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ABSTRACT
Coalition formation is an important form of interaction in
multiagent systems. It enables the agents to satisfy tasks
that they would otherwise be unable to perform, or would
perform with a lower efficiency. The focus of our work is
on real-world application domains where we have systems
inhabited by rational, self-interested agents. We also as-
sume an environment without any trusted central manager
to resolve issues concerning multiple agents. For such en-
vironments, we have to determine both an optimal (utility-
maximizing) coalition configuration and a stable payoff con-
figuration, concurrently and in a distributed fashion. Solv-
ing each of these problems is known to be computationally
expensive, and having to consider them together exacerbates
the problem further. In this paper, we present our Progres-
sive, Anytime, Convergent, and Time-efficient (PACT) algo-
rithm for coalition formation to address the above concerns.
We assess the stability of the resulting coalition by using
a new stability concept, the relaxed core, which is a slight
variation on the core. We show experimentally that our al-
gorithm performs admirably in comparison to an optimal
solution, it typically produces solutions that are relaxed-
core-stable, and it scales well.

1. INTRODUCTION
Coalition formation is an important cooperation method

in multiagent systems where the autonomous agents cannot
accomplish individual tasks in their entirety (or accomplish
them poorly) by themselves, and where there can be no
central agency for coordinating the actions of all the agents.
Works in game theory and microeconomics have provided
many solution concepts for stable coalition formation. While
many of these concepts involve a highly expensive combina-
torial search to compute, game theorists have devised trans-
fer schemes for many concepts, which describe the bargain-
ing process that can yield a stable solution for any character-
istic form game. Coalition formation research in multiagent
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systems have provided both types of solutions: algorithms
that yield optimal allocations but are computationally inten-
sive [6, 2], and algorithms that produce results in polynomial
time without any guarantees of optimality [7, 5]. While some
work focuses on cooperative agents, thereby concerning only
on increasing the group’s global utility, others address self-
interested agents where the stability of the ensuing solutions
are of primary importance too. Our research is geared to-
wards devising practical solutions for real-life environments
with self-interested agents and no central authority. Note
that although combinatorial auction research [8, 1] also tar-
gets forming buyer/seller coalitions treating them as self-
interested entities, the offered solutions are all inherently
centralized and require a trusted entity that aggregates the
agent preferences and determines the final output. Such so-
lutions are inappropriate for our target domains, which lack
any central entity, let alone a trusted one.

2. PROBLEM DESCRIPTION
Given a set of m tasks T = {t1, . . . , tm} and a set of n self-

ish, rational agents A = {a1, . . . , an} with their capabilities,
we consider situations where each task must be addressed
by a group of agents that will perform the task. Each task
ti ∈ T is defined as a pair 〈Ai, v(ti)〉, associated with a set
of agents Ai ⊆ A that need to collaborate by forming a
coalition in order to complete the task successfully, and a
value v(ti) ∈ < which is the payoff that must be distributed
amongst the agents in Ai at the completion of ti. Our prob-
lem can be modeled as a characteristic function game with
n agents, and a characteristic function v(S) → < for each
S ⊆ A. The worth of the tasks represent the coalition values
of the associated agent set.

The outcome of the problem is represented as a coalition
configuration, C̄, which is a vector of tasks that were suc-
cessfully assigned to the associated agent coalitions. Each
element Ci ∈ C̄ is a tuple 〈ti, Ai, ūi〉, where ti represents
the task, Ai is the set of member agents, and ūi is the pay-
off distribution vector, which defines the utility earned by
each member by successfully completing the task. Here,P

ui = v(ti). We assume that an agent can participate in
only one coalition at a time, so the coalition structure CS
is a partition of agents A into

˛̨
C̄

˛̨
disjoint sets. We strive

to maximize the social welfare of all the agents in A by
finding a coalition structure CS∗ = argmaxCS∈MV (CS),
where M is the set of all valid coalition structures, and
V (CS) =

P
S∈CS vS .



Find-Coalition-PACT(i)

1 t← 0
2 Li ←

˘
c ∈ T : i ∈ cagents

¯
3 Nagents ←

S
c∈Li

cagents

4 for c ∈ Li

5 do Et(i, c)← cvalue

|cagents|
6 fixed(c)← FALSE
7 t← t + 1
8 for c ∈ Li

9 do At(i, c)← maxc′∈Li−c Et(i, c′)
10 for j ∈ cagents

11 do send At(i, c); receive At(j, c)
12 if fixed(c) = FALSE

13 then Et(i, c)← At(i, c) +
cvalue−

P
j∈cagents At(j,c)

|cagents|
14 if (Et(i, c)has converged) ∨ (Et(i, c) ≤ 0)
15 then fixed(c)← TRUE
16 if ∃c ∈ Li : fixed(c) = FALSE
17 then goto 7
18 c∗i ← argmaxc∈Li

Et(i, c)
19 for j ∈ A
20 do send c∗i ; receive c∗j ; put all into C∗

preferred set
21 c∗ ←

˘
cx ∈ C∗

preferred : ∀x 6= y, cvalue
x > cvalue

y

¯
22 if i ∈ c∗agents

23 then return c∗

24 C∗
preferred ← C∗

preferred − c∗

25 for j ∈ c∗agents

26 do Li ← Li − {c ∈ Li : j ∈ c}
27 if not empty?Li

28 then goto 18
29 return

Figure 1: The Find-Coalition-PACT algorithm to
find the best task allocation for agent i.

3. THE PACT ALGORITHM
The Progressive Anytime Convergent Time-efficient (PACT)

algorithm is a greedy, distributed algorithm that facilitates
selfish, rational agents to form coalitions in order to handle
tasks. It is an iterative algorithm that progressively pro-
duces a better solution over time. It is also an any-time
algorithm, so it can be halted at any time before its normal
termination to provide the best solution found until that
time. We will show in our experimental evaluation of the
algorithm that it always converges and is also very efficient.
It is based on the Equal Excess Theory [3, 4] for coalition
formation, which is a prescriptive bargaining solution con-
cept to realize stable solutions for any characteristic function
game. We compare the PACT solutions with an axiomatic
solution concept - the relaxed-core, which we describe in the
next subsection. Figure 1 describes our PACT algorithm.

The algorithm starts with a pre-negotiation phase (lines
1-6) where all agents are initialized. For each coalition that
an agent participates in, it initially expects an equal division
of the total value of the coalition. During the negotiation
phase (lines 7-17), an agent concurrently participates in all
of its coalitions. For each coalition, the agent determines
all the valid alternative coalitions that it can participate
in. It sets the maximum expectation that it gets from any
of these alternative coalitions as its logical claim from this

coalition in the following round of negotiations. Upon de-
termining its claim for all its coalitions in the current round
of negotiations, the agent exchanges its demands with all its
neighbors and then computes its actual payoffs for the var-
ious coalitions. The excess is split equally between all the
members and added to the agent’s claim to get its actual
payoff for the concerned coalition in the current negotiation
round. If the agent payoff for a coalition converges or goes
negative (i.e. the agent has to pay to the coalition in order
to participate in it), then the agent fixes the coalition and no
more negotiations are conducted for this coalition. We have
noticed in our simulations that sometimes the agent payoff
does not converge. Instead, it keeps toggling between two
values. However, even under such unstable conditions the
total excess generated within the coalition converges. Our
agents test this convergence to determine the termination of
the negotiation process. The post-negotiation phase (lines
18-29) involves the selection of the most preferred tasks to
be performed by the agents. Each agent initially ranks all
their coalitions based on their derived payoff from each of
them and broadcasts its most preferred coalition. Thus, ev-
ery agent is informed about each other’s preferences over the
tasks to be allocated. Each agent sorts this list of preferred
coalitions based on their coalition values. Ties are broken by
ranking the coalitions that have fewer agents ahead of the
larger ones, as this can potentially maximize V (CS). For
further ties, the task that arrived in the environment earlier
is preferred. Thus, every agent knows the winning coalition
in the current round. The agent joins the winning coalition
if it is a member, or removes all coalitions involving agents
in the winning coalition and repeats the winner determina-
tion process if it is not. An agent remains unallocated if it
runs out of candidate coalitions to participate in.

3.1 The Relaxed Core Solution Concept

Definition 1. An outcome C̄ = 〈t, A′, ū〉 is in the re-
laxed core if there is no task t′ = 〈At, v(t′)〉 such that
v(t′) >

P
i∈At ū(i)

This axiomatic solution concept ties stability directly to
the tasks available. Agents can only negotiate with the
agents that they cooperate with to solve an existing task1.

4. EXPERIMENTAL EVALUATION
We have conducted a series of simulations to test the qual-

ity of the PACT solutions along various dimensions.
In our first set of experiments, we test the performance of

PACT against that of a utility-maximizing algorithm with
respect to the coalition structures that the two algorithms
propose. We test for various distributions of agents and
tasks - the agent/task ratios range from 0.25 to 4. Our tests
comparing the coalition structures in terms of the number of
completed tasks show that the PACT algorithm produces so-
lutions that are within 4% of the utilitarian solutions. When
the proposed coalition structures were compared based on

1Note that the alternate approach of simply setting v(S) =
0 for all subsets for which there is no task and using the
standard core concept fails because it might induce different
coalition structures. That is, a value of 0 is not the same
as the impossibility of forming such a coalition (similarly,
neither is a value of −∞ as that would rule out all coalition
structures using that coalition)



the accrued total revenue, we found that the PACT solutions
were within 3% of the utilitarian solutions. This suggests
that the tasks that PACT allocates are mostly identical to
those selected by the utilitarian solution.

Our second set of experiments test the scalability of the
PACT algorithm. We first test PACT scalability in terms
of the number of agents and tasks for various agent/task
distributions. Our results show that the negotiations range
roughly from 10 to 275 rounds based on agent connectiv-
ity. When there are very few agents in the system, each
agent will be highly connected to all the tasks in the envi-
ronment, and therefore will have similar negotiating power
in the bargaining process. Due to the lack of competition,
these agents quickly converge to the task(s) that offer them
maximum benefits. On the other hand, when we have too
many agents in the system, then their connectivity to the
tasks in the environment, and therefore their negotiating
power, will be very limited. Again, such agents greedily
accept their best offers and converge quickly. When there
are just enough agents in the system such that they are all
heavily connected, and they also compete with each other
for the best tasks as not all of them can be supported in
the most coveted ones, the negotiations prolong for a long
period of time. We also tested PACT scalability in terms of
the coalition sizes to determine its performance in an envi-
ronment where all the tasks have the same number of agents
forming coalitions to perform them. Our results show that
it gets progressively harder to choose tasks for allocation
with increasing coalition size, since more agents have to en-
dorse a particular coalition for it to be selected. For each
agent/task distribution, we see that the smallest coalitions
converge fast, while the larger ones either don’t converge, or
do so after extensive negotiations only.

Given that the negotiations can extend for hundreds of
rounds, our next set of experiments focus on ascertaining
the suitability of PACT for real-world applications. The
most significant observation in these results is that PACT
converges up to 90% of its best solution within the first 10
rounds of negotiations. This is true even for the most com-
petitive environments. The quality of the solution keeps
improving as we proceed with the negotiations, with a so-
lution 95%, 98%, and 99% close to its best arrived by ap-
proximately the 20th, 30th, and 50th rounds respectively. It
is only the final 1% that holds back the vast majority of the
PACT runs from finishing earlier. This feature in PACT
whereby it converges to a close approximation of its best
solution very early in the negotiations is critical for its ap-
plication in various real-world domains.

Our final set of experiments test the PACT solutions in
terms of our relaxed-core stability concept. We test various
agent/task distributions and coalition sizes to determine the
percentage of PACT solutions that lie in the relaxed-core.
Note that just like the core, the relaxed-core can also be
empty for a particular game. The likelihood for the relaxed-
core being empty increases with higher values for the number
of tasks, agents, and coalition sizes as the heavy constraints
that the solution concept demands from a game get harder
to satisfy. Our results show that for 90% of settings with
just a handful of agents and tasks, the PACT algorithm
leads to an equilibrium solution that is relaxed-core-stable.
Not surprisingly, these percentages go down with increasing
number of tasks, agents, and coalition sizes.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced PACT - our fully dis-

tributed, progressive, anytime algorithm for coalition for-
mation, that addresses both coalition structure generation
and payoff distribution among selfish agents simultaneously.
Our simulations show that for most cases, PACT generates
coalition structures and maximizes social welfare to the ex-
tent that the optimal solution does. Being a greedy algo-
rithm, PACT is very efficient, and we show experimentally
that it scales very well with respect to the number of agents,
the number of tasks, and the coalition size. The PACT al-
gorithm extends to larger number of negotiation rounds in
competitive settings, but the negotiations are extended only
at the latter stages of the algorithm where it is very close to
convergence. Therefore, PACT is very applicable to many
real-life domains. We also introduce a new stability con-
cept named relaxed-core, which is a slight variation of the
core. It constrains the requirement of checking every possi-
ble agent subset for determining conflict allocations in core
to checking for only the agent subsets formed by unallocated
coalitions in our environment. We show experimentally that
typically PACT solutions are relaxed-core-stable.

In this work, agents and tasks in the environment are
known a priori. We would like to extend this work for open,
dynamic environments like the Internet. In our current ap-
proach, we assume that the agents will truthfully reveal their
highest expectations from alternative coalitions while claim-
ing their share of the coalition value in a PACT negotiation
round. In the future, would like to focus on the mechanism
design issues of providing incentives to these agents such
that truth-telling becomes their dominant strategy.
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