web vision takes Web-publishing of

descriptions to the next level by introducing semantic description languages built on

XML, which lets people publish and share ontologies - set of conceptual terms labeled

by URLs - that can be used in describing other published materials. Semantic Web

services are Web services in which semantic Web ontologies ascribe meanings to pub-

lished service descriptions so that software systems representing prospective service

clients can interpret and invoke them. This is a very appealing research area for me

and I plan to contribute towards it in the future.
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